Provably Correct Control-Flow Graphs from
Java Programs with Exceptions

Afshin Amighi', Pedro de C. Gomes?, Dilian Gurov?, and Marieke Huisman'

1 University of Twente, Enschede, The Netherlands
{a.amighi,m.huisman}@utwente.nl
2 KTH, Royal Institute of Technology, Stockholm, Sweden
{pedrodcg,dilian}@csc.kth.se

Abstract. We present an algorithm to extract flow graphs from Java
bytecode, including exceptional control flows. We prove its correctness,
meaning that the behavior of the extracted control-flow graph is a sound
over-approximation of the behavior of the original program. Thus any
safety property that holds for the extracted control-flow graph also holds
for the original program. This makes control-flow graphs suitable for
performing various static analyses, such as model checking.

The extraction is performed in two phases. In the first phase the program
is transformed into a BIR program, a stack-less intermediate represen-
tation of Java bytecode, from which the control-flow graph is extracted
in the second phase. We use this intermediate format because it results
in compact flow graphs, with provably correct exceptional control flow.
To prove the correctness of the two-phase extraction, we also define an
idealized extraction algorithm, whose correctness can be proven directly.
Then we show that the behavior of the control-flow graph extracted via
the intermediate representation is an over-approximation of the behavior
of the directly extracted graphs, and thus of the original program. We
implemented the indirect extraction as the CFGEX tool and performed
several test-cases to show the efficiency of the algorithm.

Keywords: Software Verification, Static Analysis, Program Models

1 Introduction

Over the last decade software has become omnipresent, and at the same time, the
demand for software quality and reliability has been steadily increasing. Different
formal techniques are used to reach this goal, e.g., static analysis, model checking
and (automated) theorem proving. A major problem in this area is that the state
space of software is enormous, often infinite. Therefore appropriate abstractions
are necessary to make the formal analysis tractable. It is important that such
abstractions are sound w.r.t. the original program: if a property holds over the
abstract model, it should also be a property of the original program.

A common abstraction is to extract a program model from code, only pre-
serving information that is relevant for the property at hand. In particular,

2 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

Behavior ° Structure
IS execute transform g
£ [, oo [iBg)... rmsm REIE
5 o* : S
> 3 : 2
< E: : $
e [l . y O
) induce : [
£ [cre] ~——[cre | T [cre | g
Q behavior structure structure S
consequence .=

Fig. 1. Schema for CFG extraction and correctness proof

control-flow graphs (CFGs) [4] are a widely used abstraction, where only the
control-flow information is kept, and all program data is abstracted away. Con-
cretely, in a CFG, nodes represent the control points of a method, and edges
represent the instructions that move between control points.

For two different reasons the analysis of exceptional flows is a major compli-
cation to soundly extract CFGs of Java bytecode. First, the stack-based nature
of the Java Virtual Machine (JVM) makes it hard to determine the type of ex-
plicitly thrown exceptions, thus making it difficult to decide to which handler (if
any) control will be transferred. Second, the JVM can raise (implicit) run-time
exceptions, such as NullPointerFExzception and InderOutOfBoundsException; to
keep track of where such exceptions can be raised requires much care.

The literature contains several approaches to extract control-flow graphs au-
tomatically from program code. However, typically no formal argument is given
to justify that the extraction is property-preserving. This paper fills this gap: it
defines a flow graph extraction algorithm for Java bytecode (JBC), including ex-
ceptional control flow and it proves that the extraction algorithm is sound w.r.t.
program behavior. The extraction algorithm considers all the typical intricacies
of Java, e.g., virtual method call resolution, the differences between dynamic and
static object types, and exception handling. In particular, it includes explicitly
thrown instructions, and a significant subset of run-time exceptions.

This paper defines two different extraction algorithms, where the first ideal-
ized algorithm is used to prove correctness of the second, which is implementable.
This relationship is visualized in Figure 1.

The first extraction algorithm (in Section 3) creates flow graphs directly
from Java bytecode. Its correctness proof is quite direct, but the resulting CFG
is large: in bytecode, all operands are on the stack, thus many instructions for
stack manipulation are necessary, which all give rise to an internal transfer edge
in the CFG. Moreover, because the operands of a throw instruction are also on
the stack, the exceptional control-flow is significantly over-approximated. This
algorithm produces a complete map from the JBC instructions to the control-
flow of the program. However, verification of control flow properties on these
CFGs is not so efficient, because of their size.

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 3

As an alternative, we also present a two-phase extraction algorithm using
the Bytecode Intermediate Representation (BIR) language [7]. BIR is a stack-
less representation of JBC. Thus all instructions (including the explicit throw)
are directly connected with their operands and this simplifies the analysis of
explicitly thrown exceptions. Moreover the representation of a program in BIR
is smaller, because operations are not stack-based, but represented as expression
trees. As a result, the CFGs are more compact, which makes property verifi-
cation more efficient. BIR has been developed by Demange et al. as a module
of Sawja [10], a library for static analysis of Java bytecode. Demange et al.
have proven that their translation from bytecode to BIR is semantics-preserving
with respect to observable events, such as throwing exceptions and sequences
of method invocations. Advantages of using the transformation into BIR are
that (1) it is proven correct, and (2) it generates special assertions that indicate
whether the next instruction could potentially throw a run-time exception. This
allows us to have an efficient and provably correct extraction algorithm, includ-
ing exceptional control flow. Our two-phase extraction algorithm first uses the
transformation of Demange et al to generate BIR from JBC, and then extract
CFGs from BIR. It is implemented as the tool CFGEX.

As mentioned above, the idealized direct extraction algorithm is used to
prove correctness of the indirect extraction algorithm. This algorithm cannot be
proven correct directly, because there is no behavior defined for BIR. Instead,
we connect the BIR CFGs to the CFGs produced by the direct algorithm for
the same program, and we show that every BIR CFG structurally simulates the
JBC CFG. Then we use an existing result that structural simulation induces
behavioral simulation (see [9]). In addition, we prove that the CFG produced by
the direct algorithm behaviorally simulates the original Java bytecode program.
From these two results we can conclude that all behaviors of the CFG generated
by the indirect algorithm (BIR) are a sound over-approximation of the original
program behavior. Thus, the extraction algorithm produces control-flow graphs
that are sound for the verification of temporal safety properties.

Organization The remainder of this paper is organized as follows. First, Sec-
tion 2 provides the necessary background definitions for the algorithm and its
correctness proof. Then, Section 3 discusses the direct extraction rules for control
flow graphs from Java bytecode, while Section 4 discusses the indirect extraction
rules via BIR, proves its correctness, and presents experimental results. Section 5
presents the formal correntess argumentation, and the strutural simulation proof
of CFGs. Finally Sections 6 and 7 present related work and conclude.

2 Preliminaries

This section briefly reviews a formalization of Java bytecode programs, their
execution environment and a model for Java programs.

4 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman
2.1 Java Bytecode and the Java Virtual Machine

The Java compiler translates a Java source code program into a sequence of
bytecode instructions. Each instruction consists of an operation code, possibly
using operands on the stack. The JVM is a stack-based interpreter that executes
such a Java bytecode program.

Any execution error of a Java program is reported by the JVM as an ex-
ception. Programmers can also explicitly throw exceptions (instruction athrow).
Each method can define exception handlers. If no appropriate handler can be
found in the currently executing method, its execution is completed abruptly
and the JVM continues looking for an appropriate handler in the caller context.
This process continues until a correct handler is found or no calling context is
available anymore. In the latter case, execution terminates exceptionally.

We use Freund and Mitchell’s formal framework for Java bytecode [8]. A
JBC program is modeled as an environment I that is a partial map from class
names, interface names and method signatures to their respective definitions.
Sub-typing in an environment is indicated by I' = 7y <: 75, meaning 71 is a
subtype of 7o in environment I'. Let METH be a set of method signatures. A
method m € METH in an environment I" is represented as I'[m] = (P, H), where
P denotes the body and H the exception handler table of method m. Let ADDR
be the set of all valid instruction addresses in I". Then Dom(P) C ADDR is the
set of valid program addresses for method m and P[k] denotes the instruction at
position k € Dom(P) in the method’s body. For convenience, m[k] = i denotes
instruction ¢ € Dom(P) at location k of method m.

A JVM execution state is modeled as a configuration C = A;h, where A
denotes the sequence of activation records and h is the heap. Each activation
record is created by a method invocation. The sequence is defined formally as:

A = A | (B)eze A 5 A = (mype, f,s,2).A" | €

Here, m is the method signature of the active method, pc is the program
counter, f is a map from local variables to values, s is the operand stack, and
z is initialization information for the object being initialized in a constructor.
Finally, (2)eqzc is an exception handling record, where z € EXCP denotes the
exception: in case of an exception, the JVM pushes such a record on the stack.

