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Abstract

A group G is called (2, 3, t)-generated if it can be generated by an
element x of order 2 and an element y of order 3 such that the product
xy has order t. In the present article we determine all the (2, 3, t)-
generations for the Suzuki’s sporadic simple group Suz, where t is an
odd divisor of |Suz|. This extends the earlier results of Mehrabadi,
Ashrafi and Iranmanesh [9].
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1 Introduction and Preliminaries

Group generation has played and continued to play a significant role in solving
outstanding problems in diverse areas of mathematics such as topology, geom-
etry and number theory. A group G is said to be (2, 3, t)-generated if it can
be generated by just two of its elements x and y such that o(x) = 2, o(y) = 3
and o(xy) = t. In this case, G is a factor of the modular group PSL2(Z),
which is free product of two groups of order two and three. An important type
of (2, 3, t)-generated groups are when t = 7. Such groups are called Hurwitz
groups. Recently, there has been considerable amount of interest in the deter-
mination of (2, 3, t)-generations of the simple groups. Moori in [10] determined
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all possible (2, 3, p)-generations for the Fischer group Fi22. Ganief and Moori
[8] computed (2, 3, t)-generations of the Janko group J3. More recently, in a
series of articles [1], [2], [3], [4] and [5], the author with others investigated
(2, 3, t)-generations for the sporadic simple groups He, Co1, Co2, Co3 and
Ru. In the present article, we investigate (2, 3, t)-generations for the Suzuki’s
sporadic simple group Suz where t is an odd divisor of |Suz|.

Throughout this paper our notation are standard and taken from [3]. In
particular, let G be a finite group, A, B and C are classes of conjugate elements
of G and if z is a fixed representative of C then ξG(A, B, C) denotes the
structure constant of the group algebra Z(C[G]), which is equal to the number
of ordered pairs (x, y) such that x ∈ A, y ∈ B and xy = z. It is well known
that the number ξG(A, B, C) can be calculated by the formula ξG(A, B, C) =
|A||B|
|C|

∑k
i=1

χi(x)χi(y)χi(z)
χi(1)

where χ1, χ2, ..., χk are irreducible complex characters

of G. Further, let ξ∗G(A, B, C) denotes the number of distict ordered pairs
(x, y) with x ∈ A, y ∈ B, xy = z and G = 〈x, y〉. If there exists conjugacy
classes A, B and C such that ξ∗G(A, B, C) > 0, then we say that the group G
is (A, B, C)−generated and (A, B, C) is called a generating triple for G. If H
is a subgroup of G containing z and K is a conjugacy class of H such that
z ∈ K, then σH(A, B, K) denotes the number of distinct pairs (x, y) such that
x ∈ A, y ∈ B, xy = z and 〈x, y〉 ≤ H .

We compute the values of ξG(A, B, C) and σG(A, B, C) with the aid of
computer algebra system GAP [11]. The ATLAS [6] is a valuable source of
information and we will use its notation for conjugacy classes, maximal sub-
groups, character tables, permutation characters, etc. A general conjugacy
class of elements of order n in G is denoted by nX. For examples, 2B repre-
sents the second conjugacy class of involutions in a group G. The number of
conjugates of a given subgroup H of a group G containing the fixed element z
is given by h = χNG(H)(z), where χNG(H)

is a permutation character of G with
action on the conjugates of H . In most cases, we will compute this value by
using the conjugacy classes of NG(H) and the fusion map of NG(H) into G in
the following theorem.

Theorem 1.1 ([8]) Let G be a finite group and H a subgroup of G con-
taining a fixed element x such that gcd(o(x), [NG(H):H ]) = 1. Then the num-
ber h of conjugates of H containing x is χH(x), where χH is the permutation
character of G with action on the conjugates of H. In particular,

h =
m∑

i=1

|CG(x)|
|CNG(H)(xi)| ,

where x1, . . . , xm are representatives of the NG(H)-conjugacy classes that fuse
to the G-class [x]G.
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Lemma 1.2 ([7]) Let G be a finite centerless group and suppose lX, mY ,
nZ are G-conjugacy classes for which ξ∗(G) = ξ∗G(lX, mY, nZ) < |CG(z)|, z ∈
nZ. Then ξ∗(G) = 0 and therefore G is not (lX, mY, nZ)-generated.

2 Main Results

The Suzuki group Suz is a sporadic simple group of order 448345497600 =
213.37.52.7.11.13. The existence of Suzuki group Suz was first discovered by M.
Suzuki. Later, Leech in 1965 rediscovered the group Suz using the Leech
lattice. It is well known that Suz has exactly 43 conjugacy classes of its
elements and 17 conjugacy classes of its maximal subgroups as listed in the
ATLAS [6]. It has precisely two classes of involutions and three classes of
elements of order 3, namely 2A, 2B, 3A, 3B and 3C as represented in the
ATLAS. In this section we investigate all possible (2, 3, t)-generations for the
Suzuki group Suz, where t is any odd divisor of |Suz|. If the group Suz is
(2, 3, t)-generated then it is well known that 1

2
+ 1

3
+ 1

t
< 1. Thus we only

need to consider the cases that t = 7, 9, 11, 13, 15, 21. Since the cases when t
is prime has already been discussed in [9], so it is enough to investigate the
cases t = 9, 15, 21. Throughout this section we assume that X∈{A,B} and
Y ∈ {A, B, C}.

Lemma 2.1 The Suzuki group Suz is (2X, 3Y, 9Z)-generated for Z ∈ {A, B},
if and only if (X, Y ) = (B, C) .

Proof: The Suzuki group Suz has two classes of elements of order 9 denoted
by 9A and 9B. Thus for (2X, 3Y, 9Z)-generations of the Suzuki group Suz we
need to investigate the following twelve cases.

Case (2X, 3A, 9Z). For triples in this cases, non-generation follows imme-
diately since ξSuz(2X, 3A, 9Z) = 0. Thus the group Suz is not (2A, 3A, 9Z)-,
and (2B, 3A, 9Z)-generated.

Case (2A, 3D, 9Z) where D ∈ {B, C}. In this case we compute the alge-
bra constants as ξSuz(2A, 3B, 9Z) = 18 and ξSuz(2A, 3C, 9Z) = 36. Since
|CSuz(7A)| = 54, we obtain ξSuz(2A, 3D, 9Z) < |CSuz(9Z)|. Now by an ap-
plication of Lemma 2, we conclude that ξ∗Suz(2A, 3D, 9Z) = 0 and hence
the group Suz is not of type (2A, 3B, 9A), (2A, 3B, 9B), (2A, 3C, 9A) and
(2A, 3C, 9B).

Case (2B, 3B, 9Z). The only maximal subgroups of the Suzuki group Suz
with orders divisible by 9 and having non-empty intersection with the classes
2B, 3B and 9Z, up to isomorphism, are 32.U4(3).23, 21+6.U4(2) and 32+4:2(22×
A4)2. By considering the fusions from these maximal subgroups to the group
Suz we obtain σ32.U4(3).23(2B, 3B, 9Z) = 0 = σ32+4:2(22×A4)2(2B, 3B, 9Z). There-
fore, 21+6.U4(2) is the only maximal subgroup that may contain (2B, 3B, 9Z)-
generated subgroup. Let z be a fixed element of order 9 in the group Suz. Now
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an application of Theorem 1 shows that z is contained in precisely three conju-
gates of 21+6.U4(2) and we calculate ξ∗Suz(2B, 3B, 9Z) = ξSuz(2B, 3B, 9Z) −
3 × σ21+6.U4(2)(2B, 3B, 9Z) = 81 − 3(27) = 0. Hence the Suzuki group Suz is
not (2B, 3B, 9A)-, and (2B, 3B, 9B)-generated.

Case (2B, 3C, 9Z). Direct computation in GAP using the character table
of Suz shows that the structure constant ξSuz(2B, 3C, 9Z) = 648. The only
maximal subgroups of Suz with elements of order 9 and having non-trivial in-
tersection with classes 2B, 3C and 9Z, up to isomorphism, are 32.U4(3).23 and
32+4:2(22 × A4)2. An easy computation reveals that σ32.U4(3).23(2B, 3C, 9Z) =
0 = σ32+4:2(22×A4)2(2B, 3C, 9Z). Thus Suz has no proper (2B, 3C, 9Z)-generated
subgroup and it follows that ξ∗Suz(2B, 3C, 9Z) = ξSuz(2B, 3C, 9Z) = 648.
Hence the Suzuki group Suz is (2B, 3C, 9A)-, and (2B, 3C, 9B)-generated. This
completes the proof.

Lemma 2.2 The group Suz is (2X, 3Y, 15Z)-generated for Z ∈ {A, B, C},
if and only if (X, Y, Z) ∈ {(B, B, A), (B, B, B), (B, C, A), (B, C, B), (B, C, C)}.

Proof: Set S = {(A, A, A), (A, A, B), (A, A, C), (B, A, A), (B, A, B), (B, A, C),
(A, B, A), (A, B, B)}. For (X, Y, Z) ∈ S we compute the algebra constants and
in each case we obtain ξSuz(2X, 3Y, 15Z) = 0. Therefore, ξ∗Suz(2X, 3Y, 15Z) =
0 for (X, Y, Z) ∈ S and non-generation of triples in this case follows.

For the triple (2A, 3B, 15C) we calculate ξSuz(2A, 3B, 15C) = 10 and
|CSuz(15C)| = 15. Thus by Lemma 2, the group Suz is not (2A, 3B, 15C)-
generated.

Next we consider the triples (2A, 3C, 15A) and (2A, 3C, 15B). By look-
ing at the fusion map from maximal subgroups into the group Suz we see
that 32+4:2(A4 × 22).2 is the only maximal subgroup of Suz that may contains
(2A, 3C, 15A)-, and (2A, 3C, 15B)-generated proper subgroups. If z is a fixed
element of order 15 in group Suz then z is contained in precisely three con-
jugates copies of 32+4:2(A4 × 22).2. Further since σSuz(2A, 3C, 15A) = 15 =
σSuz(2A, 3C, 15B). and we have ξ∗Suz(2A, 3C, 15AB) = ξSuz(2A, 3C, 15AB)−
3σSuz(2A, 3C, 15AB) = 45 − 3(15) = 0 where 15AB denotes the class 15A or
15B. Thus the Suzuki group Suz is not of type (2A, 3C, 15A) and (2A, 3C, 15B).
Similarly for the triple (2B, 3B, 15C) we show that ξ∗Suz(2B, 3B, 15C) =
ξSuz(2B, 3B, 15C) − 4σ24+6:3A6

(2B, 3B, 15C) = 60 − 4(15) = 0, and non-
generation of the group Suz by the triple (2B, 3B, 15C) follows.

Now, we consider the triple (2B, 3B, 15X). The only maximal subgroup
of the group Suz with order divisible and having non-empty intersection with
classes 2B, 3B, 15A and 15B of Suz is isomorphic to (32:4 × A6).2 but our
computation shows that σSuz(2B, 3B, 15X) = 0. Hence, ξ∗Suz(2B, 3B, 15X) =
ξSuz(2B, 3B, 15X) = 45, showing that (2B, 3B, 15A) and (2B, 3B, 15B) are
not generating triples of the group Suz.
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Next, we consider the remaining triples (2A, 3C, 15C), (2B, 3C, 15X) and
(2B, 3C, 15C). For these triples we use ”standard generators” of the group
Suz given by Wilson in [12]. The group Suz has a 142-dimensional irreducible
representation over GF(2). We generate the group Suz by using this repre-
sentation, Suz = 〈a, b〉 where a and b are 142× 142 matrices over GF(2) with
orders 2 and 3 respectively such that ab has order 13. We see that a ∈ 2B,
b ∈ 3B. We produce c = ((ab)6(ba)2b2ab2(ab)4(ba)3b2abab2)12 ∈ 2A, d =
((ab)5(ba)2b2ab2(ab)4(ba)3b2aba3)5 ∈ 3C such that cd ∈ 15C. Let H = 〈c, d〉
then H is a subgroup of Suz. We compute that σH(2A, 3C, 15C) = 20 and
z is contained in exactly four conjugates of H . Thus, ξ∗Suz(2A, 3C, 15C) =
ξSuz(2A, 3C, 15C) − 4σH(2A, 3C, 15C) = 90 − 4(20) < |CSuz(15C)|, and we
have ξ∗Suz(2A, 3C, 15C) = 0 proving that Suz is not (2A, 3C, 15C)-generated.

Further we produce e = ab, f = eb, g = (ab)3(ba)2b2, h = (dg)5 then
e ∈ 2B, f ∈ 2B, g ∈ 8C, h ∈ 3C and fh ∈ 15A. let K = 〈f, h〉 then
|K| = 251596800 and K ∼= G2(4). By investigating the maximal subgroups of
G2(4) and the fusion map of G2(4) into Suz we obtain ξ∗Suz(2B, 3C, 15A) =
ξSuz(2B, 3C, 15A) − 3σK(2B, 3C, 15A) < |CSuz(15X)|. Similar results also
holds for the triple (2B, 3C, 15B). Hence the group Suz is not (2B, 3C, 15A)−,
and (2B, 3C, 15B)−generated.

Finally in the case of triple (2B, 3C, 15C), we have ξSuz(2B, 3C, 15C) =
1035. Again by using the above discussed standard generators for sporadic
simple group Suz we produce l = ((ab)5(ba)2b2ab2(ab)4(ba)3b2aba3)40 ∈ 3C
such that e ∈ 2B, l ∈ 3C and el ∈ 15C. Let M be a subgroup generated
by e and l then we show that M ≤ Suz and there exists elements of order 5,
7, 11 and 13. Since Suz contains no proper subgroup with order divisible by
5×7×11×13, we have M = Suz and therefore Suz is (2B, 3C, 15C)-generated.
This completes the proof.

Lemma 2.3 The Suzuki group Suz is (2X, 3Y, 21Z)-generated, where Z ∈
{A, B}, if and only if (X, Y ) ∈ {(A, C), (B, B), (B, C)}.

Proof: The conjugacy class (21B)−1 = 21A and results obtained by replacing
one of the classes 21A, 21B by the other are the same. Let 21Z denotes the
class 23A or 23B.

For the triples (2A, 3A, 21Z) and (2B, 3A, 21Z) non-generation of the group
Suz follows immediately since ξSuz(2A, 3A, 21Z) = 0 = ξSuz(2B, 3A, 21Z).

For the triple (2B, 3B, 21Z), the only maximal subgroup of the group Suz
with order divisible 21 that may contains (2B, 3B, 21Z)-generated proper sub-
groups is isomorphic to 32.U4(3).23. However σ32.U4(3).23(2B, 3B, 21Z) = 0 and
this shows that there is no contribution from the maximal subgroup 32.U4(3).23

towards the structure constant ξSuz(2B, 3B, 21Z). Hence ξ∗Suz(2B, 3B, 21Z) =
ξSuz(2B, 3B, 21Z) = 56, proving that Suz is (2B, 3B, 21Z)-generated.
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Next, we consider the triple (2B, 3C, 21Z). The maximal subgroups of Suz
that have non-empty intersection with the Suz-claases 2B, 3C and 21Z are,
up to isomorphism, G2(4), 32.U4(3).23 and A4 ×PSL(3, 4). We calculate that
ξSuz(2B, 3C, 21Z) = 819, σG2(4)(2B, 3C, 21Z) = 336, σ32.U4(3).23

(2B, 3C, 21Z) =
0 and σA4×PSL(3,4)(2B, 3C, 21Z) = 63. Further, a fixed element of order 21 in
Suz is contained in a unique conjugate of each of G2(4) and A4 × PSL(3, 4).
We obtain ξ∗Suz(2B, 3C, 21Z) ≥ ξSuz(2B, 3C, 21Z) − σG2(4)(2B, 3C, 21Z) −
σA4×PSL(3,4)(2B, 3C, 21Z) = 819−336−63 = 420. Thus, Suz is (2B, 3C, 21Z)-
generated.

Finally, we show that the group Suz is (2A, 3C, 21Z)-generated by using
its standard generators as in the previous lemma. The group Suz = 〈a, b〉 such
that a ∈ 2B, b ∈ 3B and o(ab) = 13. By using generators a and b we produce
n = ((ab)6(ba)2b2ab2(ab)4(ba)3b2abab2)12, p = ((ab)5(ba)2b2ab2(ab)4(ba)3b2aba3)5

r = (np)10 then n ∈ 2A, p ∈ 3C, r ∈ 2A and rp ∈ 21A.
Let Q be a subgroup generated by r and p then Q is a subgroup of Suz and

there exists elements of order 5, 7, 11 and 13 in Q. Since no maximal subgroup
of Suz has elements of these orders, we conclude that Q = Suz proving that
(2A, 3C, 21Z) is a generating triple for the group Suz. This completes the
proof.

We now summarize our results in the following theorem:

Theorem 2.4 Let Suz be the Suzuki’s sporadic simple group. Then Suz is
(2, 3, t)-generated, where t is an odd divisor of |Suz| except t = 7.

Proof: The result follows immediately from Lemmas 3, 4, 5, 6 and 7 together
with results from [9] and [13].
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