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Abstract. In this paper, (p,q)-calculus is applied to construct (p,q)-analogue of divided differences. Another
equivalent form of (p,q)-Bernstein operators which generalize the Phillips g-Bernstein polynomials are defined
in terms of (p,q)-divided differences. It is shown that these operators reproduce constant as well as linear test
functions. Further, we show that the difference of two consecutive (p,q)-Bernstein polynomials of a function f
can be expressed in terms of second-order divided differences of f.
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1. Introduction-Preliminaries

Recently, Mursaleen et al. introduced (p, g)-calculus in approximation theory. They applied
it first to construct the (p,q)-analogue of the classical Bernstein operators [18]. Most recently,
the (p, ¢g)-analogues of several operators and related approximation theorems has been studied
extensively; see [1, 2, 3,4, 7, 10, 11, 12, 16, 17, 21, 22] and the references therein.

One of its advantage of using the extra parameter p has been mentioned in [20] to study (p, q)-
approximation by Lorentz operators in compact disk. Very recently, another nice application is

given by Khan et al. [13, 14] in computer-aided geometric design in which they applied these
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Bernstein basis for construction of (p,g)-Bézier curves and surfaces based on (p, q)-integers,
which generalize g-Bézier curves and surfaces; see [6, 23, 26, 27] and the references therein.

Motivated by the above mentioned work on (p,q)-approximation and its application, we
apply (p,q)-calculus to construct (p,q)-analogue of divided differences. We give another e-
quivalent form of (p,q)-Bernstein operators in terms of (p,q)-divided differences and show
that these reproduce constant as well as linear test functions. We state a remark under which
these operators also preserve quadratic test functions. We define (p, g)-Bernstein polynomials
which generalize the g-Bernstein polynomials, and show that the difference of two consecutive
(p,q)-Bernstein polynomials of a function f can be expressed in terms of second-order divided
differences of f.

The (p,q)-analogue of Bernstein operators introduced by Mursaleen et al. [18] for 0 < g <

p < 1 are defined as follows:

1
Bn,p,q(f;x) = "D Z

n
p z k=0| k 5=0

n—k—1
P T (p“—qSX)f(IM),XG[O,I], (L.1)

k=nln]p 4

where

—

n—

(1=x)8, =[] —a'x) = 1 =x)(p—qx)(p* —¢*x)...(p" ' —q" " 'x)

s=0
n k (=Kn-k=1) kk-1) [ N X
=Y (=Dp 7 g .
k=0 k
P4

When p = 1, (p,q)-Bernstein Operators given by (1.1) turns out to be Phillips g-Bernstein
operators [26].
Let us recall certain notations on (p, g)-calculus.

For any p > 0 and g > 0, the (p,q) integers [n], , are defined by

;

pn_qn
=g > When pFq#1,

1]pq = P g+ " P+ A p" g = n PPl whenp=gq#1,
[n]g, when p =1,
| 7, whenp=g=1,
where [n], denotes the g-integers and n = 0,1,2,---. Obviously, it may be seen that [n],, =

n—l[n]%.
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The formula for (p,q)-binomial expansion is as follows:

(n—k—1) k(kfl) n

(ax+by)}, Z p B 2 a" kP xRk
k

(x4 y)h g = (x+9)(px+qy)(PPx+g%y) -+ ("

n n(n
p 7 X H P—q¢'x) =p 7 ,xe]0,1], (1.2)
k=0 | k b 5=0

where (p,g)-binomial coefficients are defined by
_ 7] p.q!

k B [k]nq![”_k]p-,q!'
P

n

Also we have the following relation

qk[n—k+1]p7q: [n+l]pyq—p"’k+1[k]p7q, (1.3)

(n+1]pq=q"+plnlpq=p" +4qnlpq (1.4)

For details on g-calculus and (p, ¢)-calculus, one can refer to [5, 8, 18, 28] and the references
therein.

