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A 308 year record of climate variability in West Antarctica
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[1] We present a new stable isotope record from Ellsworth
Land which provides a valuable 308 year record (1702-2009)
of climate variability from coastal West Antarctica. Climate
variability at this site is strongly forced by sea surface
temperatures and atmospheric pressure in the tropical Pacific
and related to local sea ice conditions. The record shows that
this region has warmed since the late 1950s, at a similar
magnitude to that observed in the Antarctic Peninsula and
central West Antarctica; however, this warming trend is not
unique. More dramatic isotopic warming (and cooling) trends
occurred in the mid-nineteenth and eighteenth centuries,
suggesting that at present, the effect of anthropogenic climate
drivers at this location has not exceeded the natural range of
climate variability in the context of the past ~300 years.
Citation: Thomas, E. R., T. J. Bracegirdle, J. Turner, and E. W. Wolff
(2013), A 308 year record of climate variability in West Antarctica,
Geophys. Res. Lett., 40, 5492-5496, doi:10.1002/2013GL057782.

1. Introduction

[2] The Antarctic Peninsula and West Antarctica have both
warmed dramatically in recent decades, with some records
suggesting that these are among the most rapidly warming
regions on Earth [Bromwich et al., 2013]. Although climate
models suggest large natural climate variability over West
Antarctica [Hawkins and Sutton, 2012], instrumental records
from West Antarctica and the Antarctic Peninsula are sparse,
and the lack of long-term records is hindering our ability to
evaluate modeling results and place these recent changes in a
longer-term context. Recent studies, exploiting the linear
relationship between local temperature and stable isotopes in
precipitation at middle and high latitudes [Dansgaard, 1964,
have improved our understanding of climate variability in the
northern Antarctic Peninsula [Mulvaney et al., 2012] and
continental West Antarctica [Schneider and Steig, 2008;
Steig et al., 2013]. However, the climate in the coastal region,
especially in the area closest to some of the largest and fastest
flowing outlet glaciers in the region, is still largely unknown.

2. Method and Data

[3] Deuterium (3D) data are presented from the Ferrigno
ice core (F10) drilled on the Bryan Coast, West Antarctica,
during the austral summer 2010/2011. Stable isotopes in
precipitation are widely used as a proxy for temperature;
however, the relationship between 6D and temperature is
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poorly defined in this region. The F10 record is significantly
correlated (r=0.44, P=0.01) with ERA-Interim temperature
(t850, 1979-2009), and we observe that the pattern of corre-
lation with atmospheric pressure and sea surface tempera-
tures (SSTs) is similar for both observational 6D and local
temperature from reanalysis; however, we do not assume that
dD is a quantitative temperature proxy. F10 was drilled using
an electomechanical drill (without drilling fluid) to a depth of
136 m on a three-way ice divide between the Ferrigno glacier
and the Pine Island glacier (74.57°S, 86.90°W, 1354 m above
sea level) in December 2010 (Figure 1b).

[4] The record was measured using a Los Gatos Liquid
Water Isotope Analyzer (model LWIA-DLT 100) with esti-
mated analytical precision of £1%.. Internal standards were
calibrated against international standards Vienna Standard
Mean Ocean Water 2 and Vienna Standard Light Antarctic
Precipitation 2. The record was dated using the summer
maxima in non-sea-salt sulfate measured with ion chroma-
tography, using a reagent-free Dionex ICS-2500 anion and
IC 2000 cation system. Samples were measured at 5 cm
resolution, corresponding to approximately 14 samples per
year, with annual averages calculated for January—December.
Eight major volcanic eruptions (1963, 1932, 1913, 1883,
1836/1837, 1822, 1815, and 1809/1810) are clearly visible in
the sulfate record and match the annual layer counted ages to
within 1 year. The estimated dating error for 2010-1810 is
+3 months; the estimated error for 1810-1702 is =1 year
(no independently dated volcanic tie points available).
Seasonal snowfall (from automatic weather station and
ERA-Interim data [Dee et al., 2011]) is evenly distributed at
this site, suggesting minimal precipitation bias. All correla-
tions presented in this study are carried out using detrended
data with the significance levels for Pearson’s correlation
calculated using the two-tailed ¢ test.

3. Result and Discussion

3.1. Rapid Warming Since 1957

[5] The annual average deuterium record (6D) from F10
(Figure 1) reveals that there has been an isotopic warming
in Ellsworth Land, observed as an increase in oD of
2.7+0.2%0 dec™' since 1957, statistically significant at the
99% confidence level. This is consistent with water isotope
trends observed in southern Palmer Land (Gomez ice core)
[Thomas et al., 2009] and continental West Antarctica
[Schneider and Steig, 2008; Steig et al., 2009] (Figure 2)
and a warming observed in instrumental records [Bromwich
et al., 2013]. However, the recent isotopic warming trend is
not the largest in the 308 year record. Larger 50 year
warming trends occurred in the middle to late eighteenth
century [+4.1%o dec™!(1740—1789)] and the mid-nineteenth
century [+3.8%0 dec™'(1888-1839)] with several equally
large cooling trends. Overall, there is no significant trend in
the 8D record since 1702 A.D.
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Figure 1. (a) Ferrigno (F10) annual average 6D (January—

December) and running decadal mean (thick line). Horizontal
dashed lines represent one and two standard deviations (o)
above and below the mean. (b) Order 6 Mortlet wavelet
analysis of the detrended annual average 6D. Black line
indicates the cone of influence; color shading indicates
>95% confidence levels.

[6] Wavelet analysis of the detrended 6D reveals strong
temporal variance in the 40—60 year domain prior to 1880,
fluctuating between cold and warm decades approximately
every 25 years, but a marked reduction in multidecadal
variability during the twentieth century (Figure 1b). This
suggests that at this site, a large amount of the isotopic
warming since the late 1950s occurred during a period of re-
duced multidecadal variability and has not yet taken the sys-
tem outside its natural range. This is consistent with a recent
study from continental West Antarctica [West Antarctic Ice
Sheet (WAIS) divide core, Figure 2], suggesting that the
anomalous §'®0 values and trends of recent decades are
not unprecedented [Steig et al., 2013]. However, on the
Antarctic Peninsula, the James Ross Island ice core revealed
that the high rate of warming over the past century is
unusual [Mulvaney et al., 2012]. The warming there has
been ongoing since ~1920s and is shown to be climatically
distinct from the climate signal seen in West Antarctic ice
cores [Abram et al., 2013].

3.2. What Is Driving the Recent Isotopic Warming?

[7] F10 8D has been correlated with 500 hPa geopotential
height (z500) from ERA-Interim (1979-2009) [Dee et al.,
2011] to reveal a band of statistically significant correlations
(>95% confidence) extending from the Antarctic Peninsula
to the tropical Pacific (Figure 3a). Atmospheric circulation
anomalies provide a corridor for enhanced northerly (onshore)
flow, drawing warm moist air to the ice core site. F10 6D has
been correlated with 2 m wind fields from ERA-Interim
(Figure 3b) to confirm that warm (less negative 6D) years
are associated with strengthening of the meridional winds
(onshore northerlies) between ~50-70°S, ~100-140°W
(contours in Figure 3b). This pattern is maintained in the
longer reanalysis data sets, including GISS [Hansen et al.,
2010] (1880-2004) and the Twentieth Century Reanalysis
Data [Compo et al., 2011] (1878-2008) (despite the

absence of observations in these longer data sets),
suggesting that the relationship may be maintained during
the twentieth century. Recent model ensembles of the
Southern Hemisphere climate variability have shown that
during the past 500 years, the mechanisms linking climate
in the Pacific with that of coastal West Antarctica have
remained stable [ Wilmes et al., 2012].

