
Mälardalen University Press Licentiate Theses
No. 152

TOWARDS A GUIDELINE FOR
REFACTORING OF EMBEDDED SYSTEMS

Sara Dersten

2012

School of Innovation, Design and Engineering

Copyright © Sara Dersten, 2012
ISBN 978-91-7485-070-3
ISSN 1651-9256
Printed by Mälardalen University, Västerås, Sweden

Abstract

The electronics in automotive systems give great possibilities. It has contrib-
uted to environmental improvements through reduced emissions and reduced
fuel consumption, safety, driver assistance, and quality through better diag-
nostic capabilities.

Automotive systems are today distributed embedded systems that consist
of several nodes that communicate with each other. The increasing possibili-
ties have led to a situation where functions that used to be stand-alone, are
today dependent on several inter-connected systems which all contribute to
the desired functionality. This has increased the costs and the complexity to
deal with the systems.

The automotive industry is adopting a new open software architecture,
called AUTOSAR, that is intended to reduce the complexity. AUTOSAR
also gives possibilities for coping with large product ranges and for compo-
nent sharing. The introduction of AUTOSAR is an example of an architec-
ture change without modifying the external functionality. We have chosen to
call such changes system refactoring.

However, if the introduction of AUTOSAR is not successfully performed,
there are risks for delayed development projects, which are costly for the
automotive companies. Unfortunately, existing engineering standards and
literature focus mostly on new product development and less on system re-
factoring, and this gap needs to be filled. The goal of this research is to pro-
vide guidelines for refactoring, which provides support throughout the com-
plete process of system architects in efforts to refactor the system.

This thesis identifies the characteristics of refactoring processes. This is
done by empirical studies of the drivers behind refactoring, the effects we
can expect from refactoring, and the process activities and characteristics.
The result can be used to create guidelines for improving the work of refac-
toring.

Acknowledgements

Starting doctoral studies was a type of life refactoring. To successfully per-
form this task, I needed support. There are several persons that have contrib-
uted to this support, consciously or unconsciously.

My supervisor, Jakob Axelsson, has supported me during the entire pro-
cess. He helped me structuring my research work and finding relevant ques-
tions and, still, he always let me chose my own ways. My co-supervisor,
Joakim Fröberg, helped me get started, both with practicalities and with the
study plans. For a short time, I had the privilege to have Rikard Land, as a
second co-supervisor, who was a co-author of my first and best written pa-
per. I have at Volvo CE the pleasure to work with Nils-Erik Bånkestad. He
has during my research studies, especially in the last part, supported me with
interesting ideas for research. The rest of my colleagues, at the E/E system
architecture department, have been very understanding when my focus has
been on my studies instead of current department issues. Several persons at
the research community have been significant for me. It was Christer Nor-
ström that convinced me to start the doctoral studies. Before I accepted, I
consulted Johan Kraft to find out more. I had many laughs with my former
roommates, Rafia Inam and Saad Mubeen. Later I got the opportunity to
share room with Stefan Cedergren, Peter Wallin, Håkan Gustavsson, Anton
Jansen, Anders Wall, and Stig Larsson, who all gave me more insight into
the business aspects of electronics. Daniel Sundmark gave me valuable
comments on my thesis proposal. I learned a lot when assisting Gordana
Dodig-Crnkovic, Jan Gustafsson and Daniel Flemström in courses. All prac-
tical problems were smoothly solved by Monica Wasell and Carola Rytters-
son. In fact, all doctoral students and personnel at Mälardalen University are
very nice. Unfortunately, there is limited space to mention everyone, since I
want this section to fit in one page.

My dear friends, Jasmin and Isabell, have been very understanding when I
have been occupied writing papers or travelling to conferences.

My family, has shown great patience and made lots of sacrifices, so I fi-
nally could complete this task, especially my nearest and dearest, Christian
and Ylva.

Thank you all for supporting me.

List of Papers

This thesis is based on the following papers.

Paper A Dersten, S., Fröberg, J., Axelsson, J., Land, R. (2010) Analy-
sis of the Business Effects of Software Architecture Refactor-
ing in an Automotive Development Organization. Proceed-
ings of the 36th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA) 2010, 269–278

Paper B Dersten, S., Axelsson, J., Fröberg, J. (2011) Effect Analysis
of the Introduction of AUTOSAR. A Systematic Literature
Review. Proceedings of the 37th EUROMICRO Conference
on Software Engineering and Advanced Applications (SEAA)
2011, 239–246

Paper C Dersten, S., Axelsson, J., Fröberg, J. (2012) An empirical
study of refactoring decisions in embedded software and sys-
tems. Proceedings of the Conference on Systems Engineering
Research (CSER) 2012, 8: 279–284

Paper D Dersten, S., Axelsson, J., Fröberg, J. (2012) Characteristics of
a System Refactoring Process in Embedded Systems Devel-
opment. Submitted to the 7th Workshop on SHAring and Re-
using architectural Knowledge (SHARK) 2012

Contents

1. Introduction ... 1
1.1 Complexity in automotive systems ... 2
1.2 Automotive development .. 2
1.3 System architecture ... 4
1.4 Thesis outline .. 6

2. Research scope .. 7
2.1 Problem formulation ... 7
2.2 Research questions .. 9
2.3 Research method ... 9

3. Results ... 19
3.1 Which effects can be expected from a system refactoring? 19
3.2 What are the drivers of system refactoring decisions? 25
3.3 What would a guideline need to contain to support system
refactoring?... 28
3.4 Discussion ... 33

4. Related work .. 41
4.1 Drivers of refactoring .. 41
4.2 Effects from refactoring .. 42
4.3 The system architecture process and the role of the architect 45
4.4 Decision-making ... 46

5. Conclusion ... 51
5.1 Contribution .. 51
5.2 Future work ... 52

References ... 53
Paper A ... 59
Paper B .. 79
Paper C .. 99
Paper D ... 107

Abbreviations

ABS Antilock brake system
AHP Analytic hierarchy process
ALMA Architecture level modifiability analysis
ATAM Architecture trade-off analysis method
AUTOSAR Automotive open system architecture
AYC Active yaw control
CBAM Cost benefit analysis method
COTS Commercial off the shelf
EBD Electronic brake force distribution
ECU Electronic control unit
EMC Electromagnetic compatibility
ESC Electronic stability control
ESP Electronic stability program
OEM Original equipment manufacturer
ROI Return on investment
SAAM Software analysis architecture method
SW-C Software component
TCS Traction control system
VFB Virtual functional bus

 1

1. Introduction

Automotive systems are large distributed systems that consist of several
inter-connected electronic control units. In automotive systems the com-
plexity has increased to a level where it becomes very hard to adapt to new
technologies in order to fulfill new customer, environmental and legal re-
quirements. One reason is that the electronics system constitutes a more im-
portant part of the functionality and the business around it. The functions
that before were managed by stand-alone systems, are today dependent on
several inter-connected systems which all contribute to the desired function-
ality. Therefore, a system architecture, i.e. a structure for the system and its
components, is needed to ensure that desired requirements are met.

Lately there have been several major recalls of vehicles from different au-
tomotive producers [1-3]. The increasing complexity of the automotive elec-
tronic systems is blamed for those incidents. To deal with the problem manu-
facturers and automotive suppliers together developed an open standardized
architecture for automotive systems. The result is a common software archi-
tecture for automotive systems called AUTOSAR. The automotive industry
hopes that AUTOSAR will reduce this complexity.

Companies world-wide are now introducing AUTOSAR into their prod-
ucts. This means that the architecture is changed, without any changes in
product functionality that is visible to the user. We have chosen to call such
changes system refactoring.

However, introducing AUTOSAR may not be as easy as the companies
think. It will give effects, not only in the electronics systems, but also across
the company organization. Production systems have to be adjusted; the de-
velopment environment needs to be updated; and processes and responsibili-
ties have to be developed. If these factors are not set in time, the develop-
ment projects that are going to use the new software architecture may be
delayed.

A missed deadline is very costly and the automotive companies want to
avoid this. Therefore, there is a need for the companies to prepare them-
selves in time before the introduction of AUTOSAR. Current practices and
the processes described in the systems engineering standards are mostly con-
centrating on new product development and less on system refactoring. We
think there is a gap here that needs to be filled. Therefore we aim to provide
guidelines for system refactoring to be used in the architecture process. The

 2

goal of the research behind this licentiate thesis is to acquire the required
knowledge for constructing these guidelines.

1.1 Complexity in automotive systems
The complexity in automotive systems can be demonstrated by the Electron-
ic Stability Control (ESC), also referred to as Electronic Stability Program
(ESP). It improves safety by recognizing unstable driving conditions and
taking appropriate actions. To prevent over-steering and under-steering,
braking is applied to the vehicle wheels. ESC is common in all types of ve-
hicles, including cars, trucks and busses [4, 5]. ESC relies on several other
vehicle systems: Antilock Brake System (ABS), a safety system which pre-
vents the wheels from locking up; Electronic Brake force Distribution
(EBD), a system that varies the braking force applied on each wheel; Trac-
tion Control System (TCS), a system which regulates the power supplied to
the wheels; and Active Yaw Control (AYC), a system that uses an active
differential to transfer torque to the wheels that have the best grip on the
road. Traditionally each of these systems consists of at least one electronic
control unit (ECU) which together with connected sensors and actuators
handles system functionality. Nowadays, modern systems must be able to
cooperate across different domains. These interconnections add dependen-
cies in the system, like temporal dependencies or state dependencies of con-
trol units [6].

1.2 Automotive development
The development of automotive systems usually uses a product-line ap-
proach and component-based development. Introducing these methodologies
in a traditional system includes refactoring since the system has to be adjust-
ed to fit a new component model or product platform. For that reason, we
have based our research and literature studies on the introduction of these
development approaches. We will here give a brief background to them.

1.2.1 Component-based development
In component based development software systems are built from existing
components. This means that components can be reused and shared between
product releases and product variants. The advantages are reductions of
time-to-market, development cost and maintenance cost [7, 8]. Since a re-
used component is already used and tested in different contexts, there might
also be a possibility that the component is more reliable than a newly devel-
oped component. The components used in component based development

 3

can be developed in-house, bought from an external subsystem developer or
as off-the-shelf components (COTS).

1.2.2 Component-based development in automotive systems
using AUTOSAR
AUTOSAR (AUTomotive Open System Architecture) [9] is a component-
based model for automotive systems. It provides a common software infra-
structure for automotive systems based on standardized interfaces and com-
ponents. Key features are modularity, configurability, standardized interfac-
es and a runtime environment. A layered software platform facilitates the
achievement of the technical goals modularity, scalability, transferability and
reusability of components. Automotive manufacturers and suppliers hope
that AUTOSAR will help managing complexity.

In the AUTOSAR architecture, each ECU incorporates a basic software
component which includes infrastructural services such as operating system
functionality, vehicle network communication, memory services, diagnostics
and ECU state management. The basic software component is built as a lay-
ered structure where each layer is abstracted from the lower layers and hence
independent of hardware implementations. The application layer is located
on top of the basic software. An application is built up by one or several
AUTOSAR software components (SW-Cs) that are located on one ECU or
distributed on several ECUs. The AUTOSAR SW-C contains parts of the
application functionality and is atomic, meaning that it only can be located
on one ECU. The AUTOSAR SW-Cs can also be responsible for handling of
specific sensors or actuators.

The AUTOSAR SW-Cs are communicating through the Virtual function-
al bus (VFB), a middleware responsible for mapping of communication mes-
sages. Usually the address and source information in the communication
messages are specified by the sending application component. In the AU-
TOSAR methodology the address and source information of all communica-
tion messages are configured in system development. During run-time this
information is mapped to each message by the VFB. This methodology re-
quires specific development tools to help OEMs (Original Equipment Manu-
facturers), and suppliers to design and map SW-Cs, ECUs, networks, sensors
and actuators.

1.2.3 Product-line development
Another example of a typical system refactoring is the introduction of prod-
uct-lines. The idea with product-lines is to reuse the same basis, a platform,
in several members of a product family. The platform methodology is nor-
mally structured as layers, as components or as a combination of these. On

 4

top of this platform each specific product adds its own core functionality or
features. In this way, one can concentrate on specific properties of each
product member instead of inventing the same things over and over again.
One example is construction equipment. Both an articulated hauler and a
wheel loader need power management and communication between elec-
tronic control units. However, they differ a lot in core functionality. The
wheel loader needs to have complicated control for lifting its arms when the
articulated hauler might have advanced suspension systems.