One can easily verify by induction that

(1+x)(p+gx)(p*+¢*x) - (pP" ' +¢ %) Zp SR X (15)

2. (p,q)-Bernstein polynomials

For any real function f, we define (p, g)-differences recursively

A9 fi = fi, forall i € NU{0}, (2.1)

Adefl - kAk qfl—l—l qkAI;),qu (22)
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fork=0,1,--- ,n—i— 1, where f; denotes f <¢> For p =1, these reduces to g-forward
Pﬁq
differences. Now it is easily established by induction that the (p,q)-differences satisfy the
following:
& k , (k—r)(k—r—1) r(r—1) k
Ap7qfi = Z(_l) p 2 q ? fiJrkfr' (23)
r=0 r

Pq

Definition 2.1. For each positive integer n, we have

1 n n r(r 1)

Bz,q(f;x) = T Zfr

H —q’x) (2.4)

where an empty product denotes 1. For p = 1, we obtain the Phillips g-Bernstein polynomials

[26]. We observe immediately from (2.4) that

B}, 4(£;0) = £(0), B, 4(f31) = f(1), (2.5)

for all functions f.

We now state a generalization of the well-known forward difference form [25]. Let us write
the interpolating polynomial for f at points xq,xp,- - ,X, in the Newton divided difference form

as

n r—1
Py, (x) = Z (H(x—xs)> flxo,x1, %], (2.6)

r=0 \s=0

where the empty product denotes 1. For the choice of points x, = Z [_n]m” 4.0 <r<n, wecan
P4

express the divided differences in the form of (p, ¢)-differences.

Theorem 2.1. The Newton divided difference in the (p,q)-difference form can be written as

ki) N
X xiag = (2 ko Zpalt
SlXis X1, Xigk] (p) [n]p,q k]! .

(2.7)
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1—if; n—if;
Proof. We may verify by induction on k. Let us choose the points x; = pTM”’q, A = IJ[TM”‘”,
pg = Xn X

i
[1]p,
where xj | —x; = (%) ﬁ,

s ((4)7+(8) ) - (8) e
N ((%>i+kl N (g)i+k2+,.~+ (%)l) [n]lp’q = (%)i%ﬁﬁm,

where
flxixiv1] = f(x:ji :)j;(Xi) = (S) [n]p.qDpaf(xi),
2i+1
S X1, Xiva) — flxi Xi1] (%) [nlp2p.af ()
flxixig1,Xi2] = = )
Xi+2 — Xj [Z]p,q!
and

3i+3
r 3 A3 .
S, xi0,xi03) — flxi, xi1,%i42] _ <Q> [n]pqup’qf(x,)

Xi+3 — X [3]p,q!

FlxisXiv1, xiv2,xi43] =

Clearly from (2.7) it is true for k = 1. Suppose it is true for k = m, i.e.,

- f[xl+17- . 7-xi+m] —f[_x” e 7xi+m71]
f[xlaxl+l7 7xl+m] — Xl+m _XL
) (2.8)
(5) 7 o)
[m]p,q! .
For k =m+ 1, we have
FlxiXist, - Xigme1] = fxiets - Xigme1) = flxi, -+ Xisem)
Xitm+1 —Xi
j—m@itm=1)
p 2 m+1_.m _
N m+1]p4! ) Ay of (xigr) = A o f (xi)
(1) 2itm)
q +1AmHL £
_ <5> [nmq A?,q f(xi)
[m+1],4! '

Hence (2.7) holds.
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Theorem 2.2. The generalized Bernstein polynomial defined by (2.4) can be expressed in the
(p,q)-difference form as follows

n n (n—r)(n—r—1

7) r r
p T A fox, (2.9)

pq

1
n(n—1)
p 2 r

B}, ,(fix) =

o r
where [N}, | defined by (2.2).

