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Abstract:

Neoclassical accumulation of impurities in the core of hot stellarator plasmas is a known
problem. The complexity of neoclassical transport in stellarators means that few analytic
studies are available to support numerical modelling efforts, and a robust understanding
of the parameter dependence of the impurity flux is still lacking. Therefore we present an
extension of the existing analytic treatment for highly collisional plasmas, into the experi-
mentally relevant mixed collisionality regime – where a dominant heavy, collisional, impurity
is present in a collisionless bulk plasma, taken here to be in the 1/ν regime. We find that
temperature screening of the impurity flux by the bulk ion temperature gradient will arise.
We also determine the bulk ion flow in the flux surface, and thus the effect of the impurity
on the bulk ion contribution to the bootstrap current.

1 Introduction

The analytic treatment of neoclassical transport in a hot stellarator plasma is a difficult
problem, due to the complex magnetic field structure. Many numerical codes tackle this,
but supporting theoretical work is limited. With the commissioning of the W7-X stellara-
tor, the extension of the existing analytic work into the low-collisionality regimes relevant
to hot stellarator plasmas is of current interest [1]. The neoclassical accumulation of im-
purities in the core of stellarator plasmas is a known problem, but a robust understanding
of the parameter dependence of the impurity flux is still lacking.

A flux-friction formalism was introduced in [2] and used to determine the radial flux of
a single impurity, present in a background plasma. However, both the impurity and bulk
ion species were taken to be highly collisional and the applicability of such a regime is
restricted to edge plasmas. We have extended that work into the experimentally relevant
mixed collisionality regime, where a dominant heavy, highly charged and so collisional,
impurity species z is present in a collisionless bulk plasma. The bulk ion species i is
taken here to be in the 1/ν regime, so the effect of the radial electric field on the particle
trajectories is neglected. We evaluate the radial impurity flux, expressing it in terms
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of neoclassical transport coefficients, which give the response to the usual radial driving
gradients and consider the factors affecting the direction of the flux. We also calculate
the bulk ion parallel flow, which gives the bulk ion contribution to the bootstrap current
in this regime, accounting for the effect of the impurities.

2 Formulation

In this section, we outline the formalism used to calculate the radial impurity flux, follow-
ing [2]. The drift kinetic equation is expanded in the magnetisation parameter δa = ρa/L
as usual [3], where ρa is the gyroradius of species a, mass ma and charge Zae, and L
is a characteristic length scale, perpendicular to the background magnetic field. We as-
sume Zz > 1, but not so large as to require that δz is higher order with respect to
δi. Excluding the very low collisionality stellarator regimes, we take the geometry to
be sufficiently well optimised that the 1/ν regime can be produced, and the leading
order piece of the expanded distribution function fa = fa0 + fa1 + . . . is Maxwellian,
fa0 =

(

na/π
3/2v3Ta

)

exp (−v2/v2Ta), where v is velocity and the thermal velocity vTa =
√

2Ta0/ma. The background temperatures Ta0 of the species equalise, and quasineutral-
ity requires that the leading order potential φ0 = φ0(ψ) and density na0 are flux functions,
where ψ is the flux surface label. The first order drift kinetic equation for the distribution
function fa1 then takes the form Ca (fa1) = v‖∇‖fa1 + vda · ∇fa0 + (Zae/Ta0)v‖fa0∇‖φ1.
The independent velocity space coordinates are ǫa = mav

2/2+Zaeφ0 and µa = mav
2
⊥/2B,

and parallel and perpendicular are taken with respect to the background magnetic field
direction. The linearised, gyroaveraged, collision operator for species a is denoted by
Ca =

∑

bCab where the sum is over the ion species present. The effect of friction against
electrons, e, is small in the electron-ion mass ratio, so is neglected throughout.