To handle exceptions, the JVM searches the exception table declared in the
current method to find a corresponding set of instructions. The method’s excep-
tion table H is a partial map that has the form (b, e,t, o), where b,e,t € ADDR
and o € EXcP. If an exception of subtype ¢ in environment I" is thrown by
an instruction with index i € [b, e) then m[t] will be the first instruction of the
corresponding handler. Thus, the instructions between b and e model the try
block, while the instructions starting at ¢ model the catch block that handles the
exception. In order to manage finally blocks, a special type of exception called
Any is defined. The instructions in a finally block always have to be executed
by the JVM, therefore all exceptions are defined as a subtype of Any.

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 5

public class Number{
public static boolean even(int n) {
try {
if (n<0)
throw new NegNumberException();
else if (h==0)
return true;
} catch (NegNumberException e) { n *=-1;}
return odd(n-1); odd
even, NNE
public static boolean odd(int n) {
if(n==0)
return false;
else
return even(n-1);
}
}

even

V3
odd, r

Fig. 2. Method specifications of methods even and odd

2.2 Program Model

Control-flow graphs are an abstract model of a program. To define the structure
and behavior of a CFG we follow Gurov et al. and use the general notion of
model [9,11].

Definition 1 (Model, Initialized Model). A model is a (Kripke) structure
M= (S,L,—, A, \) where S is a set of states, L a set of labels, = C SxLx S
a labeled transition relation, A a set of atomic propositions, and X : S — P(A) a
valuation assigning the set of atomic propositions that hold on each state s € S.
An initialized model S is a pair (M,E) with M a model and E C S a set of
entry states.

Method specifications are the basic building blocks of flow graphs. To model
sequential programs with procedures and exceptions, method specifications are
defined as an instantiation of initialized models as follows.

Definition 2 (Method Specification). A specification with exceptions for a
method m € METH over sets M C METH and E C EXCP is a finite model
Mo = Vi, Liny = my Ay Am) with Vi, the set of control nodes of m, L, =
M U {e, handle} the set of labels, Ay, = {m,r} UE, m € Ay, (v) for allv € V,,,
and for oll x,2’ € E, if {x,2'} C A\n(v) then ©x = a, i.e., each control node
is tagged with the method signature it belongs to and at most one exception.
E,. C Vi is a non-empty set of entry control point(s) of m.

A node v € V,,, is marked with atomic proposition r to indicate that it is a
return node of the method. We call edges labeled with ¢ silent transitions; the
others are visible. Figure 2 shows a sample program with corresponding CFG.

Every flow-graph comes with an interface, which defines: the methods that
are provided to and required from the environment, the exceptions that may
be thrown, and the set of entry methods. The later is an empty set, for the
methods which are not entry methods; if they are, then it is a unitary set with
the method’s signature.

6 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

Subset |Description Samples
RETINST [Normal return instructions return
CMmPINST|Computational instructions nop, push v, pop
CNDINST [Conditional instructions ifeq q
JMPINST |Jump instructions goto q
XMPINST [Potentially can raise exceptions|div, getfield f
INVINST |Method invocations invokevirtual (o,m)
THRINST | Explicit exception throw throw X

Fig. 3. Grouping of Bytecode instructions

Definition 3 (Flow Graph Interface). A flow graph interface is a quadru-
ple I = (IT,1=,E,M,), where I, 1= C METH are finite sets of provided
and required method signatures, E C EXCP is a finite set of exceptions and
M. C METH is the set of entry methods (starting points of the program), respec-
tively. If I= C It then I is closed.

Now we define a method’s flow graph as pair of its method’s specification,
and interface. A program’s flow graph is the disjoint union of the flow graphs of
all the methods defined in the program.

Definition 4 (Flow Graph Structure). A flow graph G with interface I,
written G : I is inductively defined by:

- M, Ep) : ({m}, I, E, M,) if (M, E,,) is a method specification for m
over I=, E and M.,
- gl&JgQ . Il UI2 ngl . Il G,’I’Ldgg IIQ.

3 Extracting Control-Flow Graphs from Bytecode

This section describes how we build CFGs directly from the bytecode. The core
of the algorithm is a set of rules that, given an instruction and address, produces
a set of edges between the current control node, and all possible successors.

We group all JBC instructions into disjoint sets (Figure 3). In JBC, athrow
does not have an argument; instead the exception is determined at run-time by
the top of the stack. Static analysis of a JBC program can determine the possible
types of the exceptions to be thrown by athrow. We use this to replace athrow
with throw X, where X denotes the set of possible exception types.

We define a JBC method body as a sequence of address and instruction pairs:

S:u= {l:inst; S|e (€ ADDR, inst € INST

The nodes of a method’s CFG are defined as a mapping from the JVM
configurations executing the method. All nodes are tagged with an address and a
method signature. The set of addresses is extended by adding symbol b to denote

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 7

the abort state® of a program. Based on Definition 2, to construct the nodes we
have to specify V,,, A, Am, and E,,. For a node v € V,, indicating control
point ¢ € ADDR, of method m, we define v = (m,£). The labeling function A,
specifies A,, for a given v € V,,. If m[¢] € RETINST then the node is tagged
with r. If the node is an exceptional node then it is marked with the exception
type x € E. The method signature is the default tag for all the method’s control
nodes. If £ = 0 then the node will be a member of E,,.

Two nodes are equal if they specify the same control address of the same
method with equal atomic proposition sets. We use the following notation: v F x
means that node v is tagged with exception w; /% indicates an exceptional

control node and of, denotes a normal control node.

3.1 The Extraction Algorithm

The CFG extraction rules for method m in environment I” use the implementa-
tion of the method, I'[m] = (P, H). For each instruction in I"[m], the rules build
a set of labeled edges connecting control nodes.

Definition 5 (Method Control-Flow Graph Extraction). Let V be the set
of nodes and L., = MU{e, handle}, M C METH. Let IT be a set of environments.
Then the control-flow graph of method m is extracted by mG : II x METH —
P(V x L, x V), defined in Figure 4 (where succ denotes the next instruction
address function).

The construction rules are defined purely syntactically, based on the method’s
instructions. However, intuitively they are justified by the instruction’s opera-
tional semantics. The first rule decomposes a sequence of instructions into indi-
vidual instructions. For each individual instruction, a set of edges is computed.

For simple computational instructions, a direct edge to the next control ad-
dress is produced. For jump instructions, an edge to the jump address (g, spec-
ified in the instruction) is generated. For conditional instructions edges to the
next control address and to the address specified for the jump (¢q) are generated.
For instructions in XMPINST edges for all possible flows are added: successful
execution and exceptional execution, with edges for successful and failed excep-
tion handling, as defined by function H;. This function constructs the outgoing
edges of the exceptional nodes by searching the exception table for a suitable
handler of exception type x at position p. If there is a handler, it returns an edge
from an exceptional node to a normal node. Otherwise it produces an edge to an
exceptional return node. Function A seeks the proper handler in the exception
handling table; it returns 0 if there is no entry for the exception at the specified
control point. The function X : XMPINST — P(EXCP) determines possible ex-
ceptions of a given instruction. The throw instruction is handled similarly, where
X is the set of possible exceptions, identified by the transformation algorithm.

3 The JVM’s attempt to find an appropriate handler for an exception is unsuccessful
and the program terminates abnormally.

8 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

{(.gﬁx’ handl67 ofn)} hf[m] (p7 y) = # 0
(F'Fe<iy) = Hp =< {(o0:", handle, o;" ")} hrpm)(p,y) =0 A m ¢ Me
{(of,;m,handle,o%w”“)} hrimi(p,y) =0 A m € M.

N = {{(oh,, handle, o5;")} U Hj| o&™" € nodes(nG(n)), n € Recr(i)}

R, = {(oh,n, 0m“®) | € Reer(i)}
& = {H{oh e, oh")} U Hy |2 € X(1)}
mg(S1;SQ,H) = mg(S1,H) @] mg(SQ,H)

{(cB,, &, 05"} if i € CMPINST
{(ohs,€,0%)} if i € JMPINST
P (oF, e, of if i € CNDINST
). H) = {(;€ Om) (Oma.{‘:aom)} if ¢+ € CND
no (), H) {{(ob,e,ob")} U Hy |z € X} if 9 = throw X
{(ch,, e, 05 Py | £} _ ~if i€ XMPINST
{(ob, e, oM} U HEN U RLU N, if i € INVINST

Fig. 4. CFG Construction Rules

To extract edges for method invocations, function Recp (i) determines the
set of possible method signatures of a method call in environment I'. Index of
the signature shows the type of the receiver object in method call. The receiver
object for invokevirtual is determined by late binding. The virtual method
call resolution function res¢ will be used, where « is a standard static analysis
technique to resolve the call.

Reer(i) = {nstaticr(0)} if i €{invokespecial (o,n), invokestatic (o,n)}
eertt) = {n; | 7 € res®(o,n)} if i = invokevirtual (o,n)

For example, Rapid Type Analysis (RTA) [2] returns the set of subtypes of
the callee’s static type which are instantiated at some part of the program. IL.e.
created by a new instruction. If the RTA algorithm, i.e., « = RTA, then the
result of the resolution for object 0o and method n in environment I" will be:

resp(o,n) ={r | 7€ ICr N I 7 <: staticT(o) A n = lookup(n,T)}

where IC is the set of instantiated classes in environment I, staticT (o) gives
the static type of object o and lookup(n,T) corresponds to the signature of n,
i.e., 7 is a subtype of 0’s static type and method n is defined in class 7.

Given the set of possible receivers, calls are generated for each possible re-
ceiver. For each call, if the method’s execution terminates normally, control will
be given back to the next instruction of the caller. If the method terminates
with an uncaught exception, the caller has to handle this propagated exception.
If the current method is an entry method, m., then the program will terminate
abnormally. The CFG extraction rules for method invocations produce edges for
both ony=NullPointerFException and for all propagated exceptions.

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 9

R; is the set of the edges for normally terminating calls, HZ¥ is the set of
edges to handle op, and N; defines the set of edges to handle all uncaught ex-
ceptions from all possible callees. We add the callee’s signature as an index to
the handle label to differentiate between propagated exceptions from method
calls and exceptions raised in the current method. Similar to generating outgoing
edges for exceptional control points, H; generates edges for successful/failed han-
dlers for all exceptional nodes in CFG,, i.e., the CFG of method n € res$.(o,n).

The CFG of a Java class C, denoted ¢G(C) : CLASS — P(V x L, x V), is
defined as the disjoint union of the CFGs of the methods in C'. The CFG of a
program I', denoted G(I") : I — P(V x L,, x V), is the disjoint union of all
CFGs of the classes in P.

3.2 Correctness of mGg

To prove soundness of the flow graph extraction, we have to define the behavior
of flow graphs. The following extends the behavior definition of flow graphs from
[11], based on our extraction rules.

Definition 6 (CFG Behavior). Let G = (M,E) : I be a closed flow graph
with exceptions such that M = (V,L,—, A, X). The behavior of G is described
by the specification b(G), where My = (Sq, Lg, =4, Ag, Ag) such that:

— Sy € V x (V)*, i.e., states are pairs of control nodes and stacks of control
nodes,

— Ly={r}u Lg U LY where Lg ={my Il ma |l € {call,ret,xret},mi,mq €
It} (the set of call and return labels) and Ly = {l x | | € {throw, catch},z €
EXcP} (the set of exceptional transition labels).

— A=A and N\y((v,0)) = A(v)

— =4 C 8y x 84 is the set of transitions in CFG,, with the following rules:

[eall] (v1,0) w)g (v2,v1.0) if mi,m2 € IT, 01 ca”—m2>ml i,

v] € next(v1), v1 ¥ EXcp

va Ema, v2 €E, v1 E—r
mo rTet mq

[return] (v2,v1.0) ——", (vi,0) if mi,ma €T va Ema AT

v1 Ema, vy ¥ EXcp, v] € next(vi)

mo xzret mq ’ .
g (V1,0) if mi,ma €I, vo Ema, v Emy

handle ’ handle ’
V2 —)mz Vg, V1 —)ml (%1
v Ex, vhETAT, vz, V] Ex, e EXCP

[transfer] (v,0) T4 (V',0) if m € I, v S v/, v E -, v EXcP, v ¥ EXcp

[zreturn] (v2,v1.0)

throw x

[throw] (v, o) 222 (v 0) if m € I, v S, v/, v E =10’ E Excp

catch x handle

[eatch] (v,0) "5, (Vo) if m € IT,v =5, v, v E =r A EXCP, v’ ¥ r,0" ¥ EXcp

To show correctness of the extraction algorithm, we show that the extracted
CFG of method m can match all possible moves during the execution of m. We
first define a mapping 6 that abstracts JVM configurations to CFG behavioral
configurations, and we use this to prove that the behavior of a CFG simulates
the behavior of the corresponding method in JBC.

10 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

Definition 7 (Abstraction Function for VM States). Let VJvVM be the
set of JVM ezecution configurations and Sy the set of states in mG. Then 0 :
VivM — Sy is defined inductively as follows:

6((m,p, f, 8,2).A; h) = (o, 6(A; h) O(()ewc-€:h) = (8377 €)
0({(m,p, f,s,z).€;h) = (oP €) O((x)exc-(m,p, f,8,2).A; h) = (eP:% O(A; h))

Function 6 specifies the corresponding JVM state in the extracted CFG.
In order to match relating transitions we use simulation modulo relabeling: we
map JVM transition labels INST U {e} to the CFG transition labels in L,,.
When an exception happens, JVM takes the control of the execution to handle
the exception. There is no instruction in JBC instructions set to accomplish
handling. We call these transitions as silent transitions and label them with e.

Now we enunciate the Theorem 1, which states the behavioral simulation of
JVM. For every possible JVM configuration ¢ and instruction 4, we establish
the possible transitions to a set of configurations C based on the operational
semantics. We apply € to all elements in C, denoted ©(C), to determine the
abstract CFG configurations. Then we use the CFG construction algorithm to
determine which edges are established for instruction 7. These edges determine
the possible transitions paths from 6(c) to the next CFG states S. We show that
the set S corresponds to the configurations ©(C). To show that this indeed holds,
we use a case analysis on VJVM. For the complete proof, we refer to Amighi’s
Master thesis [1].

Theorem 1 (CFG Simulation). For a closed program I' and corresponding
flow graph G, the behavior of G simulates the execution of I'.

4 Extracting Control-Flow Graphs from BIR

This section presents the two-phase transformation from Java bytecode into
control-flow graphs using BIR as intermediate representation. First, we briefly
present BIR and the BC2BIR transformation from JBC to BIR. Then, we discuss
how BIR is transformed into CFGs, enunciate the correctness proof, and discuss
practical results.

4.1 The BIR Language

The BIR language is an intermediate representation of Java bytecode. The main
difference with standard JBC is that BIR instructions are stack-less, i.e., they
have explicit operators and do not operate over values stored in the operand
stack. We give a brief overview of BIR, for a full account we refer to [7].

Figure 5 summarizes the BIR syntax. Its instructions operate over expression
trees, i.e., arithmetic expressions composed of constants, operations, variables,
and fields of other expressions (expr.f). BIR does not have operations over strings

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 11

expr = ¢ | null (constants) Assignment ::= target := expr
| expr @ expr (arithmetic) Return ::= vreturn ezpr | return
| tvar | lvar (variables) MethodCall ::= expr.ns(expr, ..., expr)
| expr.f (field access) | target := exprns(ezpr, ... ,expr)
NewObject ::= target := new C(expr,...,expr)
lvar :==1|11|12|... (local var.) A —
. ssertion ::= notnull expr | notzero expr
this
tvar ==t |t1|t2|... (temp. var.) mstr | :Ic;io'wl:x]e)iprmi;i'ngiottOC pe
target = lvar | Assignment | Return
| tvar | MethodCall | NewObject
| expr.f | Assertion
Fig. 5. Expressions and Instructions of BIR
Ezception ‘ Assertion Exception ‘ Assertion
NullPointer Exception | [notnull] ArithmeticEzxception| [notzero]
IndexOutOfBoundsException | [checkbound] ClassCastFException|[checkcast]
NegativeArraySize Exception | [notneg] ArrayStoreFException|[checkstore]

Fig. 6. Implicit exceptions supported by BIR, and associated assertions

and booleans; these are transformed into methods calls by the BC2BIR transfor-
mation. It also reconstructs expression trees, i.e., it collapses one-to-many stack-
based operations into a single expression. As a result, a program represented in
BIR typically has fewer instructions than the original JBC program.

BIR has two kinds of variables: var and tvar. The first are identifiers also
present in the original bytecode; the latter are new variables introduced by the
transformation. Both variables and object fields can be an assignment’s target.

Many of the BIR instructions have an equivalent JBC counterpart, e.g., nop,
goto and if. A vreturn ezpr ends the execution of a method with return value
expr, while return ends a void method. The throw instruction explicitly trans-
fers control flow to the exception handling mechanism, similarly to the athrow
instruction in JBC. Method call instructions are represented by their method
signature. For non-void methods, the instruction assigns the result value to a
variable.

In contrast to JBC, object allocation and initialization happen in a single
step, during the execution of the new instruction. However, Java also has class
initialization, i.e., the one-time initialization of a class’s static fields. To pre-
serve this class initialization order, BIR contains a special mayinit instruction.
This behaves exactly as a nop, but indicates that at that point a class may be
initialized for the first time.

BIR models implicit exceptions by inserting special assertions before the in-
structions that can potentially raise an exception, as defined for the JVM. Fig-
ure 6 shows all implicit exceptions that are currently supported by the BC2BIR
transformation [3], and the associated assertion. For example, the transforma-

12 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

tion inserts a [notnull] assertion before any instruction that might throw a
NullPointerEzception, such as an access to a reference. If the assertion holds, it
behaves as a [nop], and control-flow passes to the next instruction. If the as-
sertion fails, control-flow is passed to the exception handling mechanism. In the
transformation from BIR to CFG, we use a function Y to obtain the exception
associated with an instruction. Notice that our translation from BIR to CFG can
easily be adapted for other implicit exceptions, provided appropriate assertions
are generated for them.