The reason why product-lines are so beneficial are not only due to re-use
of software code [7]. Product-line approaches save time during the require-
ment phase since almost all requirements can be reused between products
and releases. Also many architectural problems are already solved and the
system architects can concentrate on core functionality. Other aspects such
as project planning might also be easier when less functionality has to be
developed in each project. One important factor for a successful utilization
of a product-line approach is variability management [10]. However, there
might be several issues related to the introduction [11]. The use of product-
line architecture requires increased knowledge by the engineers. Other prob-
lems are conflicting quality requirements of components in different context
or in different products.

1.3 System architecture
Refactoring of the system and its infrastructure involves selection of tech-
nology solutions and leads to compromises between desired, but conflicting,
characteristics; activities which typically involve system architects. Usually,
the general system architecture process focuses on the early phases of system
development, when structural and conceptual decisions are made for a new
product. The process of refactoring includes the same types of decisions,
even though there are significant differences. In a typical scenario for refac-
toring, an architecture that supports multiple products and product genera-
tions already exists, when a revision is needed to meet future demands. This
architecture must be improved to meet the desired properties. As both a gen-
eral architecture process and a refactoring need to consider system proper-
ties, we have chosen to use the general system architecture process as a start-
ing point for studying refactoring. This section will briefly explain what
system architecture is.

 5

1.3.1 Definition of system architecture
There are many definitions of system architecture. In this thesis the IEEE
definition [12] is used:

“The fundamental organization of a system embodied in its compo-
nents, their relationships to each other, and to the environment, and
the principles guiding its design and evolution.”

In embedded systems this relates both to software and hardware. It might be
how the software is organized and allocated to the hardware, choice of
communication protocol and physical links, but also which development
environment to use.

1.3.2 System architecture as Lego blocks
System architecture can be exemplified by building a Lego construction.
First we have to define the structure of the Lego blocks, or the components.
We must decide how the blocks fit together, e.g. the bulges on top the
blocks, and their dimensions, e.g. length and width. Second, we have to de-
fine the relation between the blocks, or components. We may decide that a
yellow Lego block always must be placed on a red block. Third, we must
decide the environment to build our construction on. In the Lego case, we
might choose a Lego plate where we attach the lower layer of the Lego
blocks. Fourth, we have to give some guidelines for the design and devel-
opment of the construction. It may be to start building the construction from
the bottom and up. Figure 1 illustrates system architecture as a construction
of Lego blocks.

Figure 1. System architecture illustrated as Lego blocks. The black plate corre-
sponds to a system platform on which system components are connected through

well-defined interfaces (bulges).

In reality, these blocks are software code or hardware components. When

we refer to these components, we mean components on different levels. Both
in hardware and software components are often composed of other compo-
nents. Sometimes the component itself is a system, with its own architecture.

 6

These components, or sometimes subsystems, have interfaces which they
use to communicate with other components. For a hardware component this
interface is often a connector to which an electrical wire is connected. For a
software component, the interface might be a shared memory space, a sock-
et, or a procedure call.

The environment that we build the system on might be an operating sys-
tem, such as Linux, and for hardware the printed circuit board, where our
components are mounted. The system cannot be a system by itself without
any communication with the outer world. It must be able to input and output
data from its environment. In a car this input might be a signal saying that
the driver is braking. An output may be a tell-tale saying the car engine is
out of oil.

Before designing a system, a procedure or principle for how to construct
it must be set. We can choose if any software should be included or not. We
can choose if we are going to construct the system from our existing compo-
nents from earlier developed systems, or if we are going to create everything
from the beginning. We must also decide if we follow strict routines. A cru-
cial step, before constructing the system, is of course to decide the aim of the
system, if any specific requirements have to be fulfilled, and if certain rules
have to be obeyed for the completed system. We must also know about
which budget we have.

1.4 Thesis outline
This introduction is followed by Section 2 that formulates the research prob-
lem with corresponding research questions and explains the research meth-
ods used for answering these questions. In Section 3, the results are present-
ed and discussed. Section 4 gives an overview of related literature and re-
search. Section 5 concludes the thesis results and contributions, and proposes
future work. The thesis is followed by an appendix with the appended pa-
pers.

 7

2. Research scope

This section will present the research problem and the stated research ques-
tions, followed by the method we used to answer these questions. The four
empirical studies we have conducted will also be presented, and these are
further described in the appended papers.

2.1 Problem formulation
Many companies that develop embedded systems will at some point perform
a refactoring of their system architecture. One example is Volvo CE, a pro-
vider of construction equipment. To cope with a product range of at least
150 machine models, Volvo CE uses a product-line approach where an elec-
tronics platform is shared between the products. This platform includes in-
ternal and external system communication, diagnostics, logging, I/O han-
dling, systems handling etc. On top of it, machine specific applications are
added. Volvo CE is now facing an updating of the platform. The next archi-
tecture is AUTOSAR based and includes technology, methods, and tools for
the electronics systems of all products developed by the Volvo group.

The change to the new architecture may affect many aspects of Volvo CE
electronics systems, such as aftermarket tools, software structure, communi-
cation protocols and development tools. The system architects at Volvo CE
have a major work ahead of them, but still know little about how the compa-
ny and the products will be affected. If the new platform is not successfully
introduced, there are risks of delayed development projects.

Several standards for system development exist today. For the architect,
the standard ISO/IEC 42010 [12] is of interest. It concerns how architectural
descriptions should be expressed to facilitate communication around, and the
development of, the architecture. ISO/IEC 15288 [13] describes the life cy-
cle processes associated with human-made systems, and also processes
needed for support of the life cycle processes. It is aligned with ISO/IEC
12207 [14] which is more concerned with the development of software sys-
tems. IEEE 1220 [15] gives a more detailed description of the life cycle pro-
cesses than the other two. There are also a number of books in the area of
system architecting, such as “The method framework for engineering system
architectures” by Firesmith et al. [16], “Software architecture in practice” by
by Bass et al. [7] or “System Architecting” by Muller [17].

 8

All these standards and books mostly concentrate on the development of
new products or new features, and contain only some smaller elements of
processes for system evolution. Despite the extensive literature, there is a
lack of descriptions of activities in the system refactoring process. Most lit-
erature and research focus on new product development.

This gap between existing development knowledge and the system refac-
toring process causes problems for the system architects at Volvo CE and at
other companies. It is not easy to understand the benefits and costs, and to
explain how it will affect the company in terms of reduced costs and hence
motivate management about the proposed changes. When the system archi-
tect detects the need of refactoring the system, he needs to argue why extra
resources are required on system architecture activities. He needs to investi-
gate how the changes affect the system and the organization, and how the
organization should be prepared. During this process many decisions must
be made under time constrained conditions. The problems that may occur
are:

 Poor predictions of effects on development effort and costs, due to sys-
tem adjustments, education needs, new test environment etc.

 Risk of important stakeholders missed or involved late, from aftermar-
ket, product planning, production etc.

 Risk of unwanted or unplanned technical effects when performing refac-
toring, e.g. quality problems, and supplier compatibility.

 Risk of unwanted or unplanned organizational effects when performing
refactoring, e.g. undefined roles, responsibilities, and processes.

 Lack of organizational support, due to poor communication between
system architects and management, and between co-workers.

 Risk of delayed time-to-market, due to poor planning and unexpected
effects.

The purpose of our research is to find out how we can help the system ar-
chitect in the work of refactoring a system and from that create a guideline.
The guideline will assist the system architect in preparing and explaining
system refactoring to the organization. This thesis describes the initial re-
search where the guideline is outlined by exploring the system refactoring
process.

 9

2.2 Research questions
Three research questions have been stated to explore the system refactoring
process.

2.2.1 RQ 1: Which effects can be expected from a system
refactoring?
We believe that system refactoring causes effects on both system properties
and on the principles for its development and evolution. We also believe that
system refactoring causes effects throughout the whole life cycle of the
product, and the corresponding processes in the company.

By answering this question we will understand the consequences of a sys-
tem refactoring, in terms of impacts on system properties, on the company
and on their intra- and interrelationships. This is important for decisions
relating to the choice of the technical solution, and to planning and prepara-
tions of system refactoring changes.

2.2.2 RQ2: What are the drivers of system refactoring
decisions?
We believe that the drivers behind refactoring of embedded systems are both
business-related and technical. We also believe that practicing system archi-
tects tend to analyze the technical aspects more than the business aspects.

By answering this question we can guide the system architect when col-
lecting information and performing analyses, that will be used as decision-
support by management.

2.2.3 RQ3: What would a guideline need to contain to support
system refactoring?
We believe that certain activities are more important than others, in the sys-
tem refactoring process. We also believe that the characteristics of the pro-
cess differ from the normal system architecting process. We also believe
there is a difference in the need of guidance to succeed with an activity.

By answering this question we will understand what activities need to be
described in a guideline for the system refactoring process.

2.3 Research method
The starting point was to help Volvo CE prepare themselves for a system
refactoring, but we saw a knowledge gap of the system refactoring process

 10

and its effects. Therefore, we chose to gather information from companies
developing products with similar systems. To answer our research questions,
we have chosen to look at the system refactoring process in companies pro-
ducing distributed embedded systems, especially for automotive systems.

Most of our studies have been in Swedish companies. In total, 15 compa-
nies and 44 respondents have been involved in our studies. This is because
of availability, and because they are representative of other similar compa-
nies in the world. The studied companies have their operations or parts of
operations spread around the globe, with activities in Europe, Asia, North
America, and South America. However, three companies have their devel-
opment organization located only in Sweden. We have studied system refac-
toring from the perspective of electronics systems development as spectators
that tried to penetrate into the process from outside to collect data from the
visited companies or from other studies.

Our research process can be described as a cycle, oscillating between the-
ory and reality. We had a purpose and knew what to achieve, which raised a
first question. To answer this question, we chose relevant methods of data
collection and analysis. Using the knowledge we received from reality we
were able to start fill the theory knowledge gap and identify new issues that
were needed to be answered to fill the gap completely. This research process
is illustrated in Figure 2

Figure 2. An illustration of the research process oscillating between theory and

reality.

 11

The research described in this thesis can be described as a first step to-
wards achieving our ultimate goal, which is to create a guideline for the sys-
tem refactoring process to be used by system architects. Therefore the first
part is descriptive, where different phenomena have been explored, with the
purpose to describe the reality today. The questions we have been asking are
of the exploring type “What?”. We have chosen to look at the characteristics
that describe the system refactoring process, i.e. what starts the process, what
is included in the process and what the outcome of the process is.

Figure 3. The relation between the four conducted studies and the system refactor-

ing process.

The empirical collecting of data has been mainly qualitative. The methods

used for collecting data are case studies [18, 19], systematic literature re-
views [18, 20], interviews [18], and survey questionnaires [18]. Both qualita-
tive and quantitative analyses have been performed on the collected data.
This inductive approach is suitable when we try to create general theories
from human experiences and from environments where a lot of complex
relationships reign [21].

Four studies were conducted to answer our three stated research ques-
tions. The relationships between the studies and the investigated parts of the
process are illustrated in Figure 3. Below, we will present the four studies in
terms of purpose, method, analysis and validity threats. For one conducted
case study, the context is further explained to give background of the com-
pany situation. The validity threats [18], we are discussing in this section are
against:

Construct validity is related to the ability of the results to be generalized to
theory and concerns the design of the experiment.
Internal validity is related to the fact that the results are a causal effect of the
used methodology.

 12

External validity is related to the ability to be generalized into practice.
Conclusion validity is related to the ability to draw the correct conclusion
about relations between the treatment and outcome.

2.3.1 Study A. An explorative case study of system
refactoring effects

Purpose
To answer the first research question an explorative case study was per-
formed in a company that was going to perform a major system refactoring.
The study aimed to investigate the introduction phase of the software archi-
tecture at Volvo CE, a producer of construction equipment. We wanted to
see how the company was affected by changes in different architectural ele-
ments in terms of costs and benefits.

Context
Volvo CE is part of the Volvo group, which is one of the world’s leading
suppliers of commercial transport solutions with products like trucks, busses,
construction equipment, drive systems for marine and industrial applications,
and aircraft engine components. Today the Volvo group has customers all
over the world, mainly in Europe, Asia and Northern America.

Volvo 3P is responsible for product planning and global vehicle devel-
opment for the global truck operations of the entire Volvo group. In order to
manage the increasing complexity of the electronics systems in new genera-
tion vehicles, Volvo 3P has performed a radical system refactoring on the
electrical and electronic architecture and introduced AUTOSAR (see Section
1.3). Volvo 3P hopes that this will reduce the development cost, give more
flexibility to meet new technologies and standards, to be able to be first on
the market with new features, to meet brand differentiation while maintain-
ing a high degree of commonality, and to achieve multi-site development.

