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ON (p,q)-ANALOGUE OF DIVIDED DIFFERENCES AND BERNSTEIN
OPERATORS
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Abstract. In this paper, (p,q)-calculus is applied to construct (p,q)-analogue of divided differences. Another

equivalent form of (p,q)-Bernstein operators which generalize the Phillips q-Bernstein polynomials are defined

in terms of (p,q)-divided differences. It is shown that these operators reproduce constant as well as linear test

functions. Further, we show that the difference of two consecutive (p,q)-Bernstein polynomials of a function f

can be expressed in terms of second-order divided differences of f .
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1. Introduction-Preliminaries

Recently, Mursaleen et al. introduced (p,q)-calculus in approximation theory. They applied

it first to construct the (p,q)-analogue of the classical Bernstein operators [18]. Most recently,

the (p,q)-analogues of several operators and related approximation theorems has been studied

extensively; see [1, 2, 3, 4, 7, 10, 11, 12, 16, 17, 21, 22] and the references therein.

One of its advantage of using the extra parameter p has been mentioned in [20] to study (p,q)-

approximation by Lorentz operators in compact disk. Very recently, another nice application is

given by Khan et al. [13, 14] in computer-aided geometric design in which they applied these
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Bernstein basis for construction of (p,q)-Bézier curves and surfaces based on (p,q)-integers,

which generalize q-Bézier curves and surfaces; see [6, 23, 26, 27] and the references therein.

Motivated by the above mentioned work on (p,q)-approximation and its application, we

apply (p,q)-calculus to construct (p,q)-analogue of divided differences. We give another e-

quivalent form of (p,q)-Bernstein operators in terms of (p,q)-divided differences and show

that these reproduce constant as well as linear test functions. We state a remark under which

these operators also preserve quadratic test functions. We define (p,q)-Bernstein polynomials

which generalize the q-Bernstein polynomials, and show that the difference of two consecutive

(p,q)-Bernstein polynomials of a function f can be expressed in terms of second-order divided

differences of f .

The (p,q)-analogue of Bernstein operators introduced by Mursaleen et al. [18] for 0 < q <

p≤ 1 are defined as follows:

Bn,p,q( f ;x) =
1

p
n(n−1)

2

n

∑
k=0

 n

k


p,q

p
k(k−1)

2 xk
n−k−1

∏
s=0

(ps−qsx) f
(

[k]p,q
pk−n[n]p,q

)
, x ∈ [0,1], (1.1)

where

(1− x)n
p,q =

n−1

∏
s=0

(ps−qsx) = (1− x)(p−qx)(p2−q2x)...(pn−1−qn−1x)

=
n

∑
k=0

(−1)k p
(n−k)(n−k−1)

2 q
k(k−1)

2

 n

k


p,q

xk.

When p = 1, (p,q)-Bernstein Operators given by (1.1) turns out to be Phillips q-Bernstein

operators [26].

Let us recall certain notations on (p,q)-calculus.

For any p > 0 and q > 0, the (p,q) integers [n]p,q are defined by

[n]p,q = pn−1 + pn−2q+ pn−3q2 + ...+ pqn−2 +qn−1 =



pn−qn

p−q , when p 6= q 6= 1,

n pn−1, when p = q 6= 1,

[n]q, when p = 1,

n, when p = q = 1,

where [n]q denotes the q-integers and n = 0,1,2, · · · . Obviously, it may be seen that [n]p,q =

pn−1[n] q
p
.
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The formula for (p,q)-binomial expansion is as follows:

(ax+by)n
p,q :=

n

∑
k=0

p
(n−k)(n−k−1)

2 q
k(k−1)

2

 n

k


p,q

an−kbkxn−kyk,

(x+ y)n
p,q = (x+ y)(px+qy)(p2x+q2y) · · ·(pn−1x+qn−1y),

(1)n
p,q = (1)(p)(p2) · · ·(pn−1) = p

n(n−1)
2 .

Therefore, we have

n

∑
k=0

 n

k


p,q

p
k(k−1)

2 xk
n−k−1

∏
s=0

(ps−qsx) = p
n(n−1)

2 , x ∈ [0,1], (1.2)

where (p,q)-binomial coefficients are defined by n

k


p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
.