A BIR program is organized in exactly the same way as a Java bytecode
program. A program is a set of classes, ordered by a class hierarchy. Every class
consists of a name, methods and fields. A method’s code is stored in an instruc-
tion array. However, in contrast to JBC, in BIR the indexes in the instruction
array are sequential, starting with 0 for the entry control point.

4.2 Transformation from Java Bytecode into BIR

Next we give a short overview of the BC2BIR transformation. It translates a com-
plete JBC program into BIR by symbolically executing the bytecode using an
abstract stack. This stack is used to reconstruct expression trees and to connect
instructions to its operands. As we are only interested in the set of BIR instruc-
tion that can be produced, we do not discuss all details of this transformation.
For the complete algorithm, we refer to [7].

The symbolic execution of the individual instructions is defined by a func-
tion BC2BIR;, - that, given a program counter, a JBC instruction and an ab-
stract stack, outputs a set of BIR instructions and a modified abstract stack. In
case there is no match for a pair of bytecode instruction and stack, the func-
tion returns the Fail element, and the BC2BIR algorithm aborts. The function
BC2BIR;,s is defined as follows.

Definition 8 (BIR Transformation Function). Let AbsStack € Exprx.
The rules defining the instruction-wise transformation BC2BIR,st @ NXinstr jpe X
AbsStack — (instr prr* X AbsStack)U Fail from Java bytecode into BIR are given
i Figure 7.

As a convention, we use brackets to distinguish BIR instructions from their
JBC counterpart. Variables tri,C are new, introduced by the transformation.

JBC instructions if, goto, return and vreturn are transformed into cor-
responding BIR instructions. The new is distinct from [new C()] in BIR, and
produces a [mayinit]. The getfield f instruction reads a field from the ob-
ject reference at the top of the stack. This might raise a NullPointerFException,
therefore the transformation inserts a [notnull] assertion.

The store x instruction can produce one or two assignments, depending
on the state of the abstract stack. The putfield f outputs a set of BIR in-
structions: [notnull e] guards if the e is a valid reference; then the auxil-
iary function F'Save introduces a set of assignment instructions to temporary
variables; and finally the assignment to the field (e.f) is generated. Similarly,

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 13

Input ‘ Output Input ‘ Output Input ‘ Output

pop 0 nop [nop] div [notzero el
push c|f if p [if e pc’] athrow [throw e]
dup] goto p |[goto pc’] new C [mayinit C]
load x|0 return |[return] getfield f|[notnull el
add] vreturn|[return el

Input ‘Output

store x [x:=e] or [tgcz=x;x:=e]

putfield £ [notnull e; FSave(pc,f,as);e.f:=¢’]

invokevirtual m|[notnull e;HSave(pc,as);tgc:=e.ns(e'1...e'n)]
invokespecial m|[notnull e;HSave(pc,as);tgcz=e.ns(e’1...eﬁl)] or
[HSave (pc,as) ;tp.:=new C(e]...e},)]

Fig. 7. Rules for BC2BIR;nstr

Java bytecode BIR
0: iload 0
1: ifne 6 0: if ($bcvar0 != 0) goto 2
4: iconst_0
5: ireturn 1: vreturn O
6: aload 0
7: iconst_1
8: isub 2: mayinit Number
9: invokestatic Number.even(int) 3: $irvarO := Number.even($bcvarO - 1)
12: ireturn 4: vreturn $irvar0O

Fig. 8. Comparison between instructions in method odd()

instruction invokevirtual generates a [notnull] assertion, followed by a set
of assignments to temporary variables — represented as the auxiliary function
HSave — and the call instruction itself. The transformation of invokespecial
can produce two different sequences of BIR instructions. The first case is the
same as for invokevirtual. In the second, there are assignments to temporary
variables (HSave), followed by the instruction [new C] which denotes a call to
the constructor.

Figure 8 shows the JBC and BIR versions of method odd() (from Figure
2). The different colors show the collapsing of instruction by the transformation.
The BIR method has a local variable ($bcvar0) and a newly introduced variable
($irvar0). We observe reconstructed expression trees as the argument to the
method invocation, and as the operand to the [if] instruction. The [mayinit]
instruction shows that class Number can be initialized on that program point.

4.3 Transformation from BIR into Control-Flow Graphs

The extraction algorithm that generates a CFG from BIR iterates over the in-
structions of a method, using the transformation function bg, that takes as input

14 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

a program counter and an instruction array for a BIR method. Each iteration
outputs a set of edges.

To define bG, we introduce several auxiliary functions and definitions similar
to the ones introduced for the direct extraction (in Section 3). As a convention,
we use bars (e.g., N) to differentiate the similar functions from the direct, and
indirect algorithms.

First, H is the exception table for a given method, containing the same entries
as the JBC table, but its control points relate to BIR instructions. The function
R (pc,x) searches for the first handler for the exception x (or a subtype) at
position pc. given a virtual method call resolution algorithm «.. The function H5°
returns an edge after querying & for exception handlers. The function M%< adds
exceptional edges, relative to exceptions propagated by the called method. Its
computation requires the previous extraction of CFGs from the called method.

The extraction is parametrized by a virtual method call resolution algo-
rithm «. The function res®(ns) uses « to return a safe over-approximation of
the possible receivers to a virtual invocation of a method with signature ns, or
the single receiver if a call is non-virtual (e.g., to a static method).

We divide the definition of bG into two parts. The intra-procedural analysis
extracts a CFG for every method, based solely on its instruction array, and its
exception table. The inter-procedural analysis computes NE, the set of edges
that can follow a method call, and potential exception propagation.

Definition 9 (Control Flow Graph Extraction). The control-flow graph
extraction function bG : (Instrx N) x H — P(V x L,, x V) is defined by the rules
in Figure 9. Given method m, with ArInstr,, as its instruction array, the control-
flow graph for m is defined as bG(m) = UiﬁceAHnstrm bG (ipe, Hm), where iy
denotes the instruction with array indexr pc. Given a closed BIR program I'p,
its control-flow graph is bG(I'p) = U,,c, bG(m).

First, we describe the rules applied by the intra-procedural analysis. Instruc-
tions that store expressions (i.e., assignments), [nop] and [mayinit] add a sin-
gle edge to the next normal control node. The conditional jump [ifexpr pc’]
produces a branch in the CFG: control can go either to the next control point, or
to the branch point pc’. The unconditional jump goto pc’ adds a single edge
to control point pc’. The [return] and [vreturn ezpr] instructions generate
an internal edge to a return node, i.e., a node with the atomic proposition 7.
Notice that, although both nodes are tagged with the same pc, they are different,
because their sets of atomic propositions are different.

The extraction rule for a constructor call ([new C]) produces a single normal
edge, since there is only one possible receiver for the call. In addition, we also
produce an exceptional edge, because of a possible NullPointerException.

The extraction rule for method calls is similar to that of the direct extraction.
Again, we assume that an appropriate virtual method call resolution algorithm
is used, we add a normal edge for each possible receiver returned from res®.

The [throw z] instruction, similarly to virtual method call resolution, de-
pends on a static analysis to find out the possible exceptions that can be thrown.

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 15

gpe _ [L (%", handle, o%) } if hg(pe,z) =pc’ #0
¢ { (&7, handle, o5 ™") } if hg(pc,z) =0

{(F, ¢, nglﬂ)} if i € Assignment U
) {[nop], [mayinit]}

{(oB, g, 0551), (B, g, 005)} if i = [if expr pc’]

{(05,2,67 OEZ’)} if ¢ = [goto pc’]

bG (ipe, H) = {(o%e, &, 0m")})) if i € Return

{(oFs,C,0b™), (obs, e, o5 ™)} UHEY UNE® if i € NewObject

Unerese e { (05,7, ohe ™)} UNES if i € MethodCall

UzEX {5, e, @0 ™)} UHE if i = [throw X]

{(0B%, &, 0By, (oBS ¢, o?f{xm)} U "F[;C(i) if ¢ € Assertion

NE = Uoff’m’rebg(n) {(c%%, handle, &™)} U HE

Fig. 9. Extraction rules for control-flow graphs from BIR

The BIR transformation only provides the static type of the exception z. Let X
be the set containing the static type of x and its subtypes. The transformation
produces an exceptional edge for each element of X, followed by the appropriate
edge derived from the exception table.

Finally, for each assertion, we produce a normal edge, and an exceptional
edge, together with the appropriate edge derived from the exception table.

Next, we describe the inter-procedural analysis. In all program points where
there is a method invocation, the function NE° adds exceptional edges, relative to
propagated exceptions by called methods. It analyzes if the CFG of an invoked
method n contains an exceptional return node. If it does, then function H&°
verifies whether the exception x is caught in position pc. If so, it adds an edge
to the handler. Otherwise it adds an edge to an exceptional return node.

In the later case, the propagation of the exception continues until it is caught
by some caller method, or there are no more methods to handle it. This process
can be performed using a fix-point computation.

4.4 Implementation

The extraction rules from Figure 9 are implemented in our CFG extraction tool
CFGEX. It uses Sawja for virtual method call resolution (using RTA) and for
the transformation from Bytecode into BIR. Table 1 provides statistics about
the CFG extraction for several examples. All experiments are done on a server
with an Intel i5 2.53 GHz processor and 4GB of RAM. Methods from the API
are not extracted; only classes that are part of the program are considered.
BIR Time is the time used for Sawja to transform JBC into BIR. We divided
the extraction of CFGs from BIR into two stages. First, the intra-procedural anal-
ysis extracts control-flow graphs for each BIR method by applying the formal
rules in Figure 9, except the function N. As described in Section 4.3, this is

16 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

of | # of | BIR Intra-Procedural Inter-Procedural
Software JBC BIR | time || # of | # of | time 7 of # of | time
instr. | instr. | (ms) || nodes | edges | (ms) || nodes | edges | (ms)

Jasmin 30930 | 10850 | 267 || 19152 | 19460 | 320 || 21651 | 21966 | 25

JFlex 53426 | 20414 | 706 || 38240 | 38826 | 859 || 42442 | 43072 | 23
Groove Ima.| 193937 | 77620 | 587 |{159046|158593| 4817 || 193268 | 192905 | 1849
Groove Gen.| 328001 (128730| 926 ||251762|252102| 13609 || 308164 | 308638 | 5541
Groove Sim. | 427845 [167882| 1072 ||311008|311836| 16067 || 386553 | 387556 | 6886

Soot 1345574|516404|98692|{977946|976212|264690{|1209823(1208358|57621
Table 1. Statistics for CFGEX

computed by an inter-procedural analysis. It extracts the transitions related to
exceptions that are propagated from called methods. We compute this informa-
tion using the fix-point algorithm of Jo and Chang [14].

Table 1 shows that the number of BIR instructions is less than 40 % of
Bytecode instructions, for all cases. This indicates that the use of BIR avoids the
blow-up of flow-graphs, and clearly program analysis benefits from this. We can
also see that, on average, the computation time for intra and inter-procedural
analysis grows proportionally with the number of BIR instructions. However,
this growth depends heavily on the number of exceptional paths in the analyzed
program.

5 Correctness of bG o BC2BIR

We introduce the necessary notions and notations before stating the correctness
proof. First, we define the notion of a well-formed Java bytecode program. In-
formally, such programs are the ones that are successfully loaded and start to
execute by the Java Virtual Machine (JVM). In addition to being solely inter-
ested in programs that can actually be executed, we also use the hypothesis of
well-formation to state the proof. E.g., the JVM will not start the execution
of a program which contains a method that can terminate by running out of
instructions, and not by reaching a return instruction.

Definition 10 (Well-Formed Java Program). A well-formed Java bytecode
program, is a closed program which passes the JVM bytecode verification *.

Next we present the notion of weak transition relation for models, which
follows the standard definition from Milner [15]. As usual, we write p; A p; to
denote (p;, l,p;) €—, for some relation —. Also, we use the ¢ label to denote
silent transitions.

Definition 11 (Weak transition relation). Given an arbitrary model (S, LU
{e}, =, A, \), the relations =— C Sx S, N C Sx LxS are defined as follows:

4 Requirements available at http://java.sun.com/docs/books/jvms/second_
edition/html/ClassFile.doc.html

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 17

1. p; = p; means that there is a sequence of zero or more silent transitions

d * iy)
from p; to pj. Formally, = N , the transitive reflexive closure of —.

2. p; :ﬂ> p; means that there is a sequence containing a single visible transi-

.) . iy d
tion labeled with 3, and zero or more silent transitions. Formally, :ﬁ> et
=5 =

Now we present the definition of weak simulation. Again, it is based on the
standard notion, but instantiated over two method specifications for convenience.

Definition 12 (Weak Simulation over Method Specifications). Let M, =
(Sps Lp, =p, Ap, Ap) : B and My = (Sg, Ly, =4, Ag, Ag) = Ey be two method spec-
ifications, and R C Sy, x Sy. Then R is a weak simulation if for all (p;,q;) € R
the following holds:

1. Ap(pi) = Aqlas)
2. if p; :ﬂ> pj then there is q; € Sq such that g; N qj

We say that q (weakly) simulates p if (p,q) € R, for some weak simulation
relation R. Also we say that M, (weakly) simulates M,, if for all p € E,, there
is g € Eq such that q (weakly) simulates p.

The following proposition is a consequence of Definition 12, also presented
in the standard definition by Milner. To prove weak simulation, it suffices to
show that for every edge produced by the direct algorithm (”strong” transition),
there is a matching weak transition with the same label produced by the indirect
algorithm.

Proposition 1. A relation R is a weak simulation if and only if for all (p;,¢;) €
R, the following holds:

1 ifpi > p; then there is q; such that ¢; = ¢; and (pj,q;) € R.
2. if p; E> p; then there is q; such that ¢; :ﬁ> q; and (pj,q;) € R.

The flow graph from a program is the disjoint union of the flow graphs of
all its methods, called method specifications. Thus it suffices to state the proof
over an arbitrary method m, since the proof can be generalized to all methods,
consequently to the entire program.

Along the text, we have used an informal definition of CFG nodes, which
was sufficient for the understating, to avoid the overload of definitions. Now we
present formally the notion of nodes in the CFG from a Java program. The
definition of nodes for BIR programs is analogous, but uses pc to denote a
position in the instructions array.

Definition 13 (Control Flow-Graph Nodes). The set of nodes in a control-
flow graph is defined as V C METH x N x {e € P(Excp),|e| <1} x{ {}, {r} }.

18 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

The Definition 13 says that nodes from a flow graph are uniquely identified
by a method signature, its position in the method’s instruction array, a set
containing the ”return” atomic proposition, or empty; and a set containing a
single exception, or empty. Once again, we use the notation o2:*Yandel:*¥ being
the former used to stress when x = {}, and the latter used when the set 2 contains
an exception. If the set y = {} we may omit it, but if it is not, we add the r.

Finally, the BC2BIR transformation may collapse many bytecode instructions
into one or more BIR instructions. This mapping of many-to-many instructions
makes the proof statement cumbersome. Thus, we present the proof outline to
help the reader to understand the nuances of the actual proof.

Proof Outline We divide the bytecode instructions into two sets: the relevant
instructions are those that produce at least one BIR instruction in function
BC2BIR;,sir; the irrelevant instructions are those that produce none. Following
Figure 7, store and invokevirtual are examples of relevant instructions; add
and push are examples of irrelevant ones.

Next, we define bytecode segments as partitions over the array of bytecode
instructions, delimited by each relevant instruction. Thus a bytecode segment
contains zero or more irrelevant contiguous instructions, followed by a single
relevant instruction. Such partitioning has to exist because of the Definition 10. It
guarantees that well-formed bytecode programs must terminate after executing a
return instruction, or a throw instruction that can not be caught. Both return
and throw are relevant instructions. Thus, there can not be set of contiguous
instructions which are not delimited by a relevant instruction.

Each bytecode segment is transformed into a set of contiguous instructions
by BC2BIR. We call this set a BIR segment, which is a partition of the BIR
instruction array. There exists a one-to-one mapping between bytecode segments
and the BIR segments, which is also order-preserving. Thus, we can associate
each instruction, either in the JBC or BIR arrays, to the unique index of its
correspondent bytecode segment.

Figure 8 illustrates the partitioning of instructions. The method odd contains
four bytecode segments, and its corresponding BIR segments, grouped by colors.
The relevant instructions are underlined.

We now explain the impact of the irrelevant instructions into the sub-graph
of its segment. The set of irrelevant instructions is defined by all bytecode in-
structions that do not produce BIR instructions in the function BC2BIR;, - The
Definition 8 gives these instructions, which are pop, push, dup, load and add.

Figure 3 shows that all those instructions belong to the subset CMPINST
of normal computation instructions. Moreover, the Definition 4 presents the
following extraction rule for all the instructions i € CMPINST:

mg((p> Z),H) = { Ogr)n i} ofrlllcc(p) }

This means that irrelevant instructions produce a transition from the node
tagged with control point p to the node tagged with the next position in the
bytecode array.

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 19

Bytecode segments are defined as sequences of zero-to-many contiguous irrel-
evant instructions in the instruction array, followed by a single relevant instruc-
tion. This implies that the sub-graphs for any segment extracted in the direct
algorithm will start with a path with the same size as the number of irrelevant
instructions.

Below we illustrate the pattern for the path graph, being i the position for
the first irrelevant instruction, and p the position of the relevant instruction. In
case the number of irrelevant instructions is zero, then i = p.

i & _succ(i) & _succ(succ(i)) & p
O — O — O — ... 0p, ...

Now we show that for each bytecode segment in a given method, the sub-
graph produced by the direct algorithm is weakly simulated by the sub-graph
produced transforming this segment into BIR instructions, and then extracting
the control-flow graph with the bG function.