Volvo CE is a producer of construction equipment. Their product range
includes 150 different machines, such as wheel loaders, excavators, haulers,
and road machinery. The electronics system constitutes an increasingly im-
portant part of the functionality in a modern construction machine. In order
to meet the demands on business, safety, and development time Volvo CE
adapts the development method to a more product-line oriented approach
based wholly on an electronics system platform. This includes working on
development processes, architecture, tools, and system modeling.

By sharing tools and components, such as engines, within the Volvo
group, the companies can take advantage of higher volumes and reduced
costs. Therefore, Volvo CE will also adapt to the new Volvo 3P architecture.
The architecture consists of a common software platform which includes

 13

communication, diagnostics, logging, mode management and power state
management.

Method
This study was based on interviews with 11 persons at different positions in
the electronics development department of Volvo CE. The new architecture
was also investigated through reading specifications. The interview ques-
tions had a life cycle perspective and were related to effects on system prop-
erties and the company when introducing the new system architecture. The
interviews were performed in a semi-structured way. Pre-defined questions
were constructed but also followed by deeper questions related to the given
answers. To ensure that all matters were covered the interviews ended by
giving the respondents the opportunity to share additional information. The
interviews were audio recorded and notes were taken. Each interview was
summarized in text and sent to the respondents for approval before analysis.

The method was chosen because of its explorative character. Interviews
gave the possibility to get the answers that were not expected when planning
the study.

Analysis
After data extraction, the identified effects were mapped into a matrix. The
matrix rows corresponded to the architecture element that caused the effect.
The columns were divided into two parts, capturing affected system proper-
ties and affected company functions, respectively.

In this way we were able to identify what in the company or in the elec-
tronics system that was affected by a change in a certain architecture ele-
ment, and also how it was affected.

Validity
When analyzing the extracted data from the answers we constructed an anal-
ysis matrix that helped us ensure that all relevant effects had been consid-
ered, which strengthened the construct validity of the study. The study re-
sults were based on expectations prior to performing the refactoring and
therefore the internal validity was not evaluated. The study was conducted at
a specific company and therefore the situation at another company could
differ and the results may not be directly applicable at a different company
or on a different architecture.

Presentation
The study was presented at the 36th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA) in Lille 2010.

 14

2.3.2 Study B. A systemic literature review of AUTOSAR
effects

Purpose
Since the first study only investigated effects from system refactoring in one
company an additional study was conducted to help answer the first research
question. The AUTOSAR architecture will be adopted by almost the entire
automotive industry in Europe and Asia. Therefore AUTOSAR gave an op-
portunity to study the implementation of the same architecture in several
products and hence an opportunity to compare reported effects of system
refactoring with each other. Hence a systematic literature review of imple-
mentations of AUTOSAR gave the possibility to summarize these reported
effects. The results also strengthened the internal validity of Study A.

Method
A systematic literature search was made for papers describing experiences
from introducing AUTOSAR.

Analysis
The analysis was performed in a similar way as in Study A. An analysis
matrix was constructed where each identified reported effect was mapped to
the elements in AUTOSAR that caused the effect, and to the functions in the
company that were affected and properties of the system.

Validity
Since the architecture is introduced stepwise in products and so far only to
some extent, only a small sample was found, and which threatened the inter-
nal validity. To deal with construct validity a review protocol was devel-
oped, where background, objectives, research questions, strategy, sources,
and search criteria were pre-defined, according to the advices of Kitchenham
[20]. During the process all the found literature and the exclusion criteria
have been documented. As the implementation of a specific architecture was
studied the results might not be directly applicable for implementations of
other architecture. Still, this is an automotive standard and therefore there
might be a possibility to generalize the results to other implementations of
the same architecture in other automotive companies not covered by this
study. There are initiatives in other industrial domains, such as avionics [22],
that share similar features, and thus a possibility exists for some results to be
applicable in those domains.

Presentation
The result of the study was presented at the 37th EUROMICRO Conference
on Software Engineering and Advanced Applications in Oulu 2011.

 15

2.3.3 Study C. Scenario-based interviews of system
refactoring drivers

Purpose
The aim of the third study was to find the drivers behind a decision of sys-
tem refactoring and to answer our second research question.

Method
14 interviews were conducted at eight companies that produce distributed
embedded systems. The respondents were persons used to make decisions
about the system architecture and amongst them were seven system archi-
tects and seven managers at different levels in electronics development. The
companies and respondents were chosen from their availability and willing-
ness to participate.

All interviews began by giving a start scenario to the respondent. The
start scenario represented a suggestion of a change to be made in the embed-
ded systems in the companies’ products. The respondent was then asked to
request the information he needed to complete the decision of whether the
system change should be performed or not. After the respondent answered,
additional pre-defined information related to the requested information was
given. The respondent was once again asked to request the information he
needed to complete the decision. This procedure was repeated until the re-
spondent answered that he was able to complete the decision or at least make
a recommendation.

If the respondent asked for information that was not pre-defined and nev-
er requested in the previous studies, new information was created on site and
stored in the list of pre-defined information. In that way we were able to
catch cases we did not expect beforehand.

Analysis
The requested information from each interview was categorized into infor-
mation areas. We investigated the most important decision criteria by per-
forming frequency analyses, where the information areas that most respond-
ents had requested were found. To further elaborate the important criteria,
the interviews were re-written in a formal way where the requested infor-
mation was replaced by the corresponding information area, see Figure 4.
Then we compared if the first requested information areas corresponded to
the most wanted information.

Differences in answers between system architects and managers, between
an industry sector and the rest of the group, and between one company and
the rest of the group, were analyzed by Chi-2 calculations.

To capture to what degree the effects on the company is investigated be-
fore a decision of system refactoring is made, the requested information was

 16

mapped to one or several company functions. It gave a possibility to see for
which parts of an organization the effects were investigated before making
the decision.

Figure 4. An illustration of a typical interview described in a formal way.

Validity
The reason why this study was conducted through interviews and not
through questionnaires was to cover the reasoning behind the answers. The
planning phase of the study included literature studies on architecture evalu-
ation methods, and return-on-investment analyses. To strengthen the external
validity the respondents were chosen from companies in different domains.
A threat against internal validity was the selection of scenarios. It is hard to
select general scenarios which can be applied in all types of domains. The
interpretation of the scenarios might differ between different domains.

Presentation
The study result was presented at the 10th Annual Conference on Systems
Engineering Research (CSER) in St Louis 2012.

Start scenario:
Design alternatives

Current
requirements
Future capabilities

/requirements

DECISION

Technical details

Technical details

Supplier information

Supplier information
Design alternatives
Costs, Risks

Supplier information

Supplier information

Design alternatives
Profits
Current requirements

INTERVIEWER RESPONDENT

Start scenario:
Design alternatives

Current
requirements
Future capabilities

/requirements

DECISION

Technical details

Technical details

Supplier information

Supplier information
Design alternatives
Costs, Risks

Supplier information

Supplier information

Design alternatives
Profits
Current requirements

INTERVIEWER RESPONDENT

 17

2.3.4 Study D. A survey of system refactoring activities

Purpose
The fourth study aimed to answer the third research question. By identifying
which activities are included in the system refactoring process, we could
start to sketch out a proposal for a guideline to be used by system architects.

Method
Data was collected by using a web-based questionnaire. 34 respondents from
14 Swedish companies that develop products with embedded systems an-
swered the questionnaire. The responsibilities of the respondents were within
system architecting, system design, system development, project manage-
ment, systems engineering, and management.

The survey questionnaire contained a first part that described what a typi-
cal system refactoring is. Then the respondents were asked, for each of 35
activities, to rank how important the activity is for the system refactoring
process and how helpful a guideline would be to succeed with the activity.
The 35 activities were identified through literature studies of conference
papers, books, and systems engineering standards, and through findings from
earlier conducted studies. The activities were reviewed in several cycles by
four persons experienced within system engineering research and practice.
Before releasing the questionnaire, a pilot study was conducted.

Analysis
In the analysis the activities were grouped into the categories “Most im-
portant for the process”, “Important for the process” and “Not important for
the process” depending on the lower limits of the confidence intervals of the
responses for each activity. The Wilcoxon rank sum test provided the calcu-
lations. In the same way the activities were also investigated to see how
much support the respondent wanted for each activity. The analysis further
investigated differences in responses amongst the respondents with different
responsibilities. Through the literature studies we also identified characteriz-
ing factors for the general architecture processes. The activities that had been
chosen as most important or only important were mapped against it to see if
they contributed to each of these characterizing factors. The mapping was
then used to identify the characteristics of a system refactoring process.

Validity
Possible validity threats against the outcome of this study were the uneven
distribution of respondents on the participating companies and the choice of
activities that were going to be rated by the respondents. To ensure that the
results would reflect the real world as much as possible, we wanted as many
respondents that we could find in Sweden. However, this resulted in that the

 18

amount of respondents from each company varied and that might be a threat
against the conclusion validity and the reliability of the measures. To avoid
threats against construct validity, we tried to identify the activities from sev-
eral sources, both from academic papers and systems engineering standards
as well as from earlier experiences and studies. Also, pilot studies with sys-
tem architects were conducted, which also strengthened the internal validity.

Presentation
The study result has been submitted to the Seventh Workshop on SHAring
and Reusing architectural Knowledge (SHARK 2012) that will be held in
Helsinki, Finland, in August, 2012.

 19

3. Results

As described in the previous chapter, four studies were conducted to answer
our three stated research questions. In this chapter the results and answers
are presented for each question.

3.1 Which effects can be expected from a system
refactoring?
The appended papers A and B describe the studies that were conducted to
answer our first research question. The results from study A are based on
interviews about expected effects, conducted at the electronics development
department at a construction equipment producing company, which was just
about to perform a system refactoring. Study B is based on a systematic lit-
erature review of reported observed effects from the introduction of AU-
TOSAR, an automotive open standardized software architecture. The effects
were reported mostly from industry, but also from academic research.

Table 1 gives an overview of possible outcome from features typically in-
cluded in architectural changes. These features were included in the studied
architectural changes in study A and study B. The overview shows possible
effects that we found in these studies and gives examples of in which types
of architectures the features can be found. The overview also suggests fur-
ther areas for investigations. These suggestions are also based on findings of
effects from study A and study B. The overview can be used for finding
relevant areas to investigate when preparing for refactoring of systems. Giv-
en a specific refactoring, e.g. the introduction of AUTOSAR, all the columns
must be considered that are relevant, i.e. what has to be examined will be a
combination of several columns.

 20

Table 1. Possible outcomes from features included when refactoring architecture,
given with suggestions of further investigations.

Feature Simulation possibilities Reuse possibilities

Exam-
ples MBD, Hardware abstraction Standardization, CBD, AU-

TOSAR
Possible
out-
comes

Requires tools

Development
 Possibility of simulations
 Possibility to generate code
Verification
 Usage of test beds without

expensive test equipment Cost
reduction

 More effective tests
Supplier cooperation
 Definition of new processes,

roles, responsibilities and corre-
sponding activities

System properties
 System quality: Improved quali-

ty assurance

Development
 Time and costs saving
System properties
 Complexity: Easier managed
 Maintenance: Easier

Investi-
gate

 Configuration management pro-
cesses

Feature Tools,
 development environment Standardized architecture

Exam-
ples CBD, AUTOSAR, MBD AUTOSAR

Possible
out-
comes

Development
 Possibilities for configuration

management
 More efficiency, lower lead

times
 Possibilities for system simula-

tions
 Possibilities for code generation
Verification
 Adjustments of test systems
Logistics
 Adjustments of logistics systems
System properties
 Reliability, Safety, Integrity:

Less human errors due to inter-
connected tools

Development
 Outsourcing strategies
 Commonality sharing
 Focus on vehicle features in-

stead of system technologies
 Process changes
Supplier cooperation
 Improved specifications for

suppliers
 Suppliers can develop products/

systems for more than one man-
ufacturer

System properties
 Safety, Reliability: Faults found

easier

Investi-
gate

System adjustments
License costs
Education

Business opportunities, processes,
responsibilities with suppliers
Performance and Safety risks

 21

Feature Hardware abstraction Well-defined and clear in-
terfaces and specifications

Exam-
ples MBD, AUTOSAR Standardization, CBD
Possible
out-
comes

Development
 Development of hardware and

software in parallel
Verification
 Integration and verification

faster
Supplier cooperation
 New working models for suppli-

er cooperation
System properties
 Reusability: Possibilities to

reuse software components be-
tween products

 Possibilities to reuse hardware
components between products

 Flexibility: Easier to move the
software components between
different control units, Easier to
add new software functionality
without the need of integrating
an additional control unit into
the system

 Safety: Lower the risk for inte-
gration problems

Development
 Less time is needed on calibra-

tion and validation
 Supplier cooperation: Im-

proved specifications given to
suppliers

 Improved quality of components
delivered by suppliers

System properties
 Complexity: More controllable
 Flexibility: Improved
 Reliability: Improved reliability,

less human erroneous interfer-
ence

 Safety: Lower risk for integra-
tion problems, faults found ear-
lier

Investi-
gate

 22

3.1.1 Effects on company
Both studies imply that a large system refactoring has company impacts. It is
important to consider these impacts to avoid delays in product development
projects.