Also we have the following relation

qk[n− k+1]p,q = [n+1]p,q− pn−k+1[k]p,q, (1.3)

[n+1]p,q = qn + p[n]p,q = pn +q[n]p,q. (1.4)

For details on q-calculus and (p,q)-calculus, one can refer to [5, 8, 18, 28] and the references

therein.

One can easily verify by induction that

(1+ x)(p+qx)(p2 +q2x) · · ·(pn−1 +qk−1x) =
k

∑
r=0

p
(k−r)(k−r−1)

2 q
r(r−1)

2

 k

r


p,q

xr. (1.5)

2. (p,q)-Bernstein polynomials

For any real function f , we define (p,q)-differences recursively

40
p,q fi = fi, for all i ∈ N∪{0}, (2.1)

4k+1
p,q fi = pk4k

p,q fi+1−qk4k
p,q fi, (2.2)
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for k = 0,1, · · · ,n− i−1, where fi denotes f
(

pn−i[i]p,q
[n]p,q

)
. For p = 1, these reduces to q-forward

differences. Now it is easily established by induction that the (p,q)-differences satisfy the

following:

4k
p,q fi =

k

∑
r=0

(−1)r p
(k−r)(k−r−1)

2 q
r(r−1)

2

 k

r


p,q

fi+k−r. (2.3)

Definition 2.1. For each positive integer n, we have

Bn
p,q( f ;x) =

1

p
n(n−1)

2

n

∑
r=0

fr

 n

r


p,q

p
r(r−1)

2 xr
n−r−1

∏
s=0

(ps−qsx), (2.4)

where an empty product denotes 1. For p = 1, we obtain the Phillips q-Bernstein polynomials

[26]. We observe immediately from (2.4) that

Bn
p,q( f ;0) = f (0), Bn

p,q( f ;1) = f (1), (2.5)

for all functions f .

We now state a generalization of the well-known forward difference form [25]. Let us write

the interpolating polynomial for f at points x0,x1, · · · ,xn in the Newton divided difference form

as

Pn
p,q(x) =

n

∑
r=0

(
r−1

∏
s=0

(x− xs)

)
f [x0,x1, · · · ,xr], (2.6)

where the empty product denotes 1. For the choice of points xr =
pn−r[r]p,q
[n]p,q

, 0 ≤ r ≤ n, we can

express the divided differences in the form of (p,q)-differences.

Theorem 2.1. The Newton divided difference in the (p,q)-difference form can be written as

f [xi,xi+1, · · ·xi+k] =

(
q
p

)−k(2i+k−1)
2

[n]kp,q
4k

p,q fi

[k]p,q!
. (2.7)
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Proof. We may verify by induction on k. Let us choose the points xi =
p1−i[i]p,q
[n]p,q

, xi
xn

=
pn−i[i]p,q
[n]p,q

,

where xi+1− xi =
(

q
p

)i [1]p,q
[n]p,q

,

xi+2− xi =

((
q
p

)i+1

+

(
q
p

)i
)

1
[n]p,q

=

(
q
p

)i [2]p,q
p[n]p,q

,

· · ·

xi+k− xi =

((
q
p

)i+k−1

+

(
q
p

)i+k−2

+ · · ·+
(

q
p

)i
)

1
[n]p,q

=

(
q
p

)i [k]p,q
pk−1[n]p,q

,

where

f [xi,xi+1] =
f (xi+1)− f (xi)

xi+1− xi
=

(
p
q

)i

[n]p,q4p,q f (xi),

f [xi,xi+1,xi+2] =
f [xi+1,xi+2]− f [xi,xi+1]

xi+2− xi
=

(
p
q

)2i+1
[n]2p,q42

p,q f (xi)

[2]p,q!
,

and

f [xi,xi+1,xi+2,xi+3] =
f [xi+1,xi+2,xi+3]− f [xi,xi+1,xi+2]

xi+3− xi
=

(
p
q

)3i+3
[n]3p,q43

p,q f (xi)

[3]p,q!
.