Proof. Clearly from (2.4), the coefficient of X

1 nd n (k=v)(k—v—1) (n—v)(n-v-1) v(v—=1) | n—k—+V
) Z Je—v 12 (=D)¥p 2 q *
p z v=0 k—v 1%
p:q P:q
1 k n-v)n—v-1) viv-1) | k (k—v)(k—v—1)
= LD g P v
p 2 v=0 V

P4
Now we see immediately from the expansion of the (p,q)-difference (2.3) that the coefficients

of x* in (2.4) simplifies to give

1 n (n—k)(n—k—1)
n(n—1) p - Afy,qf()a
p 2z |k
)2

which verifies (2.9). This completes the proof.

From the uniqueness of interpolating polynomial it is clear that if f is a polynomial of degree
m, then A},  fo =0 for r >mand A7 fo # 0. Thus it follows from (2.9) that if f is a polynomial
of degree m, then B}, ,(f;x) is a polynomial of degree min(m,n). In particular, we will evaluate
B}, ,(f;x) explicitly for f(x) =1, x, x?. If f(x) = 1, then f(0) = 1, which implies from (2.3)
that A% ¢Jo = fo. Hence we have

B! (1;x) = 1. (2.10)
For f(x) = x, we compute from (2.3) A?w fo=fo=0and

n_l[l]p,q . Pn[()]p,q _P
[n]p.q [n]p.q [n]p.q .

Ap,qfozfl—foz P

Therefore, one has

n n
B}, 4(x6:x) = 0 Ag,qfOJr { Fﬁmfox-

pPq D-q
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Since = [n]p 4, we deduce that
1
P
B}, ,(x;x) = x. (2.11)
For f(x) = x*, we compute fy = 0 and
P Mg\ (P00 _ P
Dpafo={—5—") |77 ) =5
Using (2.3), we have
) 1 2 2-r)2-r-=1) r(r-1) 2
Dy gfo = 1) Z(_l) P q° Jor
p 2 r:o r
Psq
= pfr—Rlpqfi+afo
_ 2 _ 2
o p" 2[2]17,61 p" 1[1]19,!1 P"[ ]p,q ?
= —[2]pq +q
]9 [n]p.q [n]p.q
2
o3 Plhg 202 [2leg
=P 2 P 2
5.4 5.4
n— [2] 9
= p lzjq ([2]1941_1’)
5.4
= g —
= PaT, 12
5.4
It follows from (2.9) that
n 2. AO 1 A 1 A2 2
B, (x5x) = pafot =l pafox+ P23 P o
P P4 P4
X n—1
— prl +Q[ ]p,qxz'
[”]p-,q [n] P4
In view (1.4), one has
qln —1]pq = ["]p,q_PnA’ (2.12)
2.0\ .2 _1x(1—x)
B} (x%x) =x"+p" —— (2.13)

[n]pﬂ '

Note that the relations (2.10), (2.11) and (2.13) are identical to (p,q)-Bernstein polynomials

[18]. In case of p = 1 these results are identical to results of Phillips g-discrete Bernstein



8 M. MURSALEEN, MD. NASIRUZZAMAN, F. KHAN, A. KHAN

polynomials. It follows directly from the definition that (p,q)-Bernstein polynomials possess

the end point interpolation property, i.e.,
B, ,(f;0)=f(0), B, ,(f;1)=f(1) forall0<g < pandalln=1,2,---. (2.14)

The following representation of (p,q)-Bernstein polynomials is called the (p,g)-difference for-

m and we denote it as

n

n
B}, (f:x) = ZE) . D" fox', (2.15)
B pa

where 7" fj is expressed as

' (n=r)(n—r— r(r— n—1 n—r
7" fo= M”,’q'p( et sty o, _Weg P pg ) (2.16)
[n]p,q [n]p.q ]p.q
and f [xp,x1,- - - ,x;] denote the usual divided difference, i.e.,
Jxr) — fxo
flia) = f0), Slro,) = LS00
X1 — X0
flxo,x1,+,xi] = e, = flxo,xi, e ’xi_l].
Xi — X0
Using (2.15) and (2.16), we write
L n—1 n—r
D) P pg P rlpg
By, ,(f;x) —r;)/l,’,ﬂqf [O,W,w e X, (2.17)
where
A n [”]p,q! (nfr)(gfrfl) r(r;l)
g - [”];a \ p q
pa (2.18)