System development
When the changes in the architecture include new development tools or
whole tool chains the development organization should prepare itself in time
for several things. Resources must be spent on adjusting current existing
tools to the new tool chain. A new tool chain will also affect the way of
working and new processes and responsibilities must be set. This also means
that the staff needs education on how to work with the new tool and how to
adapt it into existing development systems. If this is done properly the bene-
fits, which come at a later stage, can include a more efficient development
process with shorter lead times, and improved possibilities for configuration
management. A remaining cost will probably be expensive licenses. Typical
architectural changes that include new development tools are introduction of
model-based development or changes of component models. Model-based
development also gives possibilities for code generation and component
based development also probably needs less time on calibration and valida-
tion in the long run. Another way of shortening lead times in the develop-
ment process is to develop hardware and software independently of each
other, since they can be developed in parallel and hence make both integra-
tion and verification faster. Then it is important to use clear interfaces and
standards. Our results also imply that standardization makes it easier to
change software design at later stages in the process and that manufacturers
can focus on product features instead of on system technologies. On the neg-
ative side this also requires process changes. Our studies imply that architec-
tures that allow reusability, as product platforms, or component-based sys-
tems, save time and costs in system development.

System verification
In the verification phase, model-based design, component-based design,
hardware abstraction or the introductions of new standards call for new
tools. It is then beneficial to choose tools that allow verification by model
simulations in virtual environments. These environments can simulate bus
loads and simplify verification of subsystems. In this way the verification
can be performed already in early development phases and without expen-
sive test beds. Also the use of clear interfaces and specifications means that
faults are found earlier. Finding faults early is also important to keep the
maintenance effort low.

 23

System maintenance
By using model-based design, standardized architectures like AUTOSAR, or
components that have been proven-in-use, maintenance seems to be made
easier and faults are found earlier. Standardized architectures, like AU-
TOSAR, seem to give a possibility to maintain a large product range.

Supplier cooperation
Using a standardized architecture, like AUTOSAR, or components with
well-defined interfaces means that the specifications given to suppliers for
purchase are improved. Then there is less space for misinterpretations which
in turn gives higher system and software quality. Standardization gives pos-
sibilities for reuse and hence opens doors for new business opportunities.
The manufacturers can outsource or buy the development of components and
subsystems. The suppliers can offer the same features to several customers
instead of customized features to specific manufacturers. The manufacturers
can then concentrate more on product specific features instead of system
details. The initial costs relate to defining new business strategies, such as
product portfolios, responsibilities, new tools etc. Changes to a new standard
also lock out suppliers that have not adapted to that standard. For instance, a
change to AUTOSAR, for a construction equipment manufacturer, may not
be beneficial since most suppliers are not within the automotive domain.
This also applies to minor changes, such as replacing the protocol used for
external communication. Therefore the manufacturer has to investigate ef-
fects of this kind of changes, not only on the system level but also on the
company level. Other changes that might affect the cooperation between
manufacturers and suppliers are if the supplier needs to install or adapt the
development environment to fit in the system architecture of the manufac-
turer. It might lead to a situation where the supplier has to invest in expen-
sive licenses or refuses to take responsibilities for his delivered components
or subsystems in the final product.

Other effects on company
We have also seen that parts of the company that are not directly connected
to the development organization can be affected by system refactoring.
Changing the external communication, such as replacing the diagnostics
protocol or download mechanism, can affect the aftermarket or production,
where new tools have to be developed. Also new diagnostics or logging ca-
pabilities might give the product planning and sales new opportunities.

 24

3.1.2 Effects on the system
System properties can be divided into two categories. The first category is
the properties that are related to the ability of the system to perform its tasks,
such as performance and reliability. These are often inter-connected and
sometimes effects on one property gives effects on another. For instance,
better security against intruders that can alter code or inter-connected sys-
tems that lessen human interference improve the system integrity. Then,
fewer faults can be implemented, intentionally or accidentally, which also
strengthens the reliability and the safety of the system. Other changes in the
system that give positive effects on reliability and safety are using standard-
ized architectures or components with clear interfaces, since less error-prone
interpretation is needed. Also the overall opinion is that the use of compo-
nents that have been proven-in-use improves the system safety. Our studies
of effects include the introduction of software platforms that give possibili-
ties for the technology to meet future demands. These platforms usually of-
fer a development environment that allows network management so that the
system communication can be optimized which seems to improve the system
performance. The negative effects are that these software platforms require a
lot of memory and run-time themselves, which lowers the overall system
performance.

The second category of system properties is the properties of the system
that relate to how easy or manageable it is to work with. One such property
is system flexibility. When investing in architectures, companies want the
selected architecture to be capable of meeting future requirements on new
features or legislation. These can be supported by architectures that isolate
hardware and software from each other so that software components can be
reused or added on several hardware nodes in the system. Other ways of
enhancing the flexibility to add new functionality is to use well-defined in-
terfaces between components or to use signal-based communication. Then,
only communication databases have to be updated when adding a new soft-
ware component instead of specifying the addresses for source and destina-
tion in all affected components. Systems tend to become more complex over
time but standardized, well-defined specifications and processes make them
more controllable. This can be achieved by reusing well-known components
in several development projects. By using software platforms where several
software components are integrated, there is a possibility to integrate more
software functionality in each hardware platform. This lessens the system
communication and hence dependencies between nodes in the system. Reus-
ability of components also seems to be crucial for maintaining large product
ranges due to the well-known interfaces, specifications and documentation.

 25

3.2 What are the drivers of system refactoring
decisions?
In the appended paper that explains study C, the results of the study that
answers our second research question are presented. We wanted to under-
stand the drivers behind system refactoring by looking at what kind of in-
formation decision-makers investigated prior to a decision. The areas of
information that most of the respondents asked for were regarded as most
important for the decision. In this section we will present these information
areas in order of importance.

3.2.1 Costs
Not surprisingly, information on costs seems to be the most important driver
behind system refactoring. These costs relate to development, manufactur-
ing, and maintenance, and they were requested by both managers and system
architects, even though managers start to investigate costs earlier than sys-
tem architects. The developments costs are related to software and hardware,
licenses and support of tools. Manufacturing costs relate to hardware and
components costs and the production. Maintenance costs are related to prod-
uct management, i.e. the maintenance of the system components and the
warranty costs.

3.2.2 Profits
Profits can be gained from both the technical advances and possible market
opportunities given by the system changes. The profits gained from technical
advances are increased quality, more system flexibility, modularity and bet-
ter diagnostics. This in turn lowers the costs for development, shortens the
development lead times, gives cheaper hardware, reduces risks in projects
and simplifies the product management and the ability to add new function-
ality into the system. The profits from market opportunities relate to the abil-
ity of the system to offer new services to customers and the customers’ expe-
rience of a better quality, which can give an increased sale. The decision-
makers compare the profits against the costs of introducing the system
changes and perform estimations on when return-on-investment (ROI) can
be expected.

3.2.3 Supplier information
If the system change includes the possibilities of buying components from
suppliers the decision-maker requests information about the supplier and the
components. He wants to know the viability of the supplier, such as financial
status and survival probability; can the supplier make long-term commit-

 26

ments and what happens in case of bankruptcy? How is the market, are there
other suppliers? The decision-maker also wants to know if the component is
newly developed and the supplier’s experiences of the technology. The sup-
portability of the supplier is investigated and how the supplier handles
change issues. What will the cooperation look like, the ownerships and re-
sponsibilities? If a components is going to be purchased it must be cost ef-
fective, so the business model and license agreements are considered. The
component itself must fulfill desired requirements. Much of this investiga-
tion involves the purchasing department.

3.2.4 Technical details
Both system architects and mangers want to know technical details. They
want to know how the proposed system changes will fit the current architec-
ture and which system changes are required to make a solution effective.
Typical questions concern interfaces, electromagnetic compatibility (EMC),
compatibility with internal proprietary and standardized communication
protocols, hardware needs, tool needs, and if changes can be made step wise.
Other issues relate to system quality attributes, such as performance and
complexity. It is also important to consider the product life cycle stages,
such as supportability and aftermarket, and the product strategies, such as the
“look-and-feel” of the product.

3.2.5 Future requirements
When investing in changes to the system or system architecture the decision-
makers must be sure that the future system requirements are considered.
Therefore coming functionality, legislation, technologies, and future stand-
ards, are identified and investigated, often several years ahead the introduc-
tion of them. The decision-maker must be sure that the system will be able to
meet these future requirements and investigate the ability of the system to
evolve and accommodate new technologies. For example, what happens at
the end-of-life for a hardware component? Can it be replaced by a similar
component? Does the system provide possibilities for incorporating new
services? Can it be reused in future products?

3.2.6 Current requirements
Also short-terms goals have to be considered. Existing problems in the cur-
rent system have to be identified. The decision-maker must understand cus-
tomer benefits and requested functionality. If there is an infrastructure that is
expected to be used across the entire product-line, or across different com-
panies or business units, the decision-maker must consider that the system
meets the requested functionality of all of these.

 27

3.2.7 Enterprise constraints
Constraints of the enterprise concern strategic goals, including roadmaps,
policies, and core business. Financing and available resources also affect the
decision, as well as planned development projects and the maturity of the
organization.

3.2.8 External constraints
There are also constraints from the outside world, such as current laws, regu-
lations, specifications, standards, and guidelines. They may concern safety,
communication protocols or vehicle emissions and affect both the system
needs and the market deadlines. Existing technologies and competitor prod-
ucts are other drivers for system changes. It is also important that the system
is able to meet safety regulations and other legislation on different markets.

3.2.9 Design alternatives
In a refactoring decision several solution options have to be identified and
considered, such as the possibilities to reuse old subsystems and compo-
nents, and if there are possibilities to buy solutions from suppliers. Economic
analyses of the different design alternatives affect the decision. Supplied
products are further investigated according to Section 3.2.3.

3.2.10 Risks
Less than half of the participants asked for information about risks during
the scenario-based interviews. The requested risk information concerned
commercial risks, such as the risk of delays for time-to-market, and technical
risks, such as increased system complexity, technical faults, and if new tools
were hard to work with.

3.2.11 Human requirements
Only a few participants requested information about the human require-
ments, such as process changes, responsibilities and the need for education.
Some participants emphasized the importance of having support from the
organization, both from upper-management and colleagues, prior to the deci-
sion.

3.2.12 Technical management
Only one participant wanted information about the technical management
and configuration of the system solution. He mentioned the importance of

 28

having ways of working that ensured that a chosen system solution did not
evolve differently between different company departments.

3.3 What would a guideline need to contain to
support system refactoring?
The last study aimed to answer our third research question and is presented
in the appended paper D. The result from the study is based on a survey
questionnaire which was given to senior system engineers, mainly system
architects, employed at Swedish companies that develop embedded systems.

3.3.1 Activities in system refactoring
From a set of 35 activities, which were identified as typical activities in gen-
eral system architecture processes, 20 activities were identified as important
for system refactoring. The ratings were made on a 0-6 Likert scale and ac-
tivities with a lower bound above 4.0 for the median confidence intervals
were considered as “most important”. Table 2 shows all the activities and
their calculated confidence intervals. The activities that were identified as
“most important” are:

 Establish the technical requirements for the system e.g. identify interfac-
es and design constraints

 Investigate if the existing architecture can be expanded or adjusted to fit
new requirements

 Assess whether the identified architecture-alternatives meet the require-
ments

 Evaluate the effects of the identified architecture-alternatives on the
system’s non-functional properties, e.g. response times, safety, security,
etc.

