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Abstract 

 
In this paper, we present a new method for the solution of state space systems 
using single term Haar wavelet series (STHWS) method. The effectiveness of this 
technique is demonstrated by using it to find discrete solutions for any length of 
time t. We begin by showing how the STHWS method applies to a state space 
system of differential equations and some examples are illustrated to prove the 
sufficiency of the method for state systems of differential equations. The method 
is more general and easy to implement for yielding accurate results. 
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1 Introduction 
 

The purpose of this paper is to employ the single term Haar wavelet series 
(STHWS) method to state space systems of differential equations which are often 
encountered in many branches of electrical, electronics, physics, chemical and 
engineering. A variety of methods, exact, approximate and purely numerical are 
available for the solution of state system of differential equations. Most of these 
methods are computationally intensive because they are trial and error in nature, 
or need complicated symbolic computations. Recently, the Haar theory has been 
innovated and applied to various fields in sciences and engineering applications. 
In particular, Haar wavelets have been applied extensively for image processing, 
signal processing in communications and proved to be a useful mathematical tool. 
The pioneer work in system analysis via Haar wavelets was led by Chen Hui 
Hsiao [4] who first derived a Haar operational matrix for integrals of the Haar 
function vector and paved the way for the Haar analysis of the dynamic and 
control systems. 

Chung [3] solved the state space model for linear control systems using the 
Fourier series expansion. He introduced the Fourier operational matrix of 
integration and applied computational algorithm to solve linear equations 
involved in the control problems. Palanisamy [11] introduced a new method for 
the analysis of optimal control linear singular systems through single-term Walsh 
series (STWS). Balachandran and Murugesan [1] applied STWS method for 
stable, unstable, singular and stiff systems. They observed that the method is 
suitable for singular systems. Marshall and Capehart [10] investigated the 
relationship between the solutions of state equations obtained by numerical 

computations of the matrix exponential ATe  and the solutions obtained using 
standard numerical integration techniques. 

Yahia and Barrio [16] obtained a numerical method to simplify state space 
models of thermal systems based on appropriate projection of the thermal field 
with illustrated examples. Kumar et al. [7] derived the state space realizations for 
the output feedback control of linear, high index differential algebraic equation 
systems that are not controllable at infinity and for which the control inputs 
appear explicitly in the underlying algebraic constraints.  

A dynamic output feedback compensator is designed that yields a modified 
system for which the algebraic constraints are independent of the new control 
inputs and for this feedback modified system and then state space realization is 
derived. Feng Li and Peng Yung [5] explained a new method for establishing state 
equations, i.e., the branch replacement and augmented node voltage equations 
approach. They showed that the new approach is simple and easier for 
programming when compared with the conventional way of establishing state 
equations. 

Lepik [9] discussed the numerical solution of ODE and PDE by using Haar 
wavelet techniques. He applied the new technique called the segmentation method 
and checked the applicability and efficiency of the method. Wu et al. [15]  
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proposed preconditioned AOR iterative method for linear systems for solving the 
linear system Ax= b. They presented convergence and comparison results along 
with numerical examples. Blank and Krassnigg [2] studied the matrix algorithms 
for eigen values to solve homogeneous case of bound state equations and the 
solution of linear systems in the inhomogeneous case. The efficiency of matrix 
algorithm was demonstrated by solving the Bethe saltpeter equations. 
Sundarapandian [14] investigated the computational methods for calculating the 
canonical forms for linear control systems, computational methods for 
determining controllability and observability for linear control systems and also 
the computational methods for solving matrix equations. 

Ghomanjani et al. [6] presented the Homotopy perturbation method to find 
the approximate solution of the optimal control of linear systems. They provided 
some examples with approximate solutions and verified the efficiency of the 
proposed method. Koyama et al. [8] analyzed a non-linear filter for non-linear 
/non-Gaussian state space models to approximate the states conditional mean and 
variance together with a Gaussian conditional distribution. They showed the 
estimation ability of the Laplace Gaussian Filter (LGF) by applying it to the 
problem of neural decoding. They also proved that the LGF can deliver superior 
results in a small fraction of the computing time. The numerical solutions of linear 
singular systems and time varying singular systems have been the subject of 
intense research activity in the past few years. In order to determine the numerical 
solutions of singular systems, many efforts have been taken to identify the 
suitable numerical techniques in literature [12-16]. The main aim of this paper is 
to determine the effectiveness of the method STHWS and to show the accuracy by 
applying to solve the state problems on differential equations. The STHWS 
method can be used to obtain both numerical and analytical solutions of state 
differential equations.  
 