(=T (=) - ()

From (2.18) and

0 _ 91 __
2Ip7q - 2Ipaq - 17 (2‘19)
we have
Ogﬂtl’,”qgl,r:O,l,---,n. (2.20)
It follows that
n pn—l[l] ’ pn_r[l’] 7
| By g(f1x) 1< ) f[O, PA PN x [k (2.21)
=0 []p.q (nlp.q
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This estimates will be used in the sequel. It follows immediately from (2.17) and (2.19) that the

(p,q)-Bernstein polynomials leave invariant linear functions, that is,
B}, ,(at +b;x) =ax+b, foralln=1,2,---. (2.22)

If f is a polynomial of degree m, then all its divided differences of order > m vanish, and (2.17)
implies that B?w( f5x) is a polynomial of degree min(m,n). In other words this means that
(p,q)- Bernstein operator is degree reducing. We set
n 1 n ) rr_k_1 s s
Qp,q(x):W p X H (P —C[X),7‘:0,1,"',1’1;]1:1,2,"'. (223)
p

r s=0
124

By taking a = 0,b =1 in (2.22), we conclude that

n

Y o), (x)=1, forall...n=1.2,--. (2.24)
r=0
Obviously,
B} 4(fix) = Zn‘,f (LM”> Q) ,(x). (2.25)
7 r=0 [n]qu '

We note that B), , defined by (2.4), is a monotone linear operator for any 0 <g < p <1and B}, ,

reproduces linear functions, that is,
B}, ,(ax+b;x) = ax+b, a,b € R. (2.26)

It also satisfies the end point interpolation conditions B}, ,(f;0) = f(0) and B}, ,(f;1) = f(1).
The generalized Bernstein polynomial B}, , defined by (2.4) shares the well-known shape-
preserving properties of the classical Bernstein polynomial. Thus when the function f is convex
then (see [24]) ngq] (fsx) > Bj, ,forn>2and any 0 <g < p < 1. As a consequence of this we
can show that the approximation to a convex function by its (p, g)-Bernstein polynomial is one

sided.
Theorem 2.3. If f is a convex function on [0, 1], then B}, ,(f;x) > f(x) for0 < g < p <1.

Proof. Let /(x) = ax+ b be any line. Also let / be tangent at an arbitrary point ¢ € [0, 1] so that
I(t) = f(t) and f —1 > 0. By using (2.26) and the fact that B, , is a monotone linear operator,

we see that

By (f —1) =Bl y(f) 120,
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Thus, at any tangent point # we have Bj, ,(f;t) > [(t) = f(¢). By continuity, we deduce that
B} ,(f) > f. This completes the proof.

Theorem 2.4. Let B, , be the operators defined by (2.4). Then forn=12,3,---, we have

By (fix) = B} 4 (f1)

4
1 x(l_x) nZZ 2n—r—1_n+r—1 n—2
n(n—1) [I’l] [l’l— 1] p q
p 2 pPq P9 r=0 r
P
1 pag [ | PR S | PP I i
Xf pn r—1 ) , n—r 4 n—r A | " (ps_qsx)'
[n— 1]p,q [”]p,q [n— 1]p,q s=1
Proof. It is clear that
flxo, 1,32 L) L)
X0,X1,X2] = X0) — X
b2 (x2 —x0) (x1 —x0) O oy —x1) (1 —x0)” (2.27)
) )
+ X2).
=)o) 2
_ nfr[”_”p,q o n—r Mp,q _ n—r—1 [r]lw :
Take xo = p E X1=p iy Xy =p = Using
+k+1pg— P lpg = Tk +1]pg) (2.28)