Clearly from (2.7) it is true for k = 1. Suppose it is true for k = m, i.e.,

f [xi,xi+1, · · · ,xi+m] =
f [xi+1, · · · ,xi+m]− f [xi, · · · ,xi+m−1]

xi+m− xi

=

(
q
p

)−m(2i+m−1)
2

[n]mp,q4m
p,q f (xi)

[m]p,q!
.

(2.8)

For k = m+1, we have

f [xi,xi+1, · · · ,xi+m+1] =
f [xi+1, · · · ,xi+m+1]− f [xi, · · · ,xi+m]

xi+m+1− xi

=

(
p
q

) j−m(2i+m−1)
2

[n]m+1
p,q pm

[m+1]p,q!

((
q
p

)−m

4m
p,q f (xi+1)−4m

p,q f (xi)

)

=

(
q
p

)−(m+1)(2i+m)
2

[n]m+1
p,q 4m+1

p,q f (xi)

[m+1]p,q!
.

Hence (2.7) holds.
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Theorem 2.2. The generalized Bernstein polynomial defined by (2.4) can be expressed in the

(p,q)-difference form as follows

Bn
p,q( f ;x) =

1

p
n(n−1)

2

n

∑
r=0

 n

r


p,q

p
(n−r)(n−r−1)

2 4r
p,q f0xr, (2.9)

where4r
p,q defined by (2.2).

Proof. Clearly from (2.4), the coefficient of xk

1

p
n(n−1)

2

∞

∑
ν=0

fk−ν

 n

k−ν


p,q

p
(k−ν)(k−ν−1)

2 (−1)ν p
(n−ν)(n−ν−1)

2 q
ν(ν−1)

2

 n− k+ν

ν


p,q

=
1

p
n(n−1)

2

k

∑
ν=0

(−1)ν p
(n−ν)(n−ν−1)

2 q
ν(ν−1)

2

 k

ν


p,q

p
(k−ν)(k−ν−1)

2 fk−ν .

Now we see immediately from the expansion of the (p,q)-difference (2.3) that the coefficients

of xk in (2.4) simplifies to give

1

p
n(n−1)

2

 n

k


p,q

p
(n−k)(n−k−1)

2 4k
p,q f0,

which verifies (2.9). This completes the proof.

From the uniqueness of interpolating polynomial it is clear that if f is a polynomial of degree

m, then4r
p,q f0 = 0 for r >m and4m

p,q f0 6= 0. Thus it follows from (2.9) that if f is a polynomial

of degree m, then Bn
p,q( f ;x) is a polynomial of degree min(m,n). In particular, we will evaluate

Bn
p,q( f ;x) explicitly for f (x) = 1, x, x2. If f (x) = 1, then f (0) = 1, which implies from (2.3)

that40
p,q f0 = f0. Hence we have

Bn
p,q(1;x) = 1. (2.10)

For f (x) = x, we compute from (2.3)40
p,q f0 = f0 = 0 and

4p,q f0 = f1− f0 =
pn−1[1]p,q
[n]p,q

−
pn[0]p,q
[n]p,q

=
pn−1

[n]p,q
.

Therefore, one has

Bn
p,q(x;x) =

 n

0


p,q

40
p,q f0 +

 n

1


p,q

1
pn−14p,q f0x.
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Since

 n

1


p,q

= [n]p,q, we deduce that

Bn
p,q(x;x) = x. (2.11)

For f (x) = x2, we compute f0 = 0 and

4p,q f0 =

(
pn−1[1]p,q
[n]p,q

)2

−
(

pn[0]p,q
[n]p,q

)2

=
p2(n−1)

[n]2p,q
.

Using (2.3), we have

42
p,q f0 =

1

p
n(n−1)

2

2

∑
r=0

(−1)r p
(2−r)(2−r−1)

2 q
r(r−1)

2

 2

r


p,q

f2−r

= p f2− [2]p,q f1 +q f0

= p
(

pn−2[2]p,q
[n]p,q

)2

− [2]p,q

(
pn−1[1]p,q
[n]p,q

)2

+q
(

pn[0]p,q
[n]p,q

)2

= p2n−3 [2]
2
p,q

[n]2p,q
− p2n−2 [2]p,q

[n]2p,q

= p2n−3 [2]p,q
[n]2p,q

(
[2]p,q− p

)
= p2n−3q[2]p,q

1
[n]2p,q

.

