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Abstract 
 

      In this paper, we construct a new method based on the Homotopy 
analysis method (HAM) linked to Wiener Hermite expansion 
perturbation (WHEP) technique and it is called HAM WHEP and then 
apply it to solve the generalized stochastic nonlinear diffusion 
equation with square or cubic nonlinear losses by obtaining the 
average and variance of the solution process. The aim of applying this 
new technique is to overcome the difficulties arising from the 
Homotopy perturbation method (HPM). Accordingly, applying HPM 
linked to WHEP in [6] may lead to divergence. This disadvantage is 
overcome by using the HAM which guarantees the convergence of the 
series solution. In this direction, this paper revisits and solves the sto- 
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chastic nonlinear diffusion equation in [6] by applying the HAM 
WHEP technique. All test problems reveal the accuracy and the 
convergence of the suggested method. 
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1 Introduction 
 
     The mathematical modeling of many real-life phenomena by reason of 
random perturbation are not possible by ordinary differential equations, and hence 
are often modeled by using stochastic differential equations in order for the model 
to become more realistic [16, 22]. Because such differential equations cannot 
usually be solved analytically, the study of numerical methods is required and 
these must be designed to perform with a certain order of accuracy. Many authors 
investigated the stochastic diffusion equation under different views [5, 21]. 
Recently, M.A. El-Tawil used the Wiener Hermite expansion together with 
Perturbation theory (WHEP) technique to solve a perturbed nonlinear stochastic 
diffusion equation [4]. The technique has been then developed to be applied on 
non-perturbed differential equations using the Homotopy perturbation Method 
linked to Wiener Hermite expansion perturbation technique and it is called 
Homotopy WHEP [3]. However, as mentioned S.J. Liao [19], Homotopy 
perturbation method (HPM) is only a special case of the Homotopy analysis 
method (HAM). The difference is that, the HPM had to use a good enough initial 
guess, but this is not absolutely necessary for the HAM. This is mainly because 
the HAM uses a so-called convergence control parameter   to guarantee the 
convergence of approximation series over a given interval of physical parameters. 
So, the Homotopy analysis method (HAM) is more general. 
   In 2010, M.A. El-Tawil and N.A. Al-Mulla [6] used the HPM linked to WHEP 
technique to solve the stochastic nonlinear diffusion equation with square or cubic 
nonlinear losses, as follows, 
 

  ( ) ( ) ( ) ( );;.;,;,;,
2

2

ωσωεωω tnxtu
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xtu
t
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∂
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=
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∂ ( ) ( ) ( ),,0,0; Lxt ×∞∈      (1) 

   ( ) ( ) ( ) ( )xxuLtutu φ=== ,0,0,0, ,                                                    
 
where the viscosityε  is a deterministic scale for the nonlinear term. The non 
homogeneity term ( )tn.σ  is a time white noise process scaled by σ . 
   However, solving the stochastic nonlinear diffusion equation (1) mentioned  
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above did not consider the influence of using the HPM on the convergence of the 
series solution. In fact, there is absolutely no guarantee that perturbation methods 
result in a convergent solution. Accordingly, using the HPM linked to WHEP in 
[6] may lead to divergence. This disadvantage is overcome by using the 
Homotopy analysis method (HAM) linked to WHEP (HAM WHEP) technique. 
   In this direction, this paper revisits and solves the stochastic nonlinear 
diffusion equation in [6] by applying the HAM WHEP technique. All test 
problems reveal the accuracy and convergence of the suggested new method. 
   The main aim of this paper is to construct and develop a new approach based 
on the Homotopy analysis method introduced in WHEP (HAM WHEP) technique 
and then apply it for solving the diffusion equation under square and cubic 
nonlinearities and stochastic non-homogenous on a class of differential equations. 
Some statistical moments are obtained, mainly the ensemble average and variance 
of the solution process with corresponding figures. 
 
   In this study, for our aim we consider the generalized stochastic nonlinear 
diffusion equation with square or cubic losses 2uε or 3uε of interest is of the 
following form, 
 

   ( ) ( ) ( ) ( ) ( );;.;,;,;,
2
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ωσωεωω tntxtu
x

xtu
t
xtu n +−

∂
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=
∂

∂  ( ) ( ) ( ),,0,0; Lxt ×∞∈   (2)                

   ( ) ( ) ( ) ( )xxuLtutu φ=== ,0,0,0, ,                                                     
 
where  is a deterministic scale for the nonlinear term and 3,2=n . ( )P,,σω Ω∈  
is a triple probability space with  as the sample space, σ  is a σ -algebra on 
events in Ω  and P is a probability measure. The physical meaning of the 
nonlinear term is that there exists a loss proportional to 2u  or to 3u . The non 
homogeneity term ( ) ( )ωσ ,. tnt  is a time white noise process scaled by ( )tσ : 
( )ωσ ;t  is a continuous time part of the random forcing. 