we get
n—rm n—r [r]l”q n—r—1 M]
s =14 P [n]pq’ P =154
_ (1] pqln — 1]%7,61 ( - 1]19761)
[n— r]pqunzrzqzrzz =154 (2.29)
. [n]p,q[n - 1]p,q f (pn—r[r]ﬂ>
[r]p,q[n _ r]p’qp2n7r72qn+r72 [n]p,q
[n]pqln— l]g,q ( nr-1 pa )
+ [r]p7qp2n72r72qn+r72f p n—1]pq)
Define

el ) oane ) o )

n—1]pgq
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and let A = Pr[n[;]w- Using p'[n—rlpg = [nlpq—q" "[rlpg we get 1 -4 = g g
Pq

a, = pr [l’l - r]ILQf (pnrl [r]l)H )

follows that

[”]p,q [n— 1]17,(1 (2.30)
T [r]p,qf <pn—r [r— 1]p,q> —f (pn—r [r]p,q> '
[n]p.q n—1]pq [n]p.q
From (2.29) and (2.30), we get
n . p gt | n=2 [ nr "= Upa  wrlMlpg  ar1 [Tlpg }
r e ]pgln—1pqg | r—1 ! [”—l]p,q’ g [”]p,q7 P [n—1]pgq ‘
p:q p:q
(2.31)
Now we have
— n—r—1
By (fix) — Bl (fix Z "I e [ W -aw.  (232)
p r=1 r s=0
P

where a, 1s defined in (2.30). Therefore by using (2.31) and (2.32) we get

By (f3x) = By 4 (f3%)

_ 1 x(l_x) Z 2n—r—2 n+r 2 n—2
pn(”El) (]pgln—1]pq = r—1
P
_ [r— l]p.q - [r]pq —r—1 [r]pq 71n—r—1
X f p}’l r ) , p}’l r ) , p}’l r ) xr (pS_qu)'
[n— Pq [”]nq [n— l]pﬂ sI;Il

By shifting the limits, we get the desired results. This completes the proof.

Remark 2.5. For g € (0,1) and p € (g, 1], it is obvious that hm[ n)p.qg=0or p— In order to
reach to convergence results of the operator B}, ( f3x), we take a sequence g, € (0,1) and p, €

(qn, 1] such that l1m N py =1, l1m n g, = 1 and hm n p, =1, hm n g, = 1. So we get hm[ 1) pygn = -

Clearly (p,q)-Bernstein operators are defined for all ¢ € (0,1) and p € (g, 1], however we
cannot approximate every continuous function from the space of all continuous function C[0, 1]
by these operators for all ¢ € (0,1) and p € (¢, 1]. Hence we state a theorem which guarantees

this approximation process based on Korovkin’s type approximation theorem.

Theorem 2.6. Let 0 < g, < p, < 1 such that lim p, =1, lim g, =1 and lim pl! =1, lim g} = 1.
n—oo n—oo n—oo n—oo
Then for each f € C[0,1], B}, ,(f;x) converges uniformly to f on C[0,1].

Proof. Let us recall the following Korovkin’s theorem (see [15], [19]):
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Let (7,,) be a sequence of positive linear operators from C[a, b] into C[a, b]. Then li’?l T (f,x)—
f(X)|lcla,p) = 0, for all f € Cla,b] if and only if 1i£n||Tn(f,-,x) — fi(¥)[l[ap) = 0, fori =0,1,2,
where fy(t) =1, fi(t) =t and f>(¢?) = 2.

We need to show if operators converge for the test function 1,7 and ¢2, then any continuous
function can be approximated with the help of these positive linear operators. Since B;’,’q( f,x)
define positive linear operators, the Korovkin’s theorem implies that B?w( fix) = f(x) if and
only if B}, (¢",x) — x™ for all x € [0,1] and m = 0,1,2. For m = 0,1 this is true. It follows
from (2.13) and Remark 2.5 that B, , (f,x) — f(x) for x € [0, 1] if and only if

1—
B! . (x*:x) :x2+p2_1x—( %) — X%

Protn 1] prn

If we choose sequence p, and g, satisfying Remark 2.5, then lim [n],, ,, — co. This completes
n—soo

the proof.
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