Theorem 2 (Structural Simulation of Method Specifications). Let I" be
a well-formed Java bytecode program, I'[m] the implementation of method with
signature m, RE the subset of implicit exceptions that instructions can raise.
Then (bG o BC2BIR)(I'[m]) weakly simulates mG(I'[m]), i.e, the method graph
extracted using the indirect algorithm weakly simulates the method graph using
the direct algorithm.

Proof. We define a binary relation R as follows:

def

R = (o™, oy ") |segjoc(m, p) = seguir(m,pc) A pe = min(segpir(m,pc), z,y)}

where oP:®¥ is a control node in mG(I'[m]) and o5;™? is a control node in

(bG o BC2BIR)(I'[m]). We introduce the auxiliary functions segjy. and segpir,
which receive a position in the JBC and BIR instruction arrays, respectively,
and return the index of the associated segment; and min returns the smallest
pc among nodes from the same segment with the same sets z and y.

We stress the use of p for an arbitrary index in the bytecode array, and
pc for an index in the BIR instructions array. During the proof we omit the
use of abstract stacks, since only the instructions are relevant to produce the
transitions. Also, we use the term ”simulates”, instead of ”weakly simulates”,
for brevity.

Proposition 1 is used to show that R is a weak simulation. We relate the
entry nodes in the sub-graphs produced by both algorithms. Then we show that,
for all bytecode segments, the sub-graph produced by the indirect algorithm
weakly simulates the sub-graph produced by the direct algorithm. The sub-
graphs compose since we show that all the sink nodes are either return nodes
(tagged with y = {r}), thus have no successors; or are normal nodes (z = {}),
thus are entry nodes for sub-graphs of other segment.

Let (oB:®¥ ob7™Y) be an arbitrary pair in R. The proof proceeds by case anal-
ysis on the type of the relevant instruction of the bytecode segment seg;p.(m, p).

20 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

We present the cases using the subsets JBC instructions presented in Figure 3.
Those subsets group the instructions which share the same extraction rule in
the direct algorithm.

Case relevant instruction ¢ € CMPINST:

There are two relevant instruction in this subset: nop and store. The direct
extraction produces a single transition from one normal node to the node tagged
with the successor of p in the instructions array:

nG((p,i), H) = { of, = ojiee® }

First, we analyze the indirect algorithm for the store instruction. The trans-
formation BC2BIR;, s can return either one or two assignments. Applying the
extraction rules bG function, which have:

[x:=e] (Case I)
[tgc :=x]; [x:=e] (Case II)

Case I)
Case II)

BC2BIR;p st (p, store) = {

bG ([x:=elpe, H) = {ob 5 obT™

bG ([t :=x1pe, H) = {oby 5 obi™}
bG ([x:=elpe, H) = {obi™ 5 0B}

(
(

For all nodes of in the path graph created by the irrelevant instructions, we
have that (o! ,ob¢) € R since for all o}, = 03¢ exists oby == obs (because of
reflexivity of ==). Thus also (053°¢¥ oP%) € R. The path graph will terminate
on the node o8¢ —= oP ~which is the one tagged with the position p from
the relevant instruction. This fact will be reused along the proof to explain the
nodes produced by irrelevant instructions.

In the case where store produces a single assignment, we have that (o?,, oh;) €
R. There exists the transition of, 5 Of?‘;“(p), and there is also ofy =— O%H
Thus also (o22¢® oPet!) e R,

The case where there are two assignments also has (of,,ob;) € R. There
exists of, 5 0%2¢® and there is also of; == ob¢*? which transverses bt
Then also (osucc® Bty e R.

The case for nop is analogous to the case of store which produces a single
instruction.

)

Case relevant instruction ¢ € JMPINST:

The only relevant instruction in this subset is goto g. The direct extraction
produces a single transition from one normal node to the normal node tagged
with the g position:

mG ((p.goto q), H) = { of, 0% }

The transformation BC2BIR,, s also returns a single instruction, which ap-
plied to bG function produces a single transition:

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 21

BC2BIR;, st (p, goto ¢q) = [goto pc’]

bG([goto pc’]Pc,H) = {oP° N o’}

m

The case for the nodes tagged with irrelevant instructions was explained in
the CMPINST case. Thus, for all nodes of, in the path graph extracted from the
irrelevant instructions, we have that (of,,oh;) € R.

Next, we analyze the relevant instruction. We have that (of,, ob;) € R. There
exists the transition of, < o and there is also of; = obS | Thus (0%, 05) €
R.

Case relevant instruction ¢ € CNDINST:
The only relevant instruction in this subset is if q. The direct extraction
produces two transitions from the normal node tagged with position p:

mg((p, if Q)7H) = { Ofn £> O%CC(Z})’ Ofn = O?n }

The transformation BC2BIR;, 4 returns a single instruction, which applied
to bG function produces two transitions:

BC2BIR;pstr(p, if q) = [if expr pc’]

. 7 € 41 €)
bG([if expr pc’] ., H) = { 0B 5 0B’ T, obe 5 o’ }

As mentioned before, for all nodes of, in the path graph extracted from the

irrelevant instructions, we have that (o, oh;) € R. Also, the last transition in
. ; €
the path is o}, — of .

From the relevant instruction we have that (o?,,of7) € R. There is the transi-
tion of, 5 osuee(P) " and there is also ofy, = oPt Thus (of;j“(p),of,f“) € R.
There is a second transition from the same source node: o?, = o4 . There is also
ohy = oby , and (O%wO};;) €R.

Case relevant instruction i = throw X:

As defined previously, X denotes the set containing the static type of the
exception being thrown, and its subtypes. Such set is the same for the direct or
indirect extractions. So we present the proof for an arbitrary exception z € X,
and generalize the result to all the other elements.

The rule in the direct extraction for the throw instruction produces two
edges. However, the sink node varies, in case the exception x is caught within
the same method it was raised, or not.

handle € .
p p,x P,z q
nG((p, throw), H) — {oB, """ el &l — o if has handler
D, ’ p handle . 4 » handle o o .
{ 0P 7T eP T ol TN P, ToT Y otherwise

The transformation BC2BIR;, - returns a single instruction:

22 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

BC2BIR;, st (p, throw) = [throw x]

The bgG function produces two transitions, similarly to mG. The second tran-
sition depends in the presence of a handler for the exception z in position pc:

handl . ;
{ obe hangle gpe. - gbe.r E, b if has handler
bG([throw x]p, H) = pe handle pe.a R handle oBCET :
{ oB¢ §1¢ @b e } otherwise

Again, for all nodes of, in the path graph extracted from the irrelevant in-
structions, we have that (of,,ob;) € R, and the last transition in the path is
oin 5 ob,

Next, we have that (o?,,oh;) € R. There is the transition o?, hangle ol" and

handl
there is also obs "5S¢ oPST Thus (e eb5") € R.

Now, there are two possibilities for transitions, depending if there is an ex-
ception handler for x in p. If there is a handler then exists o2:* = o . Moreover,

there is also ehe'® == obs . and (o%,,0b) € R.

. . .~ handle PR .
If there is no exception handler for x, then exists 2:* " — " oP:®" There is
p m m

c,xz handle pc,z,r c,T,T
also &5 "==" 07" and (eP;*7 e51"") € R.

Case relevant instruction ¢ € XMPINST:

The instructions in this set follow to the next control point in case they
terminate the execution normally, or can raise an exception if some condition
was violated.

The rule for the direct extraction produces one normal transition, for the case
of successful execution. It also produces a pair of transitions for each exception
that the instruction can throw: one from a normal to an exceptional node; and the
corresponding transition depending if there is an associated exception handler.

Next we present this case for the div instruction, which can only raise the
z=ArithmeticException (given the set RE). The case for other instructions in
XMPINST is analogous. The direct extraction produces the following set of edges:

p & gsuce(p) p handle g p,x & ~q :
nG((p, div), H) = { oh, = o yob U= el b — of '} if has handler
D, ’ p & _succ(p) P handle P.T aPT handle p,T,T .
{ ob, = o N A S VU otherwise

The BC2BIR,, s transformation returns a single instruction, which is an as-
sertion:

BC2BIR;, st (p,div) = [notzero]

The bG function produces three transitions: one to a normal node, denoting
absence of exceptions, one to exceptional node, denoting the transfer of control
to the JVM. The third transition varies if an exception handler is found. Thus
we may have two sets of transitions:

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 23

7 handl)
bg([notzero]pc,)_ { OPC _> Opc-i—l’ Opc aﬁ) 6.1:7?17 .1;:,95 £> 01;;: }

or the following, in case there is no handler for x:

* € handle handle
bG([notzerol,, H) = { oY — oly’rerl, oPe TN oPST P ST oPHT T L

Again, for all nodes of, in the path graph extracted from the irrelevant in-
structions, we have that (ol ,oby) € R, and the last transition in the path is
or. 5 ob .

From the relevant instruction we have that (o? ,o%;) € R. There is the transi-

. 5 . 1 1
tion of = o8uce(® and there is also of; == ot Thus (oSuce®) bt) € R.

. s handle .
There is a second transition from the same source node: o, “—" 2% There is

also ofy hangle o)., and (e£:" o57") € R.

There are two possibilities for the third transition, depending if there is
an exception handler for z in p. If there is a handler then exists 7% 5 od .
Moreover, there is also ehy* = obs and (0%, 05) € R.

hangdl .
If there is no exception handler for z, then exists o2 "5 o2:®" There is

c,x handle pc,z,r C,T,T
also oby" "==" &b0"" and (eP:*" 57" € R.

Case relevant instruction i € INVINST:

This is the set of instructions which execute method invocations. We consider
the instructions invokespecial and invokevirtual. The case for invokestatic
and invokeinterface are analogous to the former and the later, respectively.
The remarkable difference between these instructions is that for the first there is
only one possible receiver for the call; the later can have one-to-many receivers.

Case relevant instruction ¢ = invokespecial:

We start with the case of invokespecial, which calls methods that belong
to current class (including object constructors), or to the super class. The direct
algorithm extracts a variable number of edges. It produces a minimum of three:
one edge for the normal execution of the method, and two edges for the excep-
tional flow of o = NullPointerException (control transfer to JVM and exception
handling).

Also it may produce pairs of edges for exceptions propagated from methods
called inside the current method (denoted by N;) We state the proof for a single
exception x propagated by the called method, and generalize to all the possible
propagated exceptions.

The direct algorithm may extract the following set of edges:

mG((p, invokespecial), H) =

C() handl ; .

op S8 osuce(p) op MU gpo gPio S o4 Y UN if o has handler
cQ) handle handle ; .

ob = osucc(p) ,ob, ST ebie ebe I eb 0L UNL otherwise

24 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

The function N; produces the following pairs of edges for some exception x
propagated from a call to C():

handle €
. vy D, T p,r q
Ni— {oP, =" eP:T P T = o If has handler
P handle handle .
{oh, "= el el T el T) otherwise

The BC2BIR,, st transformation can return two different sets of instructions
for the invokespecial. First, we present the case for the invocation of ob-
ject constructor. It returns a sequence of assignments to temporary variables
([tgc:=x]), denoted by HSave; plus the call to [new C]:

BC2BIR;, st (p, invokespecial) = [HSave(pc, as) ;tgc:=new c(...)]

Assignments to variables produce a single transition to the next control point.
Thus, the extraction of HSave function produces a path graph:

bG(HSave(pc, as) pe, H) = {oBS =5 obeHl opetl 5 b2 | gpe?—1 5 gpe’y
The rule for the [new C] produces one normal edge for the case of successful
execution, one pair of edges relative to the exceptional flow in case exception
g(:NullPomterE:rception), and a pair of edges for the propagation of exception
 (denoted by NVJL):

bg([tgc, :=new C(...)]lpe, H) =

0O per+l pe’ e pc 'o e per -
e e A A e FUNG If o has handler

> CQ) 141 '€ ’ > o handl) —
{o% —>o}fﬁ+,o£§ S oeby 0 ebi 0 age.%cb,g,r}uj\/;:c

otherwise

Also, function /_/p’”g can produce two different sets of edges, if there is or not
a handler for exception .

s handle pex s o handl .
VA B G I S If has handler
c > handl ' >z handl ’ .
’ {ohs TR eh T, by T M WY otherwise

Again, for all nodes of, in the path graph extracted from the irrelevant in-
structions, we have that (of,,ob;) € R, and the last transition in the path is
oin 5 ob .

Next we analyze the relevant instruction. (oF,,ob;) € R. There is the transi-

. c . c ,)
tion o 4) OE,‘LICC(p), and there is also ofs :(; obs ", which transverses all the

nodes produces from HSave. Thus (052¢® oP¢"") ¢ R,

. " handle
There is a second transition from the same source node: of, " —="" o/:¢_ There

pc handle .pc’ ,0
m

is also oy, — , which also transverses nodes produces from HSave, and

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 25

(eP:2 oe’0) € R. The next edge depends on the presence of a handler. If there

. . oy handle
is none, then exists a transition e2:¢ "~ —" 227 There is also ey,

o070 and (2,07 BT 0F) ¢ R.If there is a handler, then (0% ,05"") € R,
and explanation is analogous. There is also the pair of transitions added by the
propagation of exception x, which is analogous: the first transition being into an
exceptional node, and the second varies according to having a suitable handler
for x.

The second case for invokespecial is the one where the called method is
not a constructor, but some method within the same class, or from the super
class.

The BC2BIR;, 4 transformation returns the same instructions as before, but
preceded by [notnull] instruction.

handle
pc’,o

BC2BIR;, s (p, invokespecial) = [notnulll ; [HSave(pc, as) ;tgc:=new c(...]

Applying the extraction function to [notnull] we get the following edges,
in addition to the same other edges as the previous case of invokespecial:

bG([notnulll,, H) =
€ 1 handle , ,
{ b = obSTh ope NANGIE gbcio - gPeie S, ope } If o has handler
handl handle
[oBS 5 OB, ope handle gpeio gpeio handle pe.or)

)

otherwise

The case for all nodes o?, in the path graph extracted from the irrelevant
instructions is the same, and we have that (o?,,o};) € R, and the last transition
in the path is of, = oP .

Next we analyze the relevant instruction. (o, o7) € R. There is the transi-

tion of, "0y suce(p) " and there is also of, 20 0P which transverses the node
tagged with notnull position, and all the nodes produces from H Save. Thus
(OfrlleC(p) , ng’r‘;’ ’) c R.

handle

There is a second transition from the same source node: of, =" eb:2

There is also oh, handle oh’?. containing the edge produced by [notnull] and

(oP:2 o%7?) € R. Again, the next edge varies on the presence of a handler or

. . oy handle .
not. If there is none, then exists a transition e:¢ """ eP:&" There is also

)0 handl .
ob ¢ MEEEE @PSOT and (o0 ebe@T) € R. If there is a handler, then 22 5 o4 .

handle [20
Moreover, there is obs *¢ "5 oPS""" Therefore, (09,05) € R.

Again, the explanation transitions of propagation of exception x is analogous

. . s handl
to the case for g. There is a third transition from the same source node: o, 5"

pc handle pc’ »X

ol There is also o, =— e, ', which transverse the node produced by
[notnull], and the nodes produced by HSave. and (e7%, &85 **) € R. If there
handle

is no handler for x, then exists a transition e =" " There is also
s,z handl)
ob o ¥ MEESC oPST T and (eB 7 @be ") € R. If there is a handler, then o2 =

handle 290 ’
. Moreover, there is o5 ** "25° oP¢”"" Therefore, (0%, 0%) € R.

26 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

Case relevant instruction 7 = invokevirtual:

We now detail the case for invokevirtual, which invoke virtual methods.
This case is similar to invokespecial, but the number of possible receivers to
the method call may be more than one. We present the proof for a single method
call receiver n, and generalize it to all possible receivers.

The direct extraction extracts a variable number of edges. It produces a
minimum of three: one edge for the normal execution of the method, and two
edges for the exceptional flow of ¢ = NullPointerException (control transfer to
JVM and exception handling).

Also it may produce pairs of edges for exceptions propagated from methods
called inside the current method (denoted by N;) We state the proof for a single
exception x by the called method, and generalize to all the possible propagated
exceptions.

mG((p, invokevirtual), H) =

n() c e i

{oP, "9 osuce(p) op 5, oP:0 eP:0 =3 od) UN, If o has handler
n() € handle ; .

{oP, Y osucc(p) op %y gP0 gPi0 MULTC @bl UN, otherwise

The function N; produces the following set of nodes for some exception x
propagated from a call to n():

handle € ;
Ni— {oh, "= el el = ol FUN, If has handler
P handle handler ; .
{ob, "= el el TR @b Y N otherwise

The BC2BIR,;,s: outputs a set of instructions, being the minimum two: the
assertion [notnull] and the method invocation:

BC2BIR;, st (p, invokevirtual) = [notnull; HSave(pc, as) ;tgc:=e.m(. .1

Applying the extraction function to [notnull] we get the following edges:

bG([notnulll,e, H) =

€ 1 handle e 3

{ b = obSTh ope NALEE gbci0 gPei0 S, oPe } If o has handler
e 1 handl o handl .

{ oBs 5 obetl obe MUTC gbti0 - @bl MANGIE QPGOT Y otherwise

The assignment to temporary variable produce a single transition to the next
control point. Thus, the extraction of HSave function produces a path graph:

bG(HSave(pc, as)pe, H) = {oPSTH 5 obet2 | ope’~1 5 ope’y

The rule for the [tgc, :=e.n(...)] produces one normal edge for the case

of successful execution, and a pair of edges for the propagation of exception
(denoted by A%):

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 27

bG([t0, =e.n(. .)] pe, H) = { ofF "W b+ y U A

Also, function /_fglc can produce two different sets of edges, if there is or not
a handler for exception .

> handle) ’,x handle)
N — T S N If has handler
pc > handle), > x handle X, .
T S e TS otherwise

The case for all nodes o?, in the path graph extracted from the irrelevant
instructions is the same, and we have that (o?,,o%;) € R, and the last transition
in the path is o, —» oP .

Next we analyze the relevant instruction. (of,,o7) € R. There is the transi-
tion of, ™Y 03cc®) and there is also 0B “.% oBS”’ which transverses the node

tagged with notnull position, and all the nodes produces from HSave. Thus
(opec® k") € R.
handle

There is a second transition from the same source node: of, =" eP:2,

. handl .
There is also of; "2%° ¢P%¢ containing the edge produced by [notnull] and
(oP:2 ohr?) € R. Again, the next edge varies on the presence of a handler or
not. If there is none, then exists a transition e2:¢ hangte o027 There is also

». 0 handle s €
o ¢ =" o000 and (o227 oh?") € R. If there is a handler, then e7:¢ = o .

. ’, handle IR EER)
Moreover, there is oh; *¢ "==" o} Therefore, (o%,,0%)€ R.
Again, the explanation transitions of propagation of exception x is analogous

. . . handl
to the case for p. There is a third transition from the same source node: of, 5"

pc handle _pc’,x

o»% There is also o;;, = e;; *°, which transverse the node produced by

[notnull], and the nodes produced by HSave. and (eF:*, of,f”x) € R. If there

. . oy handle .
is no handler for x, then exists a transition e2* =" " There is also

’ handle 4 . €
o T =" ohr 0T and (o2 ob™") € R. If there is a handler, then o2 =

. b handle EER) RN}
o4 . Moreover, there is o5, ** "="of; Therefore, (ol ,ob)€ R.

O

6 Related Work

Java bytecode has several aspects of an object-oriented language that make the
extraction of control-flow graphs complex, such as inheritance, exceptions, and
virtual method calls. Therefore, in this section we discuss the work related to ex-
tracting CFGs from object-oriented languages. To the best of our knowledge, for
none of the existing extraction algorithms a correctness proof has been provided.

Sinha et al. [16,17] propose a control-flow graph extraction algorithm for
both Java source and bytecode, which takes into account explicit exceptions
only. The algorithm performs first an intra-procedural analysis, computing the

28 Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

exceptional return nodes caused by uncaught exceptions. Next, it executes an
inter-procedural analysis to compute exception propagation paths. This division
is similar to how our algorithm analyses exceptional flows, using a slightly differ-
ent inter-procedural analysis. However, the authors do not discuss how the static
type of explicit exceptions is determined by the bytecode analysis, whereas we
get this information from the BIR transformation. Moreover, the use of BIR
allows us to also support (a subset of the) implicit exceptions.

Jiang et al. [13] extend the work of Sinha et al. to C++ source code. C++
has the same scheme of try-catch and exception propagation as Java, but
without the finally blocks, or implicit exceptions. This work does not consider
the exceptions types. Thus, it heavily over-approximates the possible flows by
connecting the control points with explicit throw within a try block to all its
catch blocks, and considering that any called method containing a throw may
terminate exceptionally. Our work consider the exceptions types. Thus, produce
more refined CFGs, and also tells which exceptions can be raised, or propagated
from method invocations.

Choi et al. [6] use an intermediate representation from the Jalapefio com-
piler [5] to extract CFGs with exceptional flows. The authors introduce a stack-
less representation, using assertions to mark the possibility of an instruction
raising an exception. This approach was followed by Demange et al. when defin-
ing BIR, and proving the correctness of the transformation from bytecode. As a
result, our extraction algorithm, via BIR, is very similar to that of Choi. We differ
by defining formal extraction rules, and proving its correctness w.r.t. behavior.

Finally, Jo and Chang [14] construct CFGs from Java source code by com-
puting normal and exceptional flows separately. An iterative fixed-point compu-
tation is then used to merge the exceptional and the normal control-flow graphs.
Our exception propagation computation follows their approach; however, the
authors do not discuss how the exception type is determined. Also, only ex-
plicit exceptions are supported; in contrast, we determine the exception type
and support implicit exceptions by using the BIR transformation.

7 Conclusion

This paper presents an efficient and precise control-flow graph extraction al-
gorithm that also considers exceptions. It presents a formal argument why the
algorithm is correct, i.e., it extracts a graph whose behavior over-approximates
the behavior of the original program. To the best of our knowledge, this is the
first CFG extraction algorithm that has been proven correct. The proof is pre-
sented in pencil-and-paper style, but paves the ground for a mechanized proof
using a standard theorem prover.

The algorithm is precise because it uses BIR, an intermediate stack-less rep-
resentation. The BIR transformation provides precise information about excep-
tional control-flow, and at the same time it makes the generated control-flow
graphs relatively small.

Provably Correct Control-Flow Graphs from Java Programs with Exceptions 29

To prove correctness of the algorithm, a second idealized extraction algorithm
that works directly on the bytecode is presented. It is easy to prove correctness
of this direct algorithm. To prove correctness of the indirect algorithm we show
that the resulting CFG structurally simulates the CFG generated by the direct
algorithm. Since structural simulation implies behavioral simulation, this gives
us the desired result.

The extraction was implemented as the CFGEX tool. The experimental re-
sults show that the algorithm is efficient, and that it produces compact CFGs.

Future Work Currently we study how to adapt the algorithm to a modular
setting. Our intention is to use the extracted CFGs as input for CVPP [12], a
tool set for compositional verification of control-flow safety properties. In this
setting, one typically wishes to produce CFGs from incomplete programs.

In addition, we also plan to study how the algorithm can be adapted to
preserve some data of the original program, and how to use it for programs with
multiple threads of execution.

Acknowledgments We thank the Celtique team at INRIA Rennes for their help
on the BIR language.

References

1. Amighi, A.: Flow Graph Extraction for Modular Verification of Java Programs.
Master’s thesis, KTH Royal Institute of Technology, Stockholm, Sweden (February
2011), http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/
2011/rapporterll/amighi_afshin_11038.pdf, Ref.: TRITA-CSC-E 2011:038

2. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
OOPSLA. pp. 324-341 (1996)

3. Barre, N., Demange, D., Hubert, L., Monfort, V., Pichardie, D.: SAWJA API
documenation (June 2011), http://javalib.gforge.inria.fr/doc/sawja-api/sawja-1.3-
doc/api/index.html

4. Besson, F., Jensen, T., Le Métayer, D., Thorn, T.: Model checking security prop-
erties of control flow graphs. J. of Computer Security 9(3), 217-250 (2001)

5. Burke, M.G., Choi, J.D.; Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M.J.,
Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapefio dynamic optimizing com-
piler for Java. In: Proceedings of the ACM 1999 conference on Java Grande. pp.
129-141. JAVA ’99, ACM, New York, NY, USA (1999)

6. Choi, J.D., Grove, D., Hind, M., Sarkar, V.: Efficient and precise modeling of
exceptions for the analysis of Java programs. SIGSOFT Softw. Eng. Notes 24,
21-31 (September 1999)

7. Demange, D., Jensen, T., Pichardie, D.: A provably correct stackless intermediate
representation for Java bytecode. Tech. Rep. 7021, Inria Rennes (2009), http://
www.irisa.fr/celtique/demange/bir/rr7021-3.pdf, version 3, November 2010

8. Freund, S.N., Mitchell, J.C.: A type system for the Java bytecode language and
verifier. J. Autom. Reason. 30, 271-321 (August 2003)

9. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840-868 (2008)

30

10.

11.

12.

13.

14.

15.

16.

17.

Afshin Amighi, Pedro de C. Gomes, Dilian Gurov, and Marieke Huisman

Hubert, L., Barré, N., Besson, F., Demange, D., Jensen, T., Monfort, V., Pichardie,
D., Turpin, T.: Sawja: Static Analysis Workshop for Java. In: Formal Verification
of Object-Oriented Software (FoVeOOS ’10). LNCS, vol. 6528. Springer (2010)
Huisman, M., Aktug, 1., Gurov, D.: Program models for compositional verification.
In: International Conference on Formal Engineering Methods (ICFEM ’08). LNCS,
vol. 5256, pp. 147-166. Springer (2008)

Huisman, M., Gurov, D.: CVPP: A tool set for compositonal verification of
control-flow safety properties. In: Formal Verification of Object—Oriented Software
(FoVeOOS ’10). LNCS, vol. 6528, pp. 107-121. Springer (2010)

Jiang, S., Jiang, Y.: An analysis approach for testing exception handling programs.
SIGPLAN Not. 42, 3-8 (April 2007)

Jo, J.W., Chang, B.M.: Constructing control flow graph for Java by decoupling
exception flow from normal flow. In: ICCSA (1). pp. 106-113 (2004)

Milner, R.: Communicating and mobile systems: the w-calculus, chap. 6, pp. 52-53.
Cambridge University Press, New York, NY, USA (1999)

Sinha, S., Harrold, M.J.: Criteria for testing exception-handling constructs in Java
programs. In: Proceedings of the IEEE International Conference on Software Main-
tenance. pp. 265-276. ICSM 99, IEEE Computer Society (1999)

Sinha, S., Harrold, M.J.: Analysis and testing of programs with exception handling
constructs. IEEE Trans. Softw. Eng. 26, 849-871 (September 2000)