 
 
2 The Wiener Hermite Expansion and Perturbation Technique 
 
       The application of the Wiener Hermite expansion and perturbation (WHEP) 
technique [7, 8, 9, 10, 11, 14, 23] aims at finding a truncated series solution to the 
stochastic solution process of stochastic differential equations. The truncated 
series is composed of two major parts; the first is the Gaussian part which consists 
of the first two terms, while the rest of the series constitute the non-Gaussian part. 
In nonlinear cases, there exist always difficulties of solving the resultant set of 
deterministic integro-differential equations got from the applications of a set of 
comprehensive averages on the stochastic integro-differential equation obtained 
after the direct application of WHE. 
Due to the completeness of the wiener Hermite set, any random function ( )ω;tG   
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can be expanded as follows, 
 
  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ..,,;; 2121
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21
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dtdtttHtttGdttHttGtGtG  (3)     

Where the first two terms are the Gaussian part of ( )ω;tG . The rest of the terms in 
the expansion represent the non-Gaussian part of ( )ω;tG .  
The average of ( )ω;tG  is 

 ( ) ( ) ( )tGtEGG
0; == ωμ  with ( ) ( ) ( ) ( ) ( ) ( ) ( ),.,0 212

1
1

1
1

1 tttHtEHtEH −== δ   (4) 

where the time white noise process is ( ) ( ) ( )1
1

1 tHtn = .  
The covariance of ( )ω;tG  is 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )τμωτμωωτω GG GttGEGtGCov −−= ;;;,;  
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The variance of ( )ω;tG  is 
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   The WHEP technique can be applied on linear or nonlinear perturbed systems 
described by ordinary or partial differential equations. The solution can be 
modified in the sense that additional parts of the Wiener Hermite expansion can 
be taken into considerations and the required order of approximations can always 
be made depending on the computing tool. 
The first order solution can be obtained when considering only the Gaussian part 
of the solution process ( )ω;tu  can be expanded as, 
 
                     ( ) ( ) ( ) ( ) ( ) ( ) ( ) 11

1
1

10 ;; dttHttututu ∫
ℜ

+=ω .            (7) 

   The WHEP technique uses the following expansion for its deterministic 
kernels, 
                     ( ) ( ) ( ) ( ) ( ) ,...1,0...,2

2
10 =+++= iuuutu iiii εε           (8) 

 
3 Basic idea of Homotopy Analysis Method 
 
   The Homotopy analysis method (HAM) initially proposed by S.J. Liao in his  
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Ph.D. thesis [17]. A systematic and clear is exposition on the HAM is given in 
[18]. In recent years, this method has been successfully employed to solve many 
types of nonlinear problems in science and engineering [1, 2, 13, 15, 20]. HAM 
contains a certain auxiliary parameterh , which provides with a simple way to 
adjust and control the convergence region and rate of convergence of the series 
solution. Moreover, by means of the so-called h -curve, a valid region of h  can be 
studied to gain a convergent series solution. It is important to note that, one has 
great freedom to choose auxiliary objects such as h  and L in HAM. Thus, through 
HAM, explicit analytic solutions of nonlinear problems are possible. 
To describe the basic idea of the HAM, we consider the following differential 
equation, 
  
                            ( )[ ] ,0, =Ν txu                         (9) 
 
where Ν  is a nonlinear operator, x  and t  denotes the independent variables, 
( )txu ,  is an unknown function, respectively. By means of generalizing the 

traditional Homotopy method, S.J. Liao [17] construct the so-called zero order 
deformation equation, 
 
              ( ) ( ) ( )[ ] ( ) ( )[ ],;,,,;,£1 0 qtxNtxHqtxuqtxq ψψ h=−−        (10) 
 
where [ ]1,0∈q  is an embedding parameter, h  is the nonzero auxiliary parameter 
and ( )txH ,  is the nonzero auxiliary function, £ is an auxiliary linear operator, 

( )txu ,0  is an initial guess of ( )txu ,  and ( )qtx ;,ψ  is an unknown function. 
Obviously, when 0=q  and 1=q  both, 
 
                  ( ) ( )txutx ,0;, 0=ψ  and ( ) ( ),,1;, txutx =ψ            (11) 
 
respectively hold. Thus as q  increases from 0 to 1, the solution ( )qtx ;,ψ  varies 
from the initial guess ( )txu ,0  to the solution ( )txu , . 
Expanding ( )qtx ;,ψ  in Taylor series with respect to q , one has, 
 