It follows from (2.9) that

Bn
p,q(x

2;x) =

 n

0


p,q

40
p,q f0 +

 n

1


p,q

1
pn−14p,q f0x+

 n

2


p,q

1
p2n−34

2
p,q f0x2

= pn−1 x
[n]p,q

+
q[n−1]p,q

[n]p,q
x2.

In view (1.4), one has

q[n−1]p,q = [n]p,q− pn−1, (2.12)

Bn
p,q(x

2;x) = x2 + pn−1 x(1− x)
[n]p,q

. (2.13)

Note that the relations (2.10), (2.11) and (2.13) are identical to (p,q)-Bernstein polynomials

[18]. In case of p = 1 these results are identical to results of Phillips q-discrete Bernstein
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polynomials. It follows directly from the definition that (p,q)-Bernstein polynomials possess

the end point interpolation property, i.e.,

Bn
p,q( f ;0) = f (0), Bn

p,q( f ;1) = f (1) for all 0 < q≤ p and all n = 1,2, · · · . (2.14)

The following representation of (p,q)-Bernstein polynomials is called the (p,q)-difference for-

m and we denote it as

Bn
p,q( f ;x) =

n

∑
r=0

 n

r


p,q

D r f0xr, (2.15)

where D r f0 is expressed as

D r f0 =
[r]p,q!
[n]rp,q

p
(n−r)(n−r−1)

2 q
r(r−1)

2 f
[

0,
pn−1[1]p,q
[n]p,q

, · · · ,
pn−r[r]p,q
[n]p,q

]
, (2.16)

and f [x0,x1, · · · ,xi] denote the usual divided difference, i.e.,

f [x0] = f (x0), f [x0,x1] =
f (x1)− f (x0)

x1− x0
, · · · ,

f [x0,x1, · · · ,xi] =
f [x1, · · · ,xi]− f [x0,x1, · · · ,xi−1]

xi− x0
.

Using (2.15) and (2.16), we write

Bn
p,q( f ;x) =

n

∑
r=0

λ
n
p,q f

[
0,

pn−1[1]p,q
[n]p,q

, · · · ,
pn−r[r]p,q
[n]p,q

]
xr, (2.17)

where

λ
n
p,q =

 n

r


p,q

[r]p,q!
[n]rp,q

p
(n−r)(n−r−1)

2 q
r(r−1)

2

=

(
1−

pn−1[1]p,q
[n]p,q

)(
1−

pn−2[2]p,q
[n]p,q

)
· · ·
(

1−
pn−r+1[r−1]p,q

[n]p,q

)
.

(2.18)

From (2.18) and

λ
0
p,q = λ

1
p,q = 1, (2.19)

we have

0≤ λ
n
p,q ≤ 1, r = 0,1, · · · ,n. (2.20)

It follows that

| Bn
p,q( f ;x) |≤

n

∑
r=0

∣∣∣∣ f [0,
pn−1[1]p,q
[n]p,q

, · · · ,
pn−r[r]p,q
[n]p,q

]∣∣∣∣ | x |k . (2.21)
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This estimates will be used in the sequel. It follows immediately from (2.17) and (2.19) that the

(p,q)-Bernstein polynomials leave invariant linear functions, that is,

Bn
p,q(at +b;x) = ax+b, for all n = 1,2, · · · . (2.22)

If f is a polynomial of degree m, then all its divided differences of order > m vanish, and (2.17)

implies that Bn
p,q( f ;x) is a polynomial of degree min(m,n). In other words this means that

(p,q)- Bernstein operator is degree reducing. We set

Qn
p,q(x) =

1

p
n(n−1)

2

 n

r


p,q

p
r(r−1)

2 xr
r−k−1

∏
s=0

(ps−qsx), r = 0,1, · · · ,n; n = 1,2, · · · . (2.23)

By taking a = 0,b = 1 in (2.22), we conclude that

n

∑
r=0

Qn
p,q(x) = 1, for all..... n = 1,2, · · · . (2.24)

Obviously,

Bn
p,q( f ;x) =

n

∑
r=0

f
(

pn−r[r]p,q
[n]p,q

)
Qn

p,q(x). (2.25)

We note that Bn
p,q defined by (2.4), is a monotone linear operator for any 0 < q < p≤ 1 and Bn

p,q

reproduces linear functions, that is,

Bn
p,q(ax+b;x) = ax+b, a,b ∈ R. (2.26)

It also satisfies the end point interpolation conditions Bn
p,q( f ;0) = f (0) and Bn

p,q( f ;1) = f (1).