[8] The pattern of correlations with z500 and winds at
F10 are comparable with those observed at Byrd Station
[Bromwich et al., 2013] and the Gomez ice core, where warm
years are associated with enhanced northerly (onshore) flow.
Seasonal analysis of a suite of §'%0 records from the
International Trans-Antarctic Scientific Expedition ice cores
from West Antarctica determined that for all seasons,
above-normal 8'%0 values are generally related to enhanced
meridional (onshore) flow [Kiittel et al., 2012]. Correlating
the ERA-Interim 2 m meridional winds from the region of
greatest correlation with F10 (110-120°W, 65-70°S) with
2 m temperatures (Figure 3c) demonstrates that increased
northerly flow is accompanied by increased 2 m tempera-
tures across the whole of West Antarctica, Ellsworth Land,
and the southeastern Antarctic Peninsula (red shading in
Figure 3c). Although there is no trend in meridional winds
during the reanalysis period [coincident with the small trend
in 8D (+0.1%o yr~') and 2 m temperatures (+0.002°C),
1979-2009], this suggests that meridional winds in the
Amundsen Sea may be the common driver influencing
interannual temperature variability at F10 and the wider
West Antarctic region.

3.3. The Role of Tropical SSTs

[v] The winter and spring warming in continental West
Antarctica has been linked to sea surface temperature (SST)
changes in the tropical Pacific [Schneider and Steig, 2008;
Steig et al., 2009; Ding et al., 2011] close to the South
Pacific Convergence Zone (SPCZ). F10 3D is positively
correlated with SSTs [Reynolds et al., 2002] in the tropical
Pacific and the Southern Ocean (contours in Figure 3a).
The highest correlations are in the central Pacific (»> 0.6,
1981-2009), at the western edge of the SPCZ (~100-140°W,
~10-20°S; SST1 in Figure 3a), with smaller but statistically
significant correlations in the subtropical SPCZ region north
of New Zealand (~170°W, 30°S; SST2 in Figure 2a) and the
Pacific sector of the Southern Ocean (~130°W, ~60°S; SST3
in Figure 3a).

[10] Tt has been shown that SST anomalies under areas of
strong tropical convection have a significant influence on
the atmospheric circulation in the Amundsen Sea region,
through the generation of a large-scale atmospheric wave
train [Lachlan-Cope and Connolley, 2006; Ding et al., 2011].
Rossby waves forced from deep convection anomalies over
the tropical Pacific on interannual time scales are believed
to be related to El Nifio—Southern Oscillation (ENSO);
however, changes in the tropical Pacific that are not directly
related to ENSO can also influence the high-latitude circula-
tion [Ding et al., 2011]. F10 is poorly correlated with the
Southern Oscillation Index, suggesting that interannual
variability at this site is not directly related to ENSO. The
atmospheric teleconnection at F10 is better explained by
the second mode of covariability between z200 and SSTs
presented in Bromwich et al. [2013], which involves an
SST forcing in the subtropical SPCZ region (SST2 in
Figure 3a) that is not related to ENSO.
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Figure 2. (a) Map with key locations. (b) Time series referred to in the text as annual average (thin lines) and running
decadal means (thick lines) with correlation coefficients for each record with F10 8D (bold indicates decadal correlations,
single asterisk indicates >90% confidence, and double asterisk indicates >95% confidence). Gomez 8'®0 (red). Ferrigno
3D (black). WAIS 8'®0 (brown). SSTs from ERSST.v3 (blue) and Reynolds (pink) from SST zone 1 and SST zone 2.
Rarotonga SST reconstruction (green). Horizontal dashed lines indicate the record average from 1980 to 2005 (1980-1997
for Rarotonga). (c) Correlation plot of annual average 8D and annual average SSTs [Reynolds et al., 2002] with record loca-
tions. Annual averages calculated for January—December; blue boxes in Figure 2¢ indicate the area averaged for SST1 and

SST2, and darker shading indicates >95% confidence levels.

[11] To explore the teleconnection between F10 8D and the
climate in the Pacific over longer time scales, we compare
F10 with available reconstructions and proxy records from
the central and west Pacific (Figure 2). Oceanographic data
are extremely sparse (adding uncertainty to the SST recon-
structions); however, using the extended SST reconstruc-
tion from NCDC (ERSST.v3) [Smith et al., 2008], we
observe significant correlations in regions SST1 and SST2
(especially on the decadal scale) extending back to 1854
(Figure 2). In addition, a proxy record of SSTs from a coral
growing at Rarotonga [Linsley et al., 2000], in the Cook
Islands (21.5°S, 159.5°W), is close to our zone of positive
correlation with SSTs (SST2 in Figure 3a). There is a signif-
icant correlation (r=0.32, 1765-1995, >90% confidence)
(the full SST record is not used due to an unusual excursion
in the coral SST prior to 1765 [Linsley et al., 2000]) be-
tween the decadal average coral-derived SSTs and decadal
dD at F10, both exhibiting several synchronous warm and
cold periods over the past 240 years, further supporting
the tropical teleconnection over longer time scales.

3.4. Relationship With Sea Ice

[12] Sea ice extent in the Bellingshausen Sea has de-
creased in recent decades [Turner et al., 2009], and it has

been estimated that this may account for ~80% of the spring
warming on the Peninsula and ~20-30% of the inland
warming in West Antarctica [Schneider et al., 2011].
Negative anomalies in sea ice extent and the length of the
sea ice season in the Amundsen and Bellingshausen Seas
have been related to the warming trends observed in previ-
ous West Antarctic reconstructions [Steig et al., 2009;
Kiittel et al., 2012].

[13] There is a significant (>95% confidence) negative
correlation between F10 6D and both winter sea ice extent
[Cavalieri et al., 1996; Meier et al., 2006] (r=—0.37) and
winter sea ice concentrations (Figure 3b) [Comiso, 1999]
(r=-0.54) in the Amundsen and Bellingshausen Seas,
greatest during the sea ice maximum in September. The
region of greatest significance corresponds to the region of
significant correlation between F10 6D and meridional flow
(dashed contours overlain in Figure 3b), between ~100°W
and ~140°W. A reduction in sea ice concentration has been
shown to directly alter water isotopes through an injection of
relatively enriched water vapor, with some studies speculating
that water isotopes reflect changes in sea ice rather than tem-
perature [Bromwich and Weaver, 1983]. However, seasonal
studies of water isotope records from West Antarctica suggest
that both water isotopes and temperature are influenced by sea
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Figure 3. (a) Correlation plot of annual average F10 8D with
annual average 500 hPa (z500) geopotential heights (colored
shading) and annual average SSTs [Reynolds et al., 2002] (con-
tours) from 1981 to 2009. (b) Correlation plot of annual average
F10 8D with September sea ice concentration (colored shading)
and annual average surface meridional (v) winds (contours)
from ERA-Interim (1979-2009). (c¢) Correlation plot of annual
average meridional winds (110-120°W, 70—65°S) with annual
average 2 m temperatures from ERA-Interim (1979-2009).
Annual averages calculated for January—December; darker
shading indicates >95% confidence levels, and dashed con-
tours indicate negative correlations.

ice variations which are themselves driven by atmospheric
circulation [Kiittel et al., 2012].

4. Conclusions

[14] The new isotope record from Ellsworth Land, West
Antarctica, is ideally placed to capture climate variability
in the region surrounding some of the fastest flowing and
largest glaciers in West Antarctica. Climate variability at
this site is influenced by subtropical high pressure and
SST anomalies in the central and west Pacific. Reanalysis
data has been used to demonstrate the influence of meridio-
nal winds on surface temperatures at the F10 site and across

the wider West Antarctic region. Pacific SST reconstruc-
tions and coral data have been used to verify that the tropical
teleconnection extends beyond the instrumental period.

[15] Our results show that the large isotopic warming
(~2.7%o dec ") since the 1950s is not unusual, with equally
large warming and cooling trends observed several times
over the past 308 years. This is consistent with a study from
continental West Antarctica [Steig et al., 2013] which con-
cluded that this recent warming is not unprecedented in the
context of the past 2000 years. The record reveals a reduction
in multidecadal variability during the twentieth century and
suggests that the warming since the late 1950s has not yet
taken the system outside its natural range. This is not incon-
sistent with the exceptional recent global warming, during
which approximately 20% of the observationally covered
Earth’s surface still does not show 100 year trends that are
significantly larger than internal variability [Karoly and
Wu, 2005].
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