                  ( ) ( ) ( ) ,,,;,

10
m

m m qtxutxuqtx ∑∞
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+=ψ               (12) 

where, 

                     ( ) ( ) .;,
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m q
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m
txu ψ                   (13) 

 
If the auxiliary linear operator, the initial guess, the auxiliary parameter h  and 
the auxiliary function are so properly chosen, then the series (12) converges at 

1=q  and, 
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which is the solution of the original equation, as proved by S.J. Liao [30]. As  
( ) 1, =txH  and ,1−=h  Equation (10) becomes, 

 
              ( ) ( ) ( )[ ] ( )[ ] ,0;,,;,£1 0 =+−− qtxqNtxuqtxq ψψ            (15) 
 
which is used mostly in the Homotopy perturbation method (HPM) proving that 
the HPM is a special case of the Homotopy analysis method (HAM). Comparison 
between the HAM and HPM can be found in [12, 19]. 
According to equation (13), the governing equation can be deduced from the zero 
order deformation equation (10). Define the vector, 
 
                   ( ) ( ) ( ){ }.,,...,,,, 10 txutxutxuu nn =                  (16) 
 
Differentiating (10) m  times with respect to the embedding parameter q  and 
then setting 0=q  and finally dividing them by !m , we have the so-called mth 
order deformation equations,   
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For any given nonlinear operator N and the term ( )1−mm uR  can be easily expressed 
by equation (19). So we can obtain ( ) ( ),...,,, 21 txutxu by means of solving the 
linear high order deformation equation (17). The mth order approximation of 
( )txu ,  is given by, 

 
                       ( ) ( )∑∞

=
=

0
,,,

m m txutxu                      (20) 
 
   The foregoing approximate solution consist of  which is a cornerstone of 
the HAM in determining convergence of series solution rapidly. We may adjust  
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and control the convergence region and rate of the solution series (20) by means 
of the auxiliary parameter . To obtain valid region of , we first plot the so 
called -curves of ( )txu , , ( )

α=xt txu , where [ ]ba,∈α  and so on. According to 
these h -curves, it is easy to discover the valid region of h , which corresponds to 
the line segments nearly parallel to the horizontal axis. 
    
   Theorem 3.1 According to S.J. Liao [18], as long as the series (20) converges 
to ( )txu , , where ( )txum ,  is governed by the high-order deformation equation (17) 
under the definitions (18) and (19), it is must be the exact solution of equation (9). 
 
 
4 Solving the Langevin equation using some techniques: HAM, 
  WHEP and HAM WHEP technique 

 
   This section deals with the Langevin equation by using three techniques, in 
particular: WHEP, HAM and HAM WHEP technique. 
We consider the Langevin equation for 3,2=n , 
 

               
( ) ( ) ( ) ( ) ( )

( ) ,10

,,0,;.;;

=
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u

ttnttu
t

tu n ωσωεω
            (21) 

 
where  ( )ω;tn  is the time white noise process, ( )tσ  is a continuous function and 
ε  is a constant. 
 
 
4.1 Using WHEP technique for solving the Langevin equation 
 
At 2=n , Eq.(21) recasts as, 
 

               
( ) ( ) ( ) ( ) ( )

( ) ,10
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ttnttu
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where ( ).tσ  is the time white noise process scled by :  is a 
continuous function and  is a constant. 
Applying the WHEP technique on Eq. (22) and taking the necessary averages, we 
get the following equations, 
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Where, 
 

                 ( ) ( ) ( ) ( ) ( ) ( ) ( ) .;; 11
1

0

10 dttHttututu
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   Applying the perturbation technique, the deterministic kernels can be 
represented in first order approximation as, 
 
                      ( ) ( ) ( ) ( ) ( ) ( )tututu 0

1
0

0
0 ε+= ,                    (26) 

 
                    ( ) ( ) ( ) ( ) ( ) ( )1

1
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1
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The solution is to evaluate ( )0

0u  and ( )1
0u  and then computing the other two 

kernels independently. The final results of the first order first correction mean and 
variance respectively are, 
 
                         ( ) ( ) ( )tutu

0=μ ,                         (28) 
 

                       ( ) ( ) ( )[ ] .; 10

2
1

12 dtttut
t
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4.2 Using HAM for solving the Langevin equation 
 
In order to solve Eq. (22) by the HAM, we choose the initial approximation, 
 
                             ( ) ,10 =tu                           (30) 
 
and the auxiliary linear operator, 
 

                      ( )[ ] ( ) ,;;£
t

qtqt
∂

∂
=

ψψ                        (31) 

with the property, 
 
                              [ ] ,0£ 1 =c                          (32) 
 
where 1c  is an integral constant. Furthermore, Eq. (22) suggests that we define 
the nonlinear, 
 



Solution process of a class of differential equation                     175 
 
 
 

                   ( )[ ] ( ) ( ).; 2 tnt
t

qtN σεψψψ −+
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Using the above definition, we construct the zero order deformation equation 
 
               ( ) ( ) ( )[ ] ( ) ( )[ ]qtNtHqtuqtq ;;£1 0 ψψ h=−− .             (34) 
 
As ( ) 1=tH , Eq. (34) becomes, 
 
                  ( ) ( ) ( )[ ] ( )[ ]qtNqtuqtq ;;£1 0 ψψ h=−− ,              (35) 
 
and the so-called mth order deformation equation, 

                      ( ) ( )[ ] ( )11£ −− =− mmmmm uRtutu hχ ,              (36) 
 
with the initial condition, 
 
                            ( ) 00 =mu ,                          (37) 
 
where 
 
             ( ) ( ) ( ) ( ) ( ) ( )tntuuuR mmtmmm σχε −−+= −−− 12

111 .           (38) 
 
Now, the solution of the so-called mth order deformation equation Eq. (36) for 

1≥m  becomes, 
 

                   ( ) ( ) ( ) 10
11 cduRtutu

t
mmmmm ++= ∫ −− τχ h ,            (39) 

 
where the integration constant 1c is determined by the initial condition (37). 
Taking the necessary averages with ( ) tt =σ , we get the following results when 
getting both the fourth order approximation for the mean and the variance 
respectively, 
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The proper value of h  which ensures that the approximation solution is 
convergent is found from the h -curves obtained  both from the fourth order HAM 
approximation of the mean and the variance shown in Figures 1 and 2 
respectively. The valid region of h  corresponds to the line segments nearly 
parallel to the horizontal axis. 
 
 

 

 
 

Figure 1: The h -curve of the mean based on the fourth order HAM 
approximation 

 
 
 

 
 

Figure 2: The -curve of the variance based on the fourth order HAM 
approximation 
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4.3 Using HAM WHEP technique for solving the Langevin 
      equation 
                                                     
      Applying the WHEP technique on the proposed example of the Eq. (22), 
and taking the necessary averages, we get the following equations, 
 

               
( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 1
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; dtttutu
t
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1
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∂
∂

δσε .             (43) 

  
In order to solve the Eqs. (42) and (43) by the HAM, we choose the initial  
approximations 
 

                     ( ) ( ) ( ) ( ) tttutu == 1
0

0
0

0 ;,1 .                     (44) 
 
Applying the same approach as in subsection (4.2) with ( ) tt =σ . The proper value 
of h  is found from the h -curves obtained from the sixth order HAM WHEP 
approximation of the mean and the fifth order HAM WHEP approximation of the 
variance shown in Figures 3 and 4 respectively. The valid region of h  
corresponds to the line segments nearly parallel to the horizontal axis.  
 
 

 
    

Figure 3: The h -curve of the mean obtained from the sixth order HAM WHEP 
approximation 
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 Figure 4: The h -curve of the variance obtained from the fifth order HAM 
WHEP approximation 

 
 

Now, considering the case 3=n , and proceeding in a similar manner as in 
subsection 4.3, the results are obtained from the h -curves both of the fourth order 
HAM WHEP approximation of the mean and the variance shown in Figures 5 and 
6 respectively. The valid region of h  corresponds to the line segments nearly 
parallel to the horizontal axis.  
 
 
 

 
 

Figure 5: The h -curve of the mean obtained from the fourth order HAM WHEP 
approximation 
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Figure 6: The h -curve of the variance obtained from the fourth order HAM 
WHEP approximation 

 
    Concerning only a first order approximation, it can be noticed both the HAM 
and HAM WHEP techniques give near results. The HAM WHEP technique seems 
an efficient one because of its correction possibilities. 
      
 
 
5. Solving the Boundary value problem using Homotopy Analysis    
    Wiener Hermite Expansion and Perturbation technique 
 
    In the present paper, for our aim, the HAM WHEP technique is applied to 
solve the generalized stochastic nonlinear diffusion equation with square or cubic 
losses, 2uε or 3uε  and it is shown that how one can control the convergence of 
approximate solution and make the convergence fast. 
    
At 2=n , the equation (2) of interest in this paper becomes, 
 

 ( ) ( ) ( ) ( ) ( );;.;,;,;, 2
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ωσωεωω tntxtu
x
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t
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∂

∂
=

∂
∂  ( ) ( ) ( ),,0,0; Lxt ×∞∈    (45) 

  ( ) ( ) ( ) ( )xxuLtutu ϕ=== ,0,0,0, ,                                 
 
where ( ).tσ ( )ω;tn  is the time white noise process scaled by ( )tσ : ( )tσ  is the 
continuous time part of the random forcing.  
 
Applying the WHEP technique on the proposed equation in (45), and taking the 
necessary averages, we get the following equations, 
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In order to solve the Equations (46) and (47) by the HAM, we choose the initial 
approximations, 
 
                   ( ) ( ) ( ) ( ) ( ) ,;,,, 1
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and the auxiliary linear operators, 
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with the properties, 
 
                         [ ] [ ] 0££ 2211 == cc ,                      (50) 
where 1c  and 2c  are the integral constants. 
Equations (46) and (47) suggests that we define the nonlinear operators, 
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Using the above definition we construct the zero order deformation equation with 
( ) ,1, =xtH we have, 
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and the so-called mth order deformation equations for 1≥m are, 
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with the initial conditions, 
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mm

xx
m

t
mmm −−−+−=⎟

⎠
⎞⎜

⎝
⎛ −−−−−

δσχε . (59) 

 
The solutions of the so-called mth order deformation equation (55) and (56) are, 
 

             ( ) ( ) ( ) ( ) ( )
,, 10

1,0,01,0,0 cduRuxtu
t mmm

m
m +⎟

⎠
⎞⎜

⎝
⎛+= ∫

−− τχ h          (60) 

 

            ( ) ( ) ( ) ( ) ( )
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1,1,11,1,1 , cduRuxtu
t mmm

m
m +⎟

⎠
⎞⎜

⎝
⎛+= ∫

−− τχ h .         (61) 

We obtain the results for ( ) tt =σ  and ( ) xx =ϕ , 
 

               ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 2

4
1,0

4
, txtxtu h , ( ) ( ) ,, 21,1 txxtu h=            (62)             

and so on. 
 
  The proper value of h  which ensures that the approximation solution is converge 
is found from the h -curves obtained both from the fifth order HAM WHEP 
technique approximation of the mean and the variance shown in Figures 7 and 8 
respectively. As mentioned S.J. Liao [18], the valid region of  h  corresponds to 
the line segments nearly parallel to the horizontal axis. 
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Figure 7: The h -curve of the mean obtained from the fifth order HAM WHEP 
approximation. 

 
 

 
 

Figure 8: The h -curve of the variance obtained from the fifth order HAM WHEP 
approximation. 

 
   Now, considering the case 3=n , the equation (2) of interest in this paper 
becomes, 
 

( ) ( ) ( ) ( ) ( );;.;,;,;, 3
2

2

ωσωεωω tntxtu
x

xtu
t
xtu

+−
∂

∂
=

∂
∂  ( ) ( ) ( ),,0,0; Lxt ×∞∈  

    ( ) ( ) ( ) ( )xxuLtutu ϕ=== ,0,0,0, ,                                (63) 
 
where ( ) ( )ωσ ;. tnt  is the time white noise process scaled by ( )tσ : ( )tσ  is the 
continuous time part of the random forcing. 
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   Proceeding in the same manner as previously. The proper value of h  which 
ensures that the approximation solution is convergent is found from the h -curves 
obtained both from the fourth order HAM WHEP approximation of the mean and 
the variance shown in Figures 9 and 10 respectively. The valid region of h  
corresponds to the line segments nearly parallel to the horizontal axis. 
 
 

 
 

Figure 9: The h -curve of the mean obtained from the fourth order HAM WHEP 
approximation 

 
 

 
 

Figure 10: The h -curve of the variance obtained from the fourth order HAM 
WHEP approximation. 

 
 

6 Conclusion 
 
In this paper, the HAM linked to WHEP (HAM WHEP) technique has been 
applied to solve the generalized stochastic nonlinear diffusion equation with  
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square or cubic nonlinear losses by obtaining the average and variance of the 
solution process. It has the advantage to overcome the difficulties arising from the 
Homotopy perturbation method (HPM). In fact, The HPM may lead to divergence 
because the rate of convergence of the HPM method depends greatly on the initial 
approximation which is considered as the main disadvantage of the HPM. The 
HAM WHEP contains the auxiliary parameter h , which provides us with a 
convenient way to adjust and control the convergence region of the series 
solution. All test problems reveal the accuracy and convergence of the suggested 
method. 
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