 
2 Haar Wavelet and STHWS Technique 
 
2.1 Haar Wavelet Series  

 
The orthogonal set of Haar wavelets  ih t  is a group of square waves with 

magnitude of 1  in some intervals and zeros elsewhere.  
In general, 

    1 2 ,j
nh t h t k              (1) 

where 2 jn k  , Zkjnkj j  ,,,20,0          
Any function y(t), which is square  integrable  in the interval [0,1) can be 

expanded in a Haar series with an infinite number of terms 

          
0

( ),i i
i

y t c h t




  with ,2 ki j             (2) 
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where the Haar coefficients 0,0 2 , [0,1)jj k t     

 
1

0

)(2 dtthtyc i
j

i           (3)  

are determined such that the following integral square error   is minimized    

   
21 1

00

,
m

i i
i

y t c h t dt




 
  

 
 where   Njm j  0,2  

Furthermore 

   
1

1
0

2 , 2 , 0,0 2
2

0,

j j j
j

i il
i l k j k

h t h t dt
i l




         


  

usually, the series expansion in (2) contains an infinite number of terms for a 
smooth y(t). If y(t) is a piecewise constant or may be approximated as a piecewise 
constant, then the sum in (2) will be terminated after m terms, that is  

                       
       

1

0

( ) , [0,1)
m

T
i i m m

i

y t c h t c h t t




    

     0 1 1... ,
T

mmc t c c c                 0 1 1...
T

mmh t h t h t h t     
where “T” indicates transposition, the subscript m in the parentheses denotes their 

dimensions,      
T
m mc h t  denotes the truncated sum. Since the differentiation of 

Haar wavelets results in generalized functions, which in any case should be 
avoided, the integration of Haar wavelets are preferred. Integration of Haar 
Wavelets should be expandable in Haar series  

00

( ) ( )
t

m i i
i

h d C h t 



  

If we truncate to 2nm   terms and use the above vector notation, then 
integration is performed by matrix vector multiplication and expandable formula 
into Haar series with Haar coefficient matrix defined by [4]   

         
1

0

, [0,1)m m m mh d E h t t     

where the m-square matrix H is called the Haar matrix of integration which 
satisfies the following recursive formula [4] 

               
   

1 1

1 1

2 2
2

2 2

k k

K

k k

H H
H

H H

 

 

 
 
   

                        (4) 

Then  

 0 1 2 1( ), ( ), ( ),....... ( )m m n n n m mH h x h x h x h x  ,    
1

i
i i

x
m m


   
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1
( ) ( )

1
( )T

m m m mH H dia r
m


 

   
 

 

1,1, 2,2,4,4,44.... , ..... , 2
2 2 2

T
m m m

r m
    

 

Proof of (4) is found in [11].  

Since  m mH   
and 1

( )m mH 
 contain many zeros.  

Let us define            
T

m m m mh t h t M t
 
and       01 1M t h t 

 

             ,m m m m m mM t c C h t  and   01 1C c  .  

  
2.2 Some nice properties of Haar scaling function 
  

 (i) Orthogonality  

 (a) Scaling functions:     ,, , ,j kx j x k j k Z       

 (b)Wavelets:     ,, , ,j kx j x k j k Z       

  (c)Scaling function and Wavelets:    , 0, ,x j x k j k Z      

 (ii) Compact Support:      0,1Supp x Supp x    . 

 (iii) Symmetry/Anti- Symmetry         
 (a)Haar scaling function is symmetric. 
 (b)Haar wavelet is anti-symmetric   
 (iv) Analytic expressions are available. 

 (v) Haar vanishing moments     0x dx



   

 
2.3 Lemma 
 

The non-recursive expression for Haar product matrix defined as 

   T
m mH t H t  is expressed as    

                     T T
m m m m mH t H t H diag B t H                      

where  mB t  are Block Pulse Functions (BPF) defined to be unity in an unit 

interval of time and zero elsewhere and expressed collectively as 

       0 1 1........,
T

m mB t b t b t b t    where  ib t  are individual BPF. The 

product matrix is the non recursive formulation.  
 