 Assess the abilities of the identified architecture-alternatives to be
evolved, reused, and expanded

 Assess the impact on system life cycle quality factors, such as produci-
bility, verifiability, ease of distribution, usability, supportability, etc. and
changes in the corresponding processes

 Select architecture parts to be verified and the verification methods to be
used

 Select architecture parts to be validated and the validation methods to be
used

 29

Activities with confidence interval lower levels above 3.5 were consid-
ered as “important”, and they are:

 Find future product range and customer demand
 Analyze deficiencies in the current system
 Assess ability of the current system to scale for future drivers, e.g. com-

ing laws
 Learn about technologies, system architectures and architectural practic-

es
 Define the characteristics required for the product to be cost effective

over competitors
 Define the requirements for different steps in the systems life cycle, such

as development, verification, maintenance, etc.
 Establish a requirement baseline of the system architecture
 Develop and identify alternative architecture solutions and selection

criteria
 Investigate suppliers (internal or external), in terms of risks, licenses,

costs, supportability, responsibilities, viability
 Identify and assess commercial and technical risks
 Update and review the architectural description
 Apply configuration management on the architecture description

 30

Table 2. The found activities and their confidence intervals of the ratings, given by
respondents, for importance and need of guidance.

Activity
Confidence levels

Im-
portance

Guide-
line need

Planning
1. Create an overall technical vision for the embedded
system 3.0-4.0 5.0-6.0

2. Find synergies within different types of products 3.0-4.0 4.0-5.0
3. Find out company vision, roadmap, core business
and policies 2.5-3.5 3.5-4.5

4. Find future product range and customer demand 3.5-4.5 5.0-5.5
5. Find future laws and regulations 3.0-4.0 3.5-5.0
6. Analyze deficiencies in the current system 3.5-4.5 4.5-5.5
7. Monitor trends in key properties of the system 3.0-4.5 4.0-5.0
8. Assess ability of current system to scale for future
drivers, e.g. coming laws 3.5-4.5 4.5-5.5

9. Learn about technologies, system architectures, and
architectural practices 3.5-4.5 4.0-5.0

10. Investigate coming technologies 3.0-4.0 4.5-5.0
Requirements
11. Define the characteristics required for the product
to be cost effective over competitors 3.5-4.5 4.5-5.0

12. Define the requirements for different steps in the
systems life cycle, such as development, verification,
maintenance, etc.

3.5-4.5 4.0-5.0

13. Establish the technical requirements for the sys-
tem, e.g. identify interfaces and design constraints 4.0-5.0 5.0-5.5

14. Investigate enterprise constraints, such as available
resources, competencies 2.0-3.5 3.0-4.0

15. Establish a requirement baseline of the system
architecture 3.5-4.5 4.5-5.5

Technical solution
16. Develop and identify alternative architecture solu-
tions and selection criteria 3.5-4.5 4.0-5.0

17. Identify make-or-buy alternatives 3.0-4.0 3.5-5.0
18. Investigate if the existing architecture can be ex-
panded or adjusted to fit new requirements 4.0-5.0 4.5-5.5

19. Investigate suppliers (internal or external), in terms
of risks, licenses, costs, supportability, responsibilities,
viability

3.5-4.5 3.5-5.0

 31

20. Assess whether the identified architecture-
alternatives meet the requirements 4.5-5.0 5.0-5.5

21. Evaluate the effects of the identified architecture-
alternatives on the systems non-functional properties,
e.g. response times, safety, security, etc.

4.0-5.5 5.0-5.5

22. Assess the abilities of the identified architecture-
alternatives to be evolved, reused, and expanded 4.0-5.0 4.0-5.0

23. Assess the impact on system life cycle quality fac-
tors, such as producibility, verifiability, ease of distri-
bution, usability, supportability, etc. and changes in the
corresponding processes

4.0-5.0 4.0-5.0

24. Assess requirements on competences, roles and
responsibilities for the different product life cycle stag-
es

2.0-3.0 2.5-3.5

25. Analyze costs, e.g. development costs, maintenance
costs, manufacturing costs 3.0-4.5 4.0-5.0

26. Analyze added values on market opportunities and
from technological advances 3.0-4.0 4.0-5.0

27. Identify and assess commercial and technical risks 3.5-5.0 4.5-5.5
Verification and validation
28. Select architecture parts to be verified and the veri-
fication methods to be used 4.0-5.0 4.5-5.5

29. Select architecture parts to be validated and the
validation methods to be used 4.0-5.0 4.5-5.5

Technical management
30. Update and review the architectural description 3.5-5.0 5.0-6.0
31. Apply configuration management on the architec-
ture description 3.5-5.0 4.5-5.5

Communication
32. Create acceptance and understanding of the need
for architectural changes from the management organi-
zation

3.0-4.5 5.0-6.0

33. Support management in decision-making on the
proposed architecture and other necessary actions to be
taken by them

3.0-4.5

5.0-6.0

34. Create acceptance and understanding of the archi-
tectural changes in the concerned parts of the organiza-
tion

3.0-4.5 5.0-5.5

35. Provide help and assist in development projects 2.5-3.5 4.5-5.0

 32

3.3.2 Characteristic of system refactoring
From literature studies we identified the characterizing factors of general
system architecture processes. All found activities, shown in Table 2, were
mapped to the characteristics they fulfilled. A comparison was made on how
the identified important activities for refactoring (see Section 3.3.1), differ in
their distribution of characteristics fulfillment against all found activities
from literature. For example, activity Analyze deficiencies in the current
system, was mapped to effectiveness (the activity ensures that right system is
designed and for the right purposes). One activity could contribute to one or
several characterizing factors, for example the activity Find future product
range and customer demand was mapped to both effectiveness and
short/long term balance (the activity ensures that both long terms and short
terms strategies are considered).

Table 3 explains the characterizing factors and gives the distribution
amongst activities, chosen as important, and amongst all activities from the
survey. As can be seen in Table 3, the system refactoring activities differ in
fulfillment of Quality and Acceptance.

Table 3. The distribution of the fulfillment of characterizing factors amongst activi-
ties in the survey questionnaire and activities important in system refactoring (SR).

Characteriz-
ing factor Explanation

Distribution (%)
SR

activities
All

activities

Effectiveness
the activity ensures that right system
is designed and for the right purpos-
es

38 36

Quality
the activity contributes to lowering
the number of detected faults after a
product is released

28 21

Short/long
term balance

the activity ensures that both long
terms and short terms strategies are
considered

17 17

Efficiency the activity aids in reducing costs
and resource-usage 7 8

Timelines the activity contributes to that the
process is completed before deadline 7 8

Acceptance
the activity contributes to distribute
the understanding and acceptance of
the architecture in the company

3 10

 33

The 35 activities, which were identified as typical activities in general
system architecture processes, were categorized into six main areas: Plan-
ning, Requirements, Technical solution, Verification and validation, Tech-
nical management and Communication. The categorization can be seen in
Table 2.

The result of study D shows that the respondent chose all activities in the
categories Verification and validation and Technical management as im-
portant for system refactoring, 80% of the activities categorized in Require-
ments, 60% from Technical solution, 40% from the category Planning and
none from the category Communication.

3.3.3 Need of guidance
The ratings of need for guidance were also made on 0-6 Likert scales. Con-
fidence intervals at p = 0.95 were calculated for the ratings of the need of
guidance for the 35 activities. We found that the lower levels were above 3.5
for all activities, except for two activities. The confidence intervals for guid-
ance need of all activities are shown in Table 2. We interpret the result as
there is a need of guidance throughout the whole general system architecture
process, except for these activities:

 Investigate enterprise constraints, such as available resources, competen-
cies

 Assess requirements on competences, roles and responsibilities for the
different product life cycle stages

3.4 Discussion
In this section we will discuss the outcome of the studies and propose a draft
outline for the system refactoring process.

3.4.1 Study outcomes
This thesis describes four studies of the system refactoring process who aim
to answer three questions:

 Which effects can be expected from a system refactoring?
 What are the drivers of system refactoring decisions?
 What would a guideline need to contain to support system refactoring

Study A and B were conducted to answer the first research question. In
study A, interviews about expected effects were conducted with people em-
ployed at a Swedish company that was just about to start a system refactor-
ing process, whereas the results from study B were based on literature stud-

 34

ies of reported effects of on-going or completed system refactorings from,
mainly, industry. It is worth to note that the concerned system changes were
very similar in both studies.

The results from the both studies were quite consistent. However, in study
A, effects on more company functions were found. An explanation could be
that in study A the interview questions regarded the whole product life cycle,
such as product planning and sales. In study B, the relevant literature was
studied for effects of the introduction of AUTOSAR. All the identified ef-
fects were reported by authors that had mainly experience from system de-
velopment and that did not investigate effects in other company functions.

The company in study A has today started to use the new system architec-
ture in a development project. A risk that was identified in study A con-
cerned the introduction of new tools and that they were not going to be test-
ed enough. What we see today, concerning the tools and development envi-
ronment is that adjustments of processes, roles, and responsibilities, are far
more time consuming than was expected. An explanation could be that the
company has bought several companies during the last years and therefore
has a development organization distributed world-wide. Hence the definition
of a new development process also includes adapting all current processes
and securing that it will fit on all sites. Another risk, identified in study A,
was that time constraints would affect system decisions so that the solutions
would not be capable to be reused in several projects. We have not seen any
sign of this yet, probably because the company already was used of having a
common system platform across several machine types.

The results from both study A and study B imply that system verification
can be highly affected by system changes, but the results from study C show
that this is not an issue that decision-makers investigate prior to a decision.
None of the respondents in study C asked for any information about how the
proposed system changes would affect system verification or verification of
specific components. Therefore we think it is important for guidelines to
ensure that all concerned parts of the company and development organiza-
tion is considered. A guideline must contain some kind of help to identify
these parts. However, the results from study D imply that defining the re-
quirements for different steps in the systems’ life cycle, such as verification,
is an important activity in the system refactoring process. The question that
remains is whether this activity should be performed before or after the deci-
sion is made.

From the results of study D we conclude that not only a guideline for sys-
tem refactoring is needed but also guidelines in general for system architect-
ing. Almost all activities seem to need some kind of guidance to be success-
fully performed. Only for two activities, the need for guidance was rated
below our stated threshold. The two activities concerned human require-
ments for the different product life cycle stages and the investigation of
available resources and competencies in the company. We also saw in study

 35

C that these issues were not of large interest amongst the respondents. We
can probably interpret these activities as typical for system engineering in
general and not specific for system refactoring or even general system archi-
tecture processes. On the other hand, we got some conflicting results about
the importance of technical management from study C and study D. In study
C, only one respondent asked for information about configuration and man-
agement of the proposed solution, whereas in study D, the activities related
to technical management were rated as important in the process. We inter-
pret the results as that technical management is important during the process
but not for the decision to start the process.

According to the results of study D, “investigating coming technologies”
and “finding future laws and regulations” were not considered as important
activities but on the other hand the activity “Assess ability of the current
system to scale for future drivers” was considered as important. We interpret
those results as the first two activities are part of the general architecture
work and are constantly ongoing. The last activity is specific for the work
that includes the investigation of the capabilities of the current system,
which is essential to start a process of system refactoring. We also saw in the
result of study C, that it was important to consider how the system would
accommodate future requirements.

We conclude that we have to redraw the process, as described in Figure 3
(see Section 2.3). From the results of study C and D, we see that many activ-
ities of the system refactoring process start before the decision is made. The-
se activities concern the monitoring of the current system, requirement defi-
nition and generation of architecture alternatives. The results of these activi-
ties are parts of the decision-support needed by the decision-makers. In study
C, we see that information about costs and profits have to be added to the
support, but these cannot be estimated before some activities have been
made.

We were somehow surprised by the results given by study D. No one of
the activities that regarded communication of system changes and the reason
behind them, were considered as important in system refactoring. Our defini-
tion of system refactoring is “changing the architecture or system without
changing the visible external functionality” and the same definition was giv-
en to the respondents and explained by examples. We believed that this kind
of changes that are not related to the introduction of new system features,
that attracts customers and increase sales, needs more efforts on persuading
the management and organization. The results imply that we were wrong and
that organizations probably are mature enough to understand the importance
of the electronics system architecture in their products.

 36

3.4.2 The system refactoring process
From the results of this thesis work, we can now make a mapping of the
system refactoring process. This section will describe a draft outline of the
process. The process consists of six stages: System monitoring, Definition of
requirements, Generation of architecture solutions, Decision-making, Prepa-
ration, and Apply selected solution. Figure 5 gives a simplified illustration of
the system refactoring process.

Figure 5. A re-drawn illustration of the system refactoring process. Decision-
making is now an integrated element of the process.

System monitoring
This stage is more a precursor of the system refactoring process, and in fact a
part of the general system architecture process. During this stage, the system
is monitored for problems and if it is able to meet future requirements. The
activities are:

 Find future product range and customer demand
 Analyze deficiencies in the current system
 Assess ability of the current system to scale for future drivers, e.g. com-

ing laws
 Learn about technologies, system architectures and architectural practic-

es

The outcome of this stage is the identification of what system or architec-
tural changes are needed. This is the start of the system refactoring process.

Definition of requirements
During this stage the requirements of the system are identified and defined.
The most important activity is to identify the technical requirements. The
activities in this stage are:

 Define the characteristics required for the product to be cost effective
over competitors

 37

 Define the requirements for different steps in the systems life cycle, such
as development, verification, maintenance, etc.

 Establish the technical requirements for the system, e.g. identify inter-
faces and design constraints

 Establish a requirement baseline of the system architecture

The outcome from this stage is a requirement baseline of the system ar-
chitecture.

Generation of architecture solutions
In this step several architecture options that meet the requirement baseline
are identified and to some extent assessed. Also the current architecture is
examined whether it can be altered or if a new solution is required. The ac-
tivities in this stage are:

 Develop and identify alternative architecture solutions and selection
criteria

 Investigate if the existing architecture can be expanded or adjusted to fit
new requirements

 Assess whether the identified architecture-alternatives meet the require-
ments

 Evaluate the effects of the identified architecture-alternatives on the
system’s non-functional properties, e.g. response times, safety, security,
etc.

 Assess the abilities of the identified architecture-alternatives to be
evolved, reused, and expanded

 Assess the impact on system life cycle quality factors, such as produci-
bility, verifiability, ease of distribution, usability, supportability, etc. and
changes in the corresponding processes

 Investigate suppliers (internal or external), in terms of risks, licenses,
costs, supportability, responsibilities, viability

 Identify and assess commercial and technical risks

The outcome of this stage is one or several architecture solutions that
meet the base-lined requirements.

Decision-making
In this stage a decision is made whether changes are going to be realized at
all and if so, which design solution to choose. The stage includes two main
activities:

 Prepare decision-support
 Complete a decision

 38

However, these activities consist of several sub-activities; some of them
have already been made in previous stages. The decision-support should
consist of:

 Business case, including costs and profits.
 Identified architecture solutions, including technical details, information

about suppliers and identified technical and commercial risks.
 Requirement baseline, including future requirements, current require-

ments, enterprise constraints and external constraints.

Business case
The business case should cover the identified costs and profits for each solu-
tion. The costs are mainly related to system development, system mainte-
nance and manufacturing, but other affected costs should also be identified
and considered. The costs should consider both the initial costs related to the
introduction of the solution and the remaining costs after the introduction.

Typical initial costs for system development are development of software,
development of hardware, system adjustments, process adjustments and edu-
cation. Typical remaining costs are tool licenses. Typical initial costs for
manufacturing are system adjustments and remaining costs are related to
hardware. Typical initial costs for maintenance are also education and sys-
tem adjustments.

Typical profits that can be gained from each architecture solution are
lower lead times for development, and verification, simplified maintenance,
less costs in manufacturing, and increased sales.

The identified architecture solutions should be used to find the costs and
profits. The changes should be mapped to identify effects on different life
cycle stages of the product. For example, does the architecture solution re-
quire new development tools? Then, adjustments on processes and tools are
required and should be considered. Is there a possibility for model simula-
tions? Then, one can expect shorter lead times for verification. Table 1
shows a mapping of possible effects from typical features of system changes.

Requirement baseline
In the previous stages the requirement baseline that should be met by the
architecture solutions has been set. Also enterprise and external constraints
that are of interest for the decision should be gathered and added to the deci-
sion-support. Financing and available resources should be identified to re-
duce the risks of delays, as well as new legislation that must be fulfilled
within the time scope.

The outcome of this stage is a decision on which architecture solution to
use.

 39

Preparation
This stage includes further exploration of the chosen architecture solution
and aims to reduce risks in coming development projects. In previous stages
risks have been identified and in this stage actions should be taken to avoid
these risks. In this stage also process changes, responsibilities and the need
for education should be identified and initial efforts on solving these issues
should be made. The outcome of this stage is a plan for risk reductions.

Apply selected solution
In this stage the selected architecture solution is applied, most commonly in
a planned development project. The activities in this stage are the same as in
general system development, but some system refactoring activities remain
and are applied in this stage. These are:

 Select architecture parts to be verified and the verification methods to be
used

 Select architecture parts to be validated and the validation methods to be
used

 Update and review the architectural description
 Apply configuration management on the architecture description

The outcome of this stage is a product that implements the new architec-
ture.

 40

 41

4. Related work

In this section we will explore what literature report on the drivers behind
systems refactoring and what effects that can be expected. Since most re-
ported work about embedded systems describes introduction of product-
platforms or component based development many of the studied papers are
in that area. Some described studies will also be in the IT domain and about
software refactoring since there are some similarities to the software part of
embedded systems. This section will also explore the knowledge about the
system architecture process and the role of the architects. The described
studies concentrate on findings from real life issues. More related work
about the architecture process can be found in Paper D. An important part of
the system architecture process is decision-making. Therefore, the last part
of this section describes studies of decision-making and methods that aid in
decision-making.

4.1 Drivers of refactoring
According to Mattsson and Bosch [23], a reorganization without any exter-
nally visible changes on functionality most often depends on changed quality
requirements. These reorganizations might improve system properties, such
as flexibility, maintainability, performance and understandability. Another
effect given by reorganizations is lowered effort to develop new products.
Mattson and Bosch refer to reorganizations in object-oriented frameworks
with reusable components but it might also be applicable for distributed em-
bedded systems, and explains that requirements on costs savings have large
impact on the architecture and hence large risks.

One driver might be to get the advantages of using standard architectures.
According to Rathmann et al. [24] the automotive industry has solved the
problem to cope with constantly new demands from customers on fuel effi-
ciency, safety, driving comfort and legally demands, by adapting their archi-
tecture and processes to standards, such as AUTOSAR [9] and CMMI [25].
Therefore the OEMs (Original Equipment Manufacturers) are able to reuse
software solutions developed by suppliers. This lowers cost since these solu-
tions are developed and reused in many different vehicle types. He suggests
that this might be the right choice even for off-road vehicles. The OEMs
producing these vehicles often struggle with low volumes at the same time

 42

as they have to constantly meet new requirements, such as emission regula-
tions.

According to the results of interviews of specialists in systems- and soft-
ware architecture employed in seven Swedish international companies, con-
ducted by Mustapic et al. [26], the drivers behind the development of new
architectures are usually cost reduction or possibilities to use efficient tools,
but seldom the arising of new technologies.

These three papers are interesting for our second research question, about
the drivers behind system refactoring. They all mention reduced costs as a
driver. Strengthening the ability of the system to be developed and main-
tained, seem to be a way of lowering costs, such as making the system more
flexible and understandable. Another way seems to be to spread the costs by
reusing solutions amongst several product types.

Wang [27] has a slightly different proposal of drivers for software refac-
toring. By interviewing 20 software developers from four different compa-
nies, he found out that there are also several personal factors that motivate
developers to perform a refactoring of software code. Some of these factors
are that the organization rewards the developers in different ways when they
perform a successful refactoring, but also due to more intrinsic factors, such
as the developer getting more self-esteem, or to habits of the developer.

These kinds of personal drivers might be significant for an individual de-
veloper that is only responsible for a small amount of software code in an IT
system but within embedded systems development the situation is different.
The projects are often large with several stakeholders with different tech-
nical expertise that have to cooperate and system refactoring is dealing with
both software and hardware. Thus, we can assume that the drivers of system
refactoring are somewhat different but may also be personal. There is no
guarantee that stakeholders do not want to reduce their own efforts instead of
considering the total costs of the company.

4.2 Effects from refactoring
We searched in papers after the expected effects of system refactoring by
looking at reported effects from introductions of reusable solutions. As men-
tioned in Section 4.1, reduced costs seem to be a main driver of system re-
factoring. This is also reported as a positive effect when the same solution is
reused in several products. However, it is not easy to make the shared solu-
tion able to fit in different contexts and it seems that the new way of working
affects the organization.

 43

4.2.1 Reusing components
To explore empirically if software reuse is as beneficial as one could imag-
ine, Mohagheghi and Conrad [8] conducted a comprehensive case study at a
large Telecom company. Three years of data was collected from three re-
leases of two products. The products consisted of a lower layer of reused
blocks, common for both the products, and a product-specific application
layer. They found a reduction of software errors and development lead times.

Instead of reusing internally developed software components, companies
can buy them from suppliers, so called COTS (Commercial-off-the-shelf)
components. According to McKinney [28], COTS can lower time-to-market
for products. However, both paper of McKinney [28] and Morisio et al. [29]
report that the company cannot rely on the availability of the COTS from the
supplier. Also integration problems late in the projects were reported as a
problem [29]. Another consequence the company has to deal with is adapt-
ing the development process to get the benefits of using COTS. These papers
show how important it is to consider costs and benefits for process changes
as well as for enhanced system quality properties when deciding about refac-
toring an existing system. To deal with the problems, Morisio et al. [29],
suggest that the experienced technical staff should be included in the deci-
sion-making process about which COTS to choose and that a specific team is
responsible for the activities in evaluating, choosing, using and procuring
COTS.

4.2.2 Product-line development
Tsakiris [30] reports effects from the introduction of a product-line platform
to be used amongst several vehicle brands. One reason for introducing the
platform is to manage complexity. He reports problems with the large differ-
ences between several vehicles, especially the large variations of control
systems. Therefore they established an architectural framework, with a func-
tional view that simplified common understanding of the functions and
helped them reduce signals in the system. A special department group was
responsible for the data dictionary and signal list of vehicle projects and
developers had to request updates via the group.

From a sister company to the above mentioned company, Eklund at al.
[31] also present an introduction of a reference architecture in the develop-
ment of automotive electronics systems. Due to a well-defined design and
identified non-functional properties the reference architecture became a suc-
cess and the cost was optimized and could be used in several vehicle pro-
jects. However, to continue being successful and get return on investment,
the architecture requires maintenance and distribution costs that are higher
than the actual development cost of the architecture. Consequently, it is im-
portant for decision-makers to include these factors when deciding about

 44

introducing these kinds of platforms. The authors also point out the im-
portance of support from management on all organization levels since the
introduction of the reference architecture will impact processes and organi-
zation.

All these above reported experiences from introducing product-line archi-
tecture in an organization confirm the findings from a study of Bosch [11].
He agrees with Eklund et al. [31] on that support from management is im-
portant and suggests that the managers should be exposed to more details
and technical aspects of the product-line project.

Bosch has further studied problems in product-line development in [32,
33]. Bosch and Bosch-Sijtsema [33] report a trend going from product-line
development to software ecosystems, meaning that, except for the platform
and the internal developers building on top of the platform, there also exists
a community of external developers that extend the products after they have
been released by the company. Due to these three trends the complexity is
increasing. To deal with the problems the companies must stop being inte-
gration-centric, i.e. most effort is given to the step where parts are integrated
and validated, and start being composition-oriented, which means that teams
are working independently, and are not dependent on each other’s releases,
which is achieved by architectural rules and constraints.

Also Crnkovic et al. [34] present how the introduction of product-line ar-
chitecture affected a large company that develops embedded industrial sys-
tems. Also in this study the development process was affected by the chang-
es. Most of the reported problems were related to interface or architectural
mismatches and encapsulation of service in components. They also mean
that to be successful in product-line development more effort is needed on
the overall architecture.

Product-line development in IT systems
There are also reports from using product-lines in the development of IT
systems. Some effects seem to be the same as in the development of embed-
ded systems.

Verlage and Kiesgen [35] report experiences from the use of product-line
development in a relative small company. They conclude, as Eklund et al.
[31], that product-line development is not just an investment in the introduc-
tion but also a constant need for cleaning up the platform. The introduction
has also affected the company organization since new roles are needed.

Nonaka et al. [36] tested a model that can be used for examining effects
of investments on scenarios of architecture reuse. They conclude that these
investments should consider the number of planned products over the life-
time of the product-line and required time-to-market for the first product to
be delivered.

Slyngstad et al. [37, 38] describe studies of evolution risks in IT systems.
The largest risks were “Lack of stakeholder communication affected imple-

 45

mentation of new and changed architectural requirements negatively” and
“Poor clustering of functionality affected performance negatively” and the
preferred strategies to deal with these problems were “Allow additional time
for communication and feedback” and “Refactoring the architecture”. From
this we learn that system refactoring is an important activity for system ar-
chitects.

4.3 The system architecture process and the role of
the architect
This thesis focuses on the system refactoring process. However, we believe
that there are similarities between the processes for system refactoring and
system architecting. Therefore we have explored the role of the system ar-
chitects and what the process for system architecting looks like in industry.

Ahmed and Capretz [39] investigated empirically the effect of some key
architecture activities in the performance of software product-lines. The
measures were reduced costs and development time, market growth and
financial strength. Domain engineering, requirements engineering, require-
ments modeling, commonality management, variability management and
architecture artifacts managements supported the product-line performance
positively. The study results show how important architecture activities are
when introducing product-line development, which is normally preceded by
a system refactoring.

To find out more about the system architecture process Mustapic et al.
[26] interviewed specialists in systems- and software architecture from com-
panies that all developed complex distributed system. When developing the
system architecture for a new product it is important for the system architect
to have knowledge and experience from the development of similar systems
since the system architecture is reused between projects with only slight
changes. Even though it was considered important to have a great knowledge
of system development, the interest in the process amongst system architects
was quite low. They conclude that it is important to keep core architecture
teams relative small that define the fundamental principles of the software
and system architecture. It is still important to communicate the derived ar-
chitecture throughout the organization. A suggestion is that the architect
takes the role of a technical leader in development projects.

Faber [40] describes his experiences of the architecture role in agile de-
velopment. By letting the architects be involved in the development projects,
flaws were discovered and corrected in time. At the same time the architect
learned about the system. Earlier, when the architect just delivered a com-
pleted architecture to the application developers, mistakes were discovered
too late.

 46

Wallin et al. present findings in [41, 42] from case studies performed at
two heavy vehicle manufacturers and one car manufacturer. In both studies
they found that the companies lack clear architecture processes and methods
for evaluating business values when selecting architecture. Decision-making
was weak and mostly made on gut-feeling. They found that one company did
not have a long-term architectural strategy [41]. The other study indicated
lack of quality measures during development, and therefore architectural
quality issues were not revealed until late in development projects [42]. The-
se results imply the need for creating processes for the system architecture
work, that fit global organizations and that clear out the responsibilities of
the system architecture departments.

Lindgren et al. [43] present similar findings as Wallin et al. [41, 42]. The
authors studied how software architecture is considered in release planning.
They conclude that product management has generally little awareness of
software architecture. In companies where product management is responsi-
ble for release planning it is even more important that software architects
participate in decision-making. Most decisions are today made on gut-
feeling and methods for balancing quality improvements and feature growth
are missing.

As described by Eklund [31] and Bosch [11] there is a need for support
by management during refactoring activities. Unfortunately, Wallin et al.
[41, 42], report that management often lacks knowledge about electrical and
software systems. The authors suggest that management should be educated
in the area. This issue should be considered in a guideline for system archi-
tecture processes. As described above, Mustapic et al. [26] suggest that the
architect takes the lead during development. Faber [40] also suggests that
architects should be more engaged in development. These approaches might
lead to a better understanding about architecture in the organization and per-
haps also clear out the interface of the architecture department.

4.4 Decision-making
Decision-making is an important part of the work the system architect does.
Even if the actual decisions are usually made by management, the system
architect must provide the correct data. According to Hammond et al. [44],
decision-making should include problem formulation, definitions of objec-
tives or goals, identifying alternatives and their respective consequences, and
trade-offs between the objectives when selecting amongst alternatives. Un-
fortunately, Tversky and Kahneman [45] clame that systematic and predicta-
ble errors are common when people make judgement of probabilities of
events; well-educated and experienced persons are not an exception. As
mentioned earlier, distributed embedded systems are very complex, and
hence very hard for making assumptions about. We have therefore investi-

 47

gated what tools that are available for analyses and decisions-making when
making changes in the architecture of embedded systems.

4.4.1 The Software Analysis Architecture Method, SAAM
The Software Analysis Architecture Method (SAAM) was developed by
Kazman et al. [46]. The method is used for evaluating different architecture
alternatives for a desired property. It is based on a well understood system
architecture and is therefore started by providing a clear architecture descrip-
tion. Next, concrete tasks, which are typical for the desired property, are
chosen. For example the task “Changing the communication protocol” may
be appropriate for the property “Maintainability”. Each architecture alterna-
tive is then analyzed and evaluated for how well it manages to perform the
tasks. SAAM gives a structure for the analysis process but does not prescribe
any method for how to evaluate the different architecture alternatives.

4.4.2 Architecture Level Modifiability Analysis, ALMA
SAAM underlies several other analysis methods, like the Architecture Level
Modifiability Analysis (ALMA) [47]. ALMA was developed for determin-
ing the modifiability level of architecture elements. The first activity is to
determine goals for the analysis, such as predicting maintenance cost, per-
forming a risk assessment or selecting an architecture.

4.4.3 Architecture Trade-off Analysis Method, ATAM
SAAM is also the predecessor of the Architecture Trade-off Analysis Meth-
od (ATAM) [48]. The primary goal of ATAM is to assess the consequences
of architectural decisions in the light of quality attribute requirements by
identifying risks, sensitivity points and tradeoff points in the system. This is
achieved by finding scenarios, using utility trees and generating system qual-
ity attributes. Most of the work is carried out by smaller stakeholder groups,
consisting of architects, customers and the evaluators. ATAM proposes the
use of larger brainstorming meetings with all stakeholders to prioritize the
scenarios. The basic idea is to stimulate the creativity and communication of
new ideas. The disadvantage of ATAM is that it is very time consuming but
the many hours of work may also be a strength since the architecture gets
very thoroughly investigated.

4.4.4 Cost Benefit Analysis Method, CBAM
The Cost Benefit Analysis Method (CBAM) [49] is an extension to ATAM
and an attempt to map costs and benefits to system quality attributes and
business goals by determining the relation between them. CBAM starts

 48

where ATAM ends and adds cost to architect decisions and benefits to quali-
ty attributes.

4.4.5 Analytic Hierarchy Process, AHP
The Analytic Hierarchy Process (AHP) is a method for managing complex
decisions based on mathematics and psychology [50]. This method starts by
identifying architecture goals, criteria and alternatives. The stakeholders
organize the criteria in a hierarchy by pairwise comparing them against all
other criteria. Then the stakeholders pairwise compare the architecture alter-
natives against each other for each criterion. The problem with AHP is that
the number of comparisons rapidly increases by the number of alternatives
and criteria. AHP only helps in comparing alternatives against each other.
Some other method must be used for identifying effects caused by the alter-
natives, e.g. ATAM [51].

4.4.6 More methods
Larsson et al. [52] present a method that deals with organizational effects.
The method analyzes the influences that a change in architecture will have
on the development processes. The method uses scenarios to identify the
goals and activities needed for an architectural change which then can be
used for finding affected processes. They mean that organization, architec-
ture and processes are related to each other and when changing one of these
the others may be influenced.

Tang et al. [53] propose a tool for software architecture design reasoning.
This tool takes business goals and other design concerns, like functional- and
non-functional requirements, organization, and technologies into account.
The tool captures design-rationales for relevant decisions, like trade-offs,
risks, costs, and constraints, and the actual design. A similar approach is
presented by Jansen and Bosch [54]. They present a tool where software
architecture can be seen as a set of design decisions and which makes explic-
it the relationships between the design decisions and the software architec-
ture.

Riebisch and Wolfarth [55] propose an ALMA based method for evaluat-
ing alternatives of architectural decisions, for both architectural design and
refactoring. They conclude that the use of impact analysis methods help
identifying risks of side effects, additional effort and changed behavior of
the system and aid in determining if the possible risk is worth the effort.

Leitch and Stroulia [56] propose a model for predicting return-on-
investments (ROI) for software refactoring. Since software refactoring is
usually performed to lessen maintenance costs they calculate ROI as the
savings of maintenance from a proposed refactoring divided by the devel-

 49

opment cost. The refactoring is cost effective if ROI is greater or equal to
one.

Clements and Bass [57] propose a way of gathering business goals by
proposing a business goal viewpoint. They mean that system architecture
have requirements that can otherwise be missed. The gathering of business
goals gives the architect a possibility to accommodate the architecture for
future demands. The proposed method consists of identifying stakeholders,
gathering and prioritizing business goals from the stakeholders and identify-
ing effects on architecture. Typical aspects of business goals are organization
growth, financial objectives, personal objectives, responsibilities to employ-
ees, responsibilities to the country and society, responsibilities to sharehold-
ers, market position, improved business processes, product quality and prod-
uct reputation.

A method that also captures requirements from business goals is proposed
by Kamath [58], who claims that when IT-companies merge or reorganize
the business complexity increases which is reflected in the architecture. He
proposes a method for linking business architecture to application architec-
ture for IT systems. In that way, the company can easier focus on future in-
vestments, outsourcing, and business strategies.

4.4.7 Utility of methods
Breivold and Crnkovic [59] have done a comprehensive survey of methods
that support software architecture evolution. There are methods focusing on
software quality during software architecture design. Later in the design
phase, when one or several architecture alternatives have started to take
shape, several methods help to evaluate the quality of the software architec-
ture, like evolvability. SAAM [46], ATAM [48], and ALMA [47] (see Sec-
tions 4.4.1-4.4.3) are examples of such methods. A third category is methods
that consider economic values, such as CBAM [49] (see Section 4.4.4). Oth-
er types of methods consider architectural knowledge management and mod-
eling techniques. Most methods are primarily used for analyzing and evalu-
ating software architecture, but also for creating alternatives, understanding
requirements and creating business cases.

As stated by Wallin et al. [41, 42] practitioners lack methods for evalua-
tions of business values and decision-making even though we have presented
several methods in this thesis. Salonen and Perttula [60] claim in a paper
from 2005, that the existing methods do not fit in industry and they suggest
that new methods are developed that support concept selection. They studied
the utilization of concept selection methods in Finnish industry. “Concept
review meetings” was the most widely used method, followed by “Intuitive
selection of concept”. Other common methods were checklists and expert
assessments. Less than five percent used formal systematic methods, e.g.
AHP and Pugh’s matrix.

 50

Although there are several methods proposed by the research community
it seems like they are not implemented and used in industry to a large extent.
Perhaps, the research community has failed to announce the methods to in-
dustry, or maybe the available methods are too time consuming to be effec-
tive. Guidelines for system architecting could help by proposing suitable
methods for certain decisions.

 51

5. Conclusion

There is an emerging need for guidance and support in the system architec-
ture processes. A guideline for system refactoring contributes to a part there-
of. Such a guideline should explain what effects to expect for different sys-
tem changes and helps providing required information for decision-making.

We have seen that the characteristics of the process follow the general ar-
chitecture process. The focus seems to be on effectiveness, quality and the
balancing between short-term and long-term goals. The process seems to
emphasize on efficiency and timeliness less, probably since it needs time to
achieve qualitative and effective solutions. The reason is that system refac-
toring can give effects that not only affect the system but also impacts the
entire organization. Despite these cross-organizational effects, it is common
that not all affected parts are considered when deciding on the implementa-
tion of changes. It is therefore important that a guideline for this process
ensures that all affected parts are identified and taken into account while
making a decision. A guideline must also emphasize on the importance of
creating understanding and acceptance within the organization, since this
activity is mostly forgotten by practitioners but still important for decision-
makers.

5.1 Contribution
Our definition of system refactoring is “architecture or system changes with-
out changes to the visible external functionality”. The profits from these
changes are not as obvious as for the introduction of new product features
that give increased sale. This thesis tries to highlight the benefits, and costs,
that can be expected from different types of architectural changes and how
decision-support can be prepared.

We have mapped the system refactoring process, its activities, its drivers,
and expected effects. Now we have enough information to create a prelimi-
nary guideline. By help from the results presented in this thesis, companies
who are facing a decision about system refactoring, can assess what they
should study before a decision is made. Since we have identified probable
effects of certain types of system changes, the decision-maker knows what
effects can be expected when constructing a business case, including costs
and profits. With the identification of effects, companies can now also pre-

 52

pare themselves in time before the system changes are introduced, so that
risks, such as delays in development projects, are minimized.

5.2 Future work
We have mapped the process and the next step will be to create a prelimi-
nary guideline that will be refined through testing in industrial projects. Sev-
eral of the identified activities will presumably be defined at a lower level
and it will be more clearly described when in the process they should be
carried out.

Some open questions still have to be answered:

 Did we manage to isolate the process for system refactoring?
The found characteristics of system refactoring, from study D, only
slightly differ from general system architecting. A follow-up study is
needed to ensure that we capture the real system refactoring process.

 How can we ensure consideration of all main effects?
Related questions are: “How do we know what are the important effects
to consider when preparing or deciding about system refactoring?” and
“How far should we look, when is it appropriate to say that we investi-
gated enough?”. We have seen that decision-makers focus on what is
currently on their minds and seem to forget about the rest of the compa-
ny organization. We have also seen that technical details are more con-
sidered than human related details, such as processes, responsibilities,
and competence. Maybe that is not important for the actual decision of
performing the system changes, but probably important to consider when
preparing for the work of system refactoring. If these factors must be
considered in on-going product development projects that are going to
use the refactored architecture, they may get delayed and miss their
deadlines.

 Is there a precedence order of the activities in system refactoring?
In Section 3.4.2, we propose a flow order of the activities in system re-
factoring. However, this order is only a draft and based upon our find-
ings of involved activities, drivers and effects. We have not yet investi-
gated if any specific activity must be performed before another specific
activity.

 53

References

1 GM recalls 1.3 million cars over steering fault.
http://www.msnbc.msn.com/id/35655693/ Cited 11/24/2010 (The
Associated Press, 2010).

2 Toyota återkallar fyra modeller.
http://www.sydsvenskan.se/bil/article627859/Forsta-stamningen-mot-
Toyota.html Cited 11/24/2010 (Sydsvenskan, 2010).

3 Nissan recalls 2 million cars worldwide.
http://www.msnbc.msn.com/id/39885304 Cited 11/24/2010 (The
Associated Press, 2010).

4 Maintaining stability on the road.
http://www.scania.com/media/feature-stories/technology/esp.aspx
Cited 20/09/2009 (Scania, Södertälje, Sweden, 2008).

5 The electronic stability control ESC. http://www.conti-online.com/
Cited 10/28/2009 (Continental, 2007).

6 Larses, O. Architecting and modeling automotive embedded systems.
p. 307 (KTH, Stockholm, 2005).

7 Bass, L., Clements, P. and Kazman, R. Software architecture in
practice. (Addison-Wesley Professional, 2003).

8 Mohagheghi, P. and Conradi, R. An empirical investigation of
software reuse benefits in a large telecom product. Transactions on
Software Engineering and Methodology, 2008, 17(3), 1-31.

9 Welcome to the AUTOSAR development partnership.
http://www.autosar.org Cited 6/14/2009 (AUTOSAR, 2009).

10 Crnkovic, I. and Larsson, M. Building reliable component-based
software systems. (Artech Hous, 2002).

11 Bosch, J. Product-line architectures in industry: A case study.
Proceedings of the 21st International Conference on Software
Engineering, pp. 544 - 554 (ACM New York, NY, USA, Los Angeles,
California, United States, 1999).

12 Systems and software engineering — Recommended practice for
architectural description of software-intensive systems. ISO/IEC
42010:2007, IEEE Std 1471-2000 (ISO/IEC/IEEE, 2000).

 54

13 Systems and software engineering — System life cycle processes.
ISO/IEC 15288:2008, IEEE Std 15288-2008 (ISO/IEC/IEEE, 2008).

14 Standard for systems and software engineering - Software life cycle
processes. ISO/IEC 12207:2008, IEEE Std 12207-2008
(ISO/IEC/IEEE, 2008).

15 Application and management of the systems engineering process.
IEEE Std 1220-1998 (IEEE, 1998).

16 Firesmith, D.G., Capell, P., Falkenthal, D., Hammons, C.B., Latimer,
D. and Merendino, T. MFESA - The method framework for
engineering system architectures. (Auerbach Publications, 2008).

17 Muller, G. System architecting. http://www.gaudisite.nl/ Cited
8/11/2011 (Gaudi System Architecting, 2003).

18 Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B. and
Wesslén, A. Experimentation in software engineering: An
introduction. (Kluver Academic Publishers, United States of America,
2000).

19 Yin, R. Case study research: Design and methods. (Sage Publications,
United States of America, 2002).

20 Kitchenham, B. and Charters, S. Guidelines for performing systematic
literature reviews in software engineering. EBSE-2007-01 (Keele
University, UK, 2007).

21 DeProy, E. and Gitlin, L.N. Forskning - en introduktion.
(Studentlitteratur, Lund, Sweden, 1999).

22 Hall, C. Open systems for military avionics: A technology overview.
ERA 2007-0669 (Avionics Systems Standardization Committee,
2007).

23 Mattsson, M. and Bosch, J. Frameworks as components: A
classification of framework evolution. Nordic Workshop on
Programming Environment Research, pp. 163-174 (Bleking institute
of technology, Ronneby, Sweden, 1998).

24 Rathmann, S., Fischerkeller, R. and Schweiker, A. Latest trends in
automotive electronic systems - Highway meets off-highway?
Agricultural Engineering International: the CIGR Ejournal, 2007,
IX(ATOE 07 012).

25 CMMI® for development, Version 1.3. ESC-TR-2010-033 (CMMI
Product Team, Software Engineering Institute, Carnegie Mellon
University, 2010).

26 Mustapic, G., Wall, A., Norström, C., Crnkovic, I., Sandström, K.,
Fröberg, J. and Andersson, J. Real world influences on software
architecture - interviews with industrial system experts. Proceedings

 55

of the 4th Working IEEE/IFIP Conference on Software Architecture,
pp. 101-111 (IEEE Computer Society, Oslo, Norway, 2004).

27 Wang, Y. What motivate software engineers to refactor source code?
Evidences from professional developers. 25th IEEE International
Conference on Software Maintenance, pp. 413-416 (IEEE, Edmonton,
Alberta, Canada, 2009).

28 McKinney, D. Impact of commercial off-the-shelf (COTS) software
on the interface between systems and software engineering.
Proceedings of the 21st International Conference on Software
Engineering (ACM, Los Angeles, California, United States, 1999).

29 Morisio, M., Seaman, C.B., Parra, A.T., Basili, V.R., Kraft, S.E. and
Condon, S.E. Investigating and improving a COTS-based software
development. Proceedings of the 22nd International conference on
Software engineering, pp. 32-41 (ACM, Limerick, Ireland, 2000).

30 Tsakiris, A. Managing software interfaces of on-board automotive
controllers. IEEE Software, 2011, 28(1), 73-76.

31 Eklund, U., Askerdal, Ö., Granholm, J., Alminger, A. and Axelsson, J.
Experience of introducing reference architectures in the development
of automotive electronic systems. Proceedings of the 2nd
International Workshop on Software Engineering for Automotive
Systems, pp. 1-6 (ACM, St. Louis, Missouri, 2005).

32 Bosch, J. The challenges of broadening the scope of software product
families. Communication of the ACM, 2006, 49(12), 41-44.

33 Bosch, J. and Bosch-Sijtsema, P. From integration to composition: On
the impact of software product lines, global development and
ecosystems. Journal of Systems and Software, 2009, 83(1), 67-76.

34 Crnkovic, I., Larsson, S. and Chaudron, M. Component-based
development process and component lifecycle. 27th International
Conference on Information Technology Interfaces, pp. 591-596 (IEEE
Computer Society, Dubrovnik, Croatia, 2005).

35 Verlage, M. and Kiesgen, T. Five years of product line engineering in
a small company. Proceedings of the 27th International Conference
on Software Engineering, pp. 534-543 (ACM, St. Louis, Missouri,
2005).

36 Nonaka, M., Zhu, L., Babar, M.A. and Staples, M. Impact of
architecture and quality investment in software product line
development. 11th International Software Product Line Conference,
pp. 63-73 (IEEE Computer Society, Kyoto, Japan, 2007).

37 Slyngstad, O., Li, J., Conradi, R. and Babar, A. Identifying and
understanding architectural risks in software evolution: An empirical
study. Proceedings of the 9th International Conference on Product-

 56

Focused Software Process Improvement, pp. 400-414 (Springer-
Verlag, Monte Porzio Catone, Italy, 2008).

38 Slyngstad, O.P.N., Conradi, R., Babar, M.A., Clerc, V. and van Vliet,
H. Risks and risk management in software architecture evolution: An
industrial survey. 15th Asia-Pacific Software Engineering Conference,
pp. 101-108 (IEEE, Beijing, China, 2008).

39 Ahmed, F. and Capretz, L.F. The software product line architecture:
An empirical investigation of key process activities. Information and
Software Technology, 2008, 50(11), 1098-1113.

40 Faber, R. Architects as service providers. IEEE Software, 2011, 27(2),
33-40.

41 Wallin, P. and Axelsson, J. A case study of issues related to
automotive E/E system architecture development. 15th Annual IEEE
International Conference and Workshop on the Engineering of
Computer Based Systems, pp. 87-95 (IEEE Computer Society, Belfast,
Northern Ireland, 2008).

42 Wallin, P., Johnsson, S. and Axelsson, J. Issues related to
development of E/E product line architectures in heavy vehicles. 42nd
Hawaii International Conference on System Sciences, pp. 1-10 (IEEE
Computer Society, Waikoloa, Big Island, Hawaii, 2009).

43 Lindgren, M., Norstrom, C., Wall, A. and Land, R. Importance of
software architecture during release planning. 7th Working IEEE/IFIP
Conference on Software Architecture, pp. 253-256 (IEEE Computer
Society, Vancouver, BC, Canada, 2008).

44 Hammond, J.S., Keeney, R.L. and Raiffa, H. Fatta smarta beslut.
(Forma Books AB, 2001).

45 Tversky, A. and Kahneman, D. Judgment under uncertainty:
Heuristics and biasis. Science, New Series, 1974, 185(No. 4157),
1124-1131.

46 Kazman, R., Bass, L., Abowd, G. and Webb, M. SAAM: A method
for analyzing the properties of software architectures. Proceedings of
the 16th International Conference on Software Engineering, pp. 81-90
(IEEE Computer Society, Sorrento, Italy, 1994).

47 Bengtsson, P.O., Lassing, N., Bosch, J. and van Vliet, H.
Architecture-level modifiability analysis (ALMA). Journal of Systems
and Software, 2004, 69(1-2), 129-147.

48 Kazman, R., Klein, M. and Clements, P. ATAM: Method for
architecture evaluation. CMU/SEI-2000-TR-004 (Carnegie Mellon
University, Pittsburgh, Pennsylvania, 2000).

49 Kazman, R., Asundi, J. and Klein, M. Quantifying the costs and
benefits of architectural decisions. Proceedings of the 23rd

 57

International Conference on Software Engineering, pp. 297-306
(IEEE Computer Society, Toronto, Ontario, Canada, 2001).

50 Saaty, T.L. How to make a decision. European Journal of Operational
Research, 1990, 48, 9-26.

51 Wallin, P., Fröberg, J. and Axelsson, J. Making decisions in
integration of automotive software and electronics: A method based
on ATAM and AHP. Proceedings of the 4th International Workshop
on Software Engineering for Automotive Systems, p. 5 (IEEE
Computer Society, Minneapolis, USA, 2007).

52 Larsson, S., Wall, A. and Wallin, P. Assessing the influence on
processes when evolving the software architecture. 9th International
Workshop on Principles of Software Evolution (ACM, Dubrovnik,
Croatia, 2007).

53 Tang, A., Han, J. and Vasa, R. Software architecture design reasoning:
A case for improved methodology support. IEEE Software, 2009,
26(2), 43-49.

54 Jansen, A. and Bosch, J. Software Architecture as a set of architectural
design decisions. 5th Working IEEE/IFIP Conference on Software
Architecture, pp. 109-120 (IEEE Computer Society, Pittsburgh,
Pennsylvania, 2005).

55 Riebisch, M. and Wohlfarth, S. Introducing impact analysis for
architectural decisions. 14th Annual IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems, pp.
381-392 (IEEE Computer Society, Tucson, Arizona, 2007).

56 Leitch, R. and Stroulia, E. Assessing the maintainability benefits of
design restructuring using dependency analysis. Proceedings of the
9th International Software Metrics Symposium, pp. 309-322 (IEEE
Computer Society, Sydney, Australia, 2003).

57 Clements, P. and Bass, L. The business goals viewpoint. IEEE
Software, 2010, 27(6), 38-45.

58 Kamath, S. Capabilities and features: Linking business and application
architectures. 9th Working IEEE/IFIP conference on Software
architecture, pp. 12-21 (IEEE Computer Society, Boulder, Colorado,
USA, 2011).

59 Breivold, H.P. and Crnkovic, I. A systematic review on architecting
for software evolvability. Proceedings of the 21st Australian Software
Engineering Conference, pp. 13-22 (IEEE Computer Society,
Auckland, New Zealand, 2010).

60 Salonen, M. and Perttula, M. Utilization of concept selection methods
- A survey of finnish industry. 17th International Conference on
Design Theory and Methodology, pp. 527-535 (ASME, Long Beach,
California, 2005).

 58