The generalized Bernstein polynomial Bn
p,q defined by (2.4) shares the well-known shape-

preserving properties of the classical Bernstein polynomial. Thus when the function f is convex

then (see [24]) Bn−1
p,q ( f ;x)≥ Bn

p,q for n≥ 2 and any 0 < q < p≤ 1. As a consequence of this we

can show that the approximation to a convex function by its (p,q)-Bernstein polynomial is one

sided.

Theorem 2.3. If f is a convex function on [0,1], then Bn
p,q( f ;x)≥ f (x) for 0 < q < p≤ 1.

Proof. Let l(x) = ax+b be any line. Also let l be tangent at an arbitrary point t ∈ [0,1] so that

l(t) = f (t) and f − l ≥ 0. By using (2.26) and the fact that Bn
p,q is a monotone linear operator,

we see that

Bn
p,q( f − l) = Bn

p,q( f )− l ≥ 0.
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Thus, at any tangent point t we have Bn
p,q( f ; t) ≥ l(t) = f (t). By continuity, we deduce that

Bn
p,q( f )≥ f . This completes the proof.

Theorem 2.4. Let Bn
p,q be the operators defined by (2.4). Then for n = 2,3, · · · , we have

Bn−1
p,q ( f ;x)−Bn

p,q( f ;x)

=
1

p
n(n−1)

2

x(1− x)
[n]p,q[n−1]p,q

n−2

∑
r=0

p2n−r−1qn+r−1

 n−2

r


p,q

× f
[

pn−r−1 [r]p,q
[n−1]p,q

, pn−r−1 [r+1]p,q
[n]p,q

, pn−r−2 [r+1]p,q
[n−1]p,q

]
xr

n−r−2

∏
s=1

(ps−qsx).

Proof. It is clear that

f [x0,x1,x2] =
1

(x2− x0)(x1− x0)
f (x0)−

1
(x2− x1)(x1− x0)

f (x1)

+
1

(x2− x1)(x2− x0)
f (x2).

(2.27)

Take x0 = pn−r [r−1]p,q
[n−1]p,q

, x1 = pn−r [r]p,q
[n]p,q

, x2 = pn−r−1 [r]p,q
[n−1]p,q

. Using

[ j+ k+1]p,q− pk+1[ j]p,q = q j[k+1]p,q, (2.28)

we get

f
[

pn−r [r−1]p,q
[n−1]p,q

, pn−r [r]p,q
[n]p,q

, pn−r−1 [r]p,q
[n−1]p,q

]
=

[n]p,q[n−1]2p,q
[n− r]p,q p2n−r−2q2r−2 f

(
pn−r [r−1]p,q

[n−1]p,q

)
−

[n]2p,q[n−1]2p,q
[r]p,q[n− r]p,q p2n−r−2qn+r−2 f

(
pn−r [r]p,q

[n]p,q

)
+

[n]p,q[n−1]2p,q
[r]p,q p2n−2r−2qn+r−2 f

(
pn−r−1 [r]p,q

[n−1]p,q

)
.

(2.29)

Define

ar = λ f
(

pn−r−1 [r]p,q
[n−1]p,q

)
+(1−λ ) f

(
pn−r [r−1]p,q

[n−1]p,q

)
− f

(
pn−r [r]p,q

[n]p,q

)
≥ 0



ON (p,q)-ANALOGUE OF DIVIDED DIFFERENCES AND BERNSTEIN OPERATORS 11

and let λ = pr [n−r]p,q
[n]p,q

. Using pr[n− r]p,q = [n]p,q− qn−r[r]p,q, we get 1− λ = qn−r [r]p,q
[n]p,q

. It

follows that

ar = pr [n− r]p,q
[n]p,q

f
(

pn−r−1 [r]p,q
[n−1]p,q

)
+qn−r [r]p,q

[n]p,q
f
(

pn−r [r−1]p,q
[n−1]p,q

)
− f

(
pn−r [r]p,q

[n]p,q

)
.

(2.30)

From (2.29) and (2.30), we get n

r


p,q

ar =
p2n−r−2qn+r−2

[n]p,q[n−1]p,q

 n−2

r−1


p,q

f
[

pn−r [r−1]p,q
[n−1]p,q

, pn−r [r]p,q
[n]p,q

, pn−r−1 [r]p,q
[n−1]p,q

]
.

(2.31)

Now we have

Bn−1
p,q ( f ;x)−Bn

p,q( f ;x) =
1

p
n(n−1)

2

n−1

∑
r=1

 n

r


p,q

xrar

n−r−1

∏
s=0

(ps−qsx), (2.32)

where ar is defined in (2.30). Therefore by using (2.31) and (2.32) we get

Bn−1
p,q ( f ;x)−Bn

p,q( f ;x)

=
1

p
n(n−1)

2

x(1− x)
[n]p,q[n−1]p,q

n−1

∑
r=1

p2n−r−2qn+r−2

 n−2

r−1


p,q

× f
[

pn−r [r−1]p,q
[n−1]p,q

, pn−r [r]p,q
[n]p,q

, pn−r−1 [r]p,q
[n−1]p,q

]
xr−1

n−r−1

∏
s=1

(ps−qsx).

By shifting the limits, we get the desired results. This completes the proof.

Remark 2.5. For q ∈ (0,1) and p ∈ (q,1], it is obvious that lim
n→∞

[n]p,q = 0 or 1
p−q . In order to

reach to convergence results of the operator Bn
p,q( f ;x), we take a sequence qn ∈ (0,1) and pn ∈

(qn,1] such that lim
n→∞

pn = 1, lim
n→∞

qn = 1 and lim
n→∞

pn
n = 1, lim

n→∞
qn

n = 1. So we get lim
n→∞

[n]pn,qn =∞.

Clearly (p,q)-Bernstein operators are defined for all q ∈ (0,1) and p ∈ (q,1], however we

cannot approximate every continuous function from the space of all continuous function C[0,1]

by these operators for all q ∈ (0,1) and p ∈ (q,1]. Hence we state a theorem which guarantees

this approximation process based on Korovkin’s type approximation theorem.

Theorem 2.6. Let 0< qn < pn≤ 1 such that lim
n→∞

pn = 1, lim
n→∞

qn = 1 and lim
n→∞

pn
n = 1, lim

n→∞
qn

n = 1.

Then for each f ∈C[0,1], Bn
p,q( f ;x) converges uniformly to f on C[0,1].

Proof. Let us recall the following Korovkin’s theorem (see [15], [19]):
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Let (Tn) be a sequence of positive linear operators from C[a,b] into C[a,b]. Then lim
n
‖Tn( f ,x)−

f (x)‖C[a,b] = 0, for all f ∈C[a,b] if and only if lim
n
‖Tn( fi,x)− fi(x)‖C [a,b] = 0, for i = 0,1,2,

where f0(t) = 1, f1(t) = t and f2(t2) = t2.

We need to show if operators converge for the test function 1, t and t2, then any continuous

function can be approximated with the help of these positive linear operators. Since Bn
p,q( f ,x)

define positive linear operators, the Korovkin’s theorem implies that Bn
p,q( f ;x)→ f (x) if and

only if Bn
p,q(t

m,x)→ xm for all x ∈ [0,1] and m = 0,1,2. For m = 0,1 this is true. It follows

from (2.13) and Remark 2.5 that Bn
pn,qn

( f ,x)→ f (x) for x ∈ [0,1] if and only if

Bn
pn,qn

(x2;x) = x2 + pn−1
n

x(1− x)
[n]pn,qn

→ x2.

If we choose sequence pn and qn satisfying Remark 2.5, then lim
n→∞

[n]pn,qn → ∞. This completes

the proof.
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