2.3.1 Lemma 
 

When the product of two Haar wavelet matrices operate on Haar expansion 
coefficients of any square integrable function  f t , then it can be expressed as  
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simple Haar expansion via connection coefficients as      .T
m m h h mH t H t c c H t  

where hc  are Haar connection coefficients and  0 1 1, ,.............,
T

h h h h mc c c c 
     

are Haar expansion coefficients of  f t  Using the BPF expansion coefficients 

bc  of  f t , value of Haar connection coefficients hc  can be evaluated non- 

recursively as                                             

  1
h m b mc H diag c H   

The Haar connection coefficients in Equation (2.3) are the non recursive 
formulations. These non-recursive formulations have the advantage of computing 
the Haar connection coefficients directly at the required resolution m, there by 
obviating the need of computing all the matrices at lower resolutions.  

The reported advantage of recursive formulations of avoiding inverse of 
large matrices is of not much relevance today in the period of abundant cheap 
computing capability at-hand and the need for avoiding recursive computer 
implementations in general. 

 
2.3.2 Lemma 
 

  If  0nnu  is a sequence of functions which have equiabsolutely continuous 

integrals,   i.e. given ,0  there is a   such that for  0,1E  ,  m E   

implies  

 n
E

u x dx n   

and if    nu x f x  in measure, then  f x  is integrable and  

                       
1 1

0 0

lim n
n

u x dx f x dx


 
 

 
 
3 Solution of the State Space System via STHWS 
 

Consider a state equation of the following form 
         x t A t x t B t u t                (5) 

with 0)0( xx  , where A(t) is an nn  matrix, B (t) is an rn  matrix,  tx  is 

an n-state vector and  tu  is an r-input vector. With the STHWS approach, the 
given function is expanded into single term Haar wavelet series in the normalized 

interval  1,0 , which corresponds to 
1

0,t
m

   
 by defining  mt , m  being 

any integer. The Equation (5) becomes, in the normalized interval, 
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0
( ) ( )

( ) ( ) ( ) , (0)
A B

x x u x x
m m

       where  1,0          (6) 

Now, be expanding (6) by STHWS interval with  
        00 hDxhCx nn           0hEA n   

       0hFB n           0hHu n   n = 0, 1, 2 .......q.   

 If the  u t  expression on the series of  

                   T
nuuuu )()........,(),()( 21     

                          T
mhhhh  1000 ,........,,                     

    0h  being the first term of single term Haar wavelet series, the following set 

of recursive relations has been obtained for the linear stiff systems with. 
1

1

2n n nC I E K
m


    

,   1
( 1)

2n n nD C x n     

( ) ( 1)n n nx n C x n                            (7) 

 where  1
1n n n nK E x n F H

m
     and n = 1, 2,3,….. the interval number. 

 x n  give the discrete value of the state and nC  give the block pulse values of 

the state to any length of time. The value m can be selected as large enough to 
increase the accuracy of the results. 
 
 
 
4. Numerical Examples  
 
4.1 Example 
 

Let us consider 
 
 

 
 

1 1

2 2

0 1 0

2 3 5

x t x t

x t x t

      
               

,   
1

0
0

x
 

  
 

      

      
The exact solution is   

   2
1 2.5 5 2.5t tx t e e    , 

   2
2 5 5t tx t e e                            (8) 

 
The discrete solution can be calculated using the recursive formula given by 

(7) and the exact solutions for different time t are calculated by using (8). The 
exact and discrete solutions are compared and the error between them is analyzed 
in Table 1 and Table 2. 
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Table 1 Solutions of Example 4.1 by Analytic Solution and STHWS Method 

Time 
Analytic Solution STHWS Method 

 1x t   2x t   1x t   2x t  

0 0.00000000 0.00000000 0.00000000 0.00000000 
0.1 0.02263979 0.43053332 0.02263979 0.43053332 
0.2 0.08214635

 
0.74205354 0.08214634 0.74205353 

0.3 0.16793799
 

0.96003292 0.16793798 0.96003291 
0.4 0.27172218 1.10495541 0.27172216 1.10495539 
0.5 0.38704530 1.19325609 0.38704528 1.19325607 
0.6 0.50892735 1.23808712 0.50892733 1.23808710 
0.7 0.63356589 1.24994170 0.63356585 1.24994167 
0.8 0.75809647 1.23716223 0.75809642 1.23716220 
0.9 0.88039892 1.20635386 0.88039887 1.20635382 
1.0 0.99894100 1.16272079 0.99894095 1.16272074 

 
 

Table 2 Solutions of Example 4.1 by STWS Methods and Error Analysis 

Time 

STWS Method Error Analysis Exact and 
STHWS 

 1x t   2x t   1x t   2x t  

0 0.00000000 0.00000000 0 0 
0.1 0.02263974 0.43053328 0 0 
0.2 0.08214627

 
0.74205348 1e-08 1e-08 

0.3 0.16793790
 

0.96003283 1e-08 1e-08 
0.4 0.27172206 1.10495529 2e-08 2e-08 
0.5 0.38704513 1.19325594 2e-08 2e-08 
0.6 0.50892703 1.23808689 2e-08 2e-08 
0.7 0.63356553 1.24994139 4e-08 3e-08 
0.8 0.75809603 1.23716179 5e-08 3e-08 
0.9 0.88039842 1.20635336 5e-08 4e-08 
1.0 0.99894095 1.16272074 5e-08 5e-08 

 
 
4.2 Example  
 

Let us consider  

      

 
 
 

 
 
 

1 1

2 2

3 3

0 1 0 0

0 0 1 0

6 11 6 2

x t x t

x t x t u

x t x t

      
              
               

    
0

0 0

1

x

 
   
  
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The exact solution is      

   2 3
1 0.5 0.5t t tx t e e e      

   2 3
2 0.5 2 1.5t t tx t e e e       

   2 3
3 0.5 4 4.5t t tx t e e e                           (9) 

The discrete solution can be calculated using the recursive formula given by (7) 
and the exact solutions for different time t are calculated by using (9). The exact 
and discrete solutions are compared and the error between them is analyzed in 
Table 3 and Table4. 
 

Table 3 Solutions of Example 4.2 by Analytic Solution and STHWS Method 

Time 
Analytic Solution STHWS Method 

 1x t   2x t   3x t   1x t   2x t   3x t  

0 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000 1.00000000 
0.25 0.01905301 0.11511110 0.08892724 0.01905301 0.11511110 0.08892724 
0.5 0.04695097 0.09779831 -0.16416671 0.04695096 0.09779830 -0.16416669

0.75 0.06575273 0.05197821 -0.18204085 0.06575271 0.05197819 -0.18204083
1 0.07349797 0.01205024 -0.13335960 0.07349794 0.01205022 -0.13335957

1.25 0.07292627 -0.01435902 -0.07925774 0.07292623 -0.01435900 -0.07925770
1.5 0.06733251 -0.02865444 -0.03759271 0.06733247 -0.02865440 -0.03759268

1.75 0.05931335 -0.03436348 -0.01028873 0.05931331 -0.03436343 -0.01028870
2 0.05059138 -0.03475449 0.00555947 0.05059134 -0.03475444 0.00555942 
 

Table 4 Solutions of Example 4.2 by STWS Method and Error Analysis 

Time 
STWS Method 

Error Analysis Exact 
and STHWS 

 1x t   2x t   3x t   1x t  2x t   3x t  

0 0.00000000 0.00000000 1.00000000 0 0 0 
0.25 0.01905300 0.11511101 0.08892714 0 0 0 
0.5 0.04695086 0.09779820 -0.16416654 1e-08 1e-08 2e-08 

0.75 0.06575265 0.05197800 -0.18204064 2e-08 2e-08 2e-08 
1 0.07349786 0.01205002 -0.13335935 3e-08 2e-08 3e-08 

1.25 0.07292603 -0.01435876 -0.07925742 4e-08 2e-08 4e-08 
1.5 0.06733217 -0.02865420 -0.03759234 4e-08 4e-08 3e-08 

1.75 0.05931301 -0.03436313 -0.01028831 4e-08 4e-08 3e-08 
2 0.05059104 -0.03475414 0.00555904 4e-08 5e-08 5e-08 

 
 

5 Conclusion 
 

The STHWS method is a powerful tool which enables to find analytical 
solution in case of state system of differential equations. The method has been 
successfully applied to state system of differential equations. This method is better 
than numerical methods since it is free from rounding off error and does not  
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require large computer power. In the present paper, the method yields a series 
solution which converges faster than the series obtained by the other methods. 
The numerical results obtained by STHWS method are compared with the 
analytical solutions. It is shown that the results are found to be in good agreement 
with each other. The present method is very convenient as it requires only simple 
computing systems, less computing time and less memory. The STHWS method 
is very simple and direct which provides the solutions for any length of time t. 
Since state systems of differential algebraic equations involve in many scientific 
and engineering applications such as circuit analysis, computer aided design, real 
time simulation of mechanical system, power systems and optimal control 
systems the STHWS method can be applied in solving such systems to provide 
useful numerical solutions. 
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