Flux-friction relation The radial flux of a species is given by the total drift, magnetic
plus E ×B, and can be written as [2]

〈Γa · ∇ψ〉 =
〈
∫

fav
tot
da · ∇ψd3v

〉

=
1

Zae

〈

uBRa‖ +
(

pa‖ − pa⊥
) ∇‖(uB

2)

2B

〉

. (1)

The equilibrium function u = j0‖/p
′
0B is given in terms of the equilibrium pressure gra-

dient p′0, where a prime denotes the derivative with respect to ψ, and the equilibrium
parallel current j0‖, with B the magnitude of the magnetic field. Angled brackets 〈. . .〉
denote the flux surface average of a quantity. The drive due to the total parallel friction
Ra‖ = ma

∫

v‖Ca(fa1)d
3v may be compared to that due to the species’ pressure anisotropy

pa‖ − pa⊥. The parallel friction between unlike species drives the flux, and for the case
of disparate mass ions considered here we will have Rzi‖ ∼ mini

(

Vi‖ − Vz‖
)

νiz, in terms
of the bulk ion Vi‖ and impurity Vz‖ parallel flows. In a collisionality expansion of the
first-order drift kinetic equation the pressure anisotropy will appear in first order for the
collisional species [2]. We then find that the pressure anisotropy drive will be small when
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the collisionalities satisfy
1

ν∗iz
≪ niZ

2
z

nz

√

mi

mz

ν∗zz, (2)

where ν∗ab = νab/ωta = L‖/λ
ab
mfp, ωta is the transit frequency, L‖ is a characteristic parallel

lengthscale and the mean free path λabmfp = vTa/νab. We assume this ordering is satisfied
and will take the dominant drive here to come from the parallel friction. In the mixed
collisionality case considered, with Zz ≫ 1 and Zi ∼ 1, this imposes a lower limit on the
bulk ion collisionality.

Our task is then to calculate the interspecies friction. Momentum conservation in
collisions allows us to write the impurity flux in terms of the bulk ion-impurity parallel
friction Rzi‖ = −Riz‖, and we then use the common disparate mass form of the collision
operator Ciz (fi1) = νizD (v)

(

L(fi1) +miv‖Vz‖fi0/Ti0
)

to give

Rzi‖ = mi

∫

νizD (v)v‖fi1d
3v − mini0

τiz
Vz‖. (3)

Here we have noted that the pitch angle scattering operator L = (1/2)∂ξ (1− ξ2) ∂ξ is
self-adjoint, ξ = cos θ = v‖/v is the cosine of the particle pitch angle, the normalised
velocity xa = v/vTa, the deflection frequency νizD (v) = 3π1/2/4τizx

3
i = ν̂izD/x

3
i and the

collision time is τiz = 3(2π)3/2
√
miT

3/2
i0 ǫ20/nz0Z

2
zZ

2
i e

4 ln Λ. We thus require the bulk ion
distribution to first order and the impurity parallel flow.

Impurities By considering density conservation, using the v‖/B moment of the first order
drift kinetic equation written in conservative form and noting the equilibrium current
function satisfies ∇‖u = −B−1∇·(B−1b×∇ψ), we obtain a general form for the impurity
flow

Vz‖ =

(

1

nz0Zze

dpz0
dψ

+
dφ0

dψ

)

uB +
Kz (ψ)B

nz0
. (4)

Kz(ψ) is the flux surface function resulting from integration along a field line. To treat
the collisional impurity species, the first order drift kinetic equation is expanded in the
small parameter 1/ν∗zz. Beginning at order −1, we find Cz(f

(−1)
z1 ) = 0, that is the im-

purity distribution has the form of a perturbed Maxwellian. We can then constrain the
parallel impurity flow by considering momentum conservation through the first two or-
ders. In leading order it requires R

(1)
zi‖ = 0: by definition V

(−1)
z‖ ∼ δzvTzν∗zz, but eq. (3)

implies V
(−1)
z‖ ∼ δivT i. As we assume the bulk ion are collisionless ν∗iz < 1, allowing only

a finite impurity content Zeff − 1 = O(1) or explicitly ν∗iznzZz/niZ
2
i < 1, requires for

consistency V
(−1)
z‖ = 0, where neZeff =

∑

a=i,z naZ
2
a . Thus R

(0)
zi‖ is found to be the leading

order friction driving the particle flux. The flux surface function Kz is constrained by
parallel momentum conservation at zeroth order in the collisional expansion. The kinetic
equation to this order becomes a Spitzer-type problem for f

(0)
z1 [3], and the flux surface

average of the Bmv‖ moment gives
〈

BR
(0)
zi‖

〉

= 0. We find that this form, with eq. (3), is

sufficient and we will not need to determine the function Kz explicitly.



THC/PDP-15 4

Bulk ions The collisionless bulk ions are treated by expanding their first order drift ki-
netic equation in the small parameter ν∗ii. The piece of the distribution driven directly by
the potential perturbation φ1 gives no contribution here, so all such terms and the corre-
sponding piece of the drift kinetic equation are neglected in what follows. In leading order
v‖∇‖f

(−1)
i1 = 0 along the zeroth order particle orbit, so f

(−1)
i1 is a function of the constants

of motion (ψ, ǫ, µ, σ), and must be even with respect to σ = v‖/|v‖| in the trapped region
of velocity space. The orbit average of the zeroth order in the collisionality expansion,

v‖∇‖f
(0)
i1 = Ci

(

f
(−1)
i1

)

− vdi · ∇fi0, constrains the form of f
(−1)
i1 , when weighted by B/v‖.

In the passing region, the orbit average can be interpreted as a flux surface average on ir-
rational flux surfaces, and by continuity also on rational surfaces. The drift term gives no
contribution to the constraint, as the averaged radial drift of the passing particles vanishes,
which can be seen by using the conservative form of the magnetic drift vda = (v‖/Ωa)∇×
(

v‖b
)

, where b = B/B, so
〈

(B/v‖) (vdi · ∇fi0)
〉

=
〈

∇ ·
(

(v‖/Ωi)B×∇ψ
)〉

∂ψfi0 = 0.

The passing region constraint is thus
〈

(B/|v‖|)Ci
(

f
(−1)
i1,p

)〉

= 0. In the trapped region,

denoting consecutive bounce points by l1 and l2, the orbit average constraint reduces to
∑

σ

∫ l2
l1
dl
[

vdi · ∇fi0 − Ci

(

f
(−1)
i1,t

)]

/|v‖| = 0, where we have imposed the boundary con-

dition that the number of co-moving particles at each bounce point lj is equal to the
number of counter-moving ones [3], f (lj, σ > 0) = f (lj , σ < 0). At this point, we in-
troduce a momentum conserving model operator to describe bulk ion self-collisions [4],
which allows the form of the bulk ion distribution to be obtained explicitly: Cii (fi1) =
νiiD(v)

(

L (fi1) +miv‖Vi‖fi0/Ti0
)

, where the full energy dependent deflection frequency
νiiD(v) = ν̂iiD (φ(x)−G(x)) /x3i , ν̂

ii
D is defined in analogy to ν̂izD , ν

i
D(v) = νiiD + νizD , φ(x)

is the error function and G(x) is the Chandrasekhar function. The momentum restor-
ing coefficient Vi‖ is set by requiring momentum conservation in bulk ion self-collisions,
∫

v‖Cii (fi1) d
3v = 0. We see from the constraint equations above that the momentum

restoring term would try to drive a piece of the distribution f
(−1)
i1 which is odd in v‖. In

the trapped region we have noted the odd response must be zero, and as the leading order
contributions to Rzi‖ and Vz‖ are zeroth order in the impurity collisionality expansion, we

require for consistency V (−1)
i‖ = 0. Therefore, f

(−1)
i1,p = 0, leaving f

(−1)
i1 here even in v‖ and

non-zero only in the trapped region.

Flow Finally, integrating the zeroth order equation along the leading order particle orbit,
starting from a point l0 on the flux surface, gives directly

f
(0)
i1 =

∫ l

l0

[

Ci

(

f
(−1)
i1

)

− vdi · ∇fi0
] dl′

v‖
+ C0 (ǫ, µ) . (5)

The odd piece of this function will give the parallel friction and current contribution of
interest here. The integration constant is determined by the parallel momentum constraint

arising at next order in the collisionality expansion, that is
〈

(B/|v‖|)C
(

f
(0)
i1

)〉

= 0 in the

passing region and
∑

σ

∫ l2
l1
dlCi

(

f
(0)
i1

)

/|v‖| = 0 in the trapped region. In the latter, as

f
(−1)
i1,t is even, along with vdi, the

∑

σ will annihilate everything but an odd contribution
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from C0. However, C0 must be even in the trapped region, as it must vanish at the
bounce points to satisfy the continuity condition, so C0 must be zero here in the trapped
region. Introducing the velocity space coordinate λ = v2⊥/v

2B, where ∇‖

∣

∣

ǫ,µ
λ = 0, in the

passing region, λ < 1/Bmax, where Bmax is the maximum magnetic field strength on a

flux surface. Inserting the explicit form for f
(0)
i1 in the passing constraint, the drift term in

conservative form generates ∂λ
∫ l

l0
dl′vdi · ∇fi0/v‖ = −(σvmi∂ψfi0/2Zie)

∫ l

l0
dl′
(

b̂×∇ψ
)

·
∇
(

1/
√
1− λB

)

and the passing region constraint on C0 takes the form

∂C0 (v, λ)
∂λ

= − σv

v2T i

fi0
〈√

1− λB
〉

(

T

ei
G ∂ ln fi0

∂ψ
+

〈(

νiiDVi‖ + νizDVz‖
)

B
〉

νiD(v)

)

. (6)

We have introduced the geometry function G here, equivalent to 〈g4〉 in previous work [5]

G =

〈√
1− λB

∫ l

l0

(

b̂×∇ψ
)

· ∇
(

1√
1− λB

)

dl′
〉

. (7)

With the expressions for f
(0)
i1 and Vz‖ in hand, we can now evaluate the moment

required to give the contribution to the impurity flux,
〈

uBRzi‖

〉

. The same piece of
the distribution gives the bulk ion flow, and thus contribution to the bootstrap current,

via the integral
〈

J i‖B
〉

= Zie
〈

B
∫

v‖f
(0)
i1 d

3v
〉

. To clarify the evaluation with momen-

tum conservation in an impure plasma, we take a simplified energy dependence in the
bulk ion self-collision frequency, so νizD/ν

ii
D ≈ τii/τiz = nzZ

2
z/niZ

2
i ≡ ζ. The param-

eter ζ usefully represents the impurity content and this approximation reproduces the
correct limits for Zeff → 1 and Zeff → ∞. Note that neglecting the momentum con-
serving terms retained here in Ci produces the usual result [5, 6] obtained with only a

pitch angle scattering collision operator,
〈

J i‖B
〉PAS

= pi0A1i [fs(G) + 〈uB2〉]. We have

introduced the function fs to describe the trapping effect of the magnetic geometry,

fs(y) = (3/4) 〈B2〉
∫ 1/Bmax

0
dλλy/

〈√
1− λB

〉

, and made the identification 〈g2〉 = −〈uB2〉
for the function commonly occurring in this context: g2 = B2

∫ l

l0
dl′
(

b̂×∇ψ
)

· ∇B−2.

3 Transport Coefficients

The final expressions for the impurity flux and bulk ion bootstrap current may usefully be
written in terms of a set of transport coefficients L, giving the effectiveness of the radial
driving gradients in the system, defined as

A1a =
d ln pa0
dψ

+
Zae

Ta0

dφ0

dψ
, A2a =

d lnTa0
dψ

. (8)

Although the effect of the radial electric field on the ion orbits was neglected, a finite
drive from φ0 formally remains at large aspect ratio [3]. We find

〈Γz · ∇ψ〉 =
mipi0

ZzZie2τiz

[

Lzz11A1z + Lzi11A1i + Lzi12A2i

]

, (9)
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with

Lzi11 =
[

〈

u2B2
〉

− 〈uB2〉2

〈B2〉

]

, Lzi12 = −3

2
Lzi11, Lzz11 = − 1

Zz
Lzi11. (10)

The drive from the electric field, appearing through both A1z and A1i, formally cancels.
The Schwartz inequality shows that the geometric coefficient, appearing in square brackets
in Lzi11, is positive definite. This gives rise to the outward flux due to A1z required by
entropy considerations, but notably, from Lzi11 and Lzi12, produces a net outward impurity
flux due to the bulk ion temperature gradient - that is temperature screening, analogous to
that occurring in tokamaks. This is independent of the details of the magnetic geometry
or impurity content. This contrasts to the result found previously at high collisionality,
where the impurity flux was driven inward [2]. The bulk ion contribution to the bootstrap
current is

〈

J i‖B
〉

= pi0
[

Lii31A1i + Lii32A2i

]

, (11)

with

Lii31 =
1

1− fs(1)

[

fs(G) +
〈

uB2
〉]

, Lii32 = − fs(1)

1 + ζ

(

ζ +
2η2
3η1

)

3

2
Lii31. (12)

The coefficients η1 =
√
2− ln(1+

√
2) and η2 = −(1/

√
2)+(5/2)η1 arise from the velocity

space integrals determining the bulk ion momentum restoring coefficient Vi‖. In the pure

plasma limit, the form of
〈

J i‖B
〉

here reduces to that obtained previously accounting for

momentum conservation in self-collisions [6], with numerical differences in the coefficients
due to the different collision operators used.

Indications of temperature screening of the impurity flux with decreasing collisional-
ity were seen in a previous numerical study with the SFINCS transport code [7], which
solves the drift kinetic equation for an arbitrary number of species, using the full lin-
earised collision operator in arbitrary stellarator geometry. We have therefore begun a
dedicated comparison. Taking the standard configuration W7-X equilibrium presented
in [7], we have evaluated the radial profile of the impurity flux (formally neglecting the
dφ0/dψ drive) and the effect of including momentum conservation, in the presence of the
impurities, on the bootstrap current profile. We have assumed a reduced temperature,
specifically Ti/4 to satisfy the collisionality restrictions required here. We take a constant
Zeff = 1.5, assumed to be due to fully ionised C6+ impurity. The radial profiles of the
predicted impurity flux coefficients obtained from SFINCS are shown in FIG. 1a, nor-
malised to compare to the predicted value of Lzi11, which is positive, as expected. We find
very good agreement. In FIG. 1b, the profile of the predicted bulk ion bootstrap current
coefficients are compared to those from SFINCS, and that obtained when only pitch angle
scattering is retained in the collision operator, as given in Sec. 2. The well-known effect
of resonances [9] which arise when evaluating the geometry coefficient [fs(G) + 〈uB2〉] can
be seen.
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FIG. 1: Radial profiles, against square root of the normalised toroidal flux, of a) the
predicted geometry factor Lzi11 (solid black) compared to the normalised impurity flux coef-
ficients from SFINCS: Lzi11 (dash black), −2Lzi12/3 (dash blue), −ZzLzz11 (dot-dash purple)
and b) the bootstrap current coefficients Lii31 (black), Lii32 (blue) predicted (solid) and from
SFINCS (dash). With only pitch angle scattering ion collision operator, Lii32 = 0, dot-dash
black predicted Lii31. Note SFINCS output Lzz12, Liz31, Liz32 too small to be visible.

4 Discussion

The understanding and control of impurity transport in stellarators remains an open
issue, with impurity accumulation typically predicted. The analysis of stellarator impurity
transport in terms of a general flux-friction relation was introduced previously to treat
collisional plasmas. Here we have extended this treatment into the more experimentally
relevant mixed collisionality regime, in which a heavy, highly charged, collisional impurity
is present in a collisionless, hydrogenic, bulk plasma in the 1/ν regime. When the bulk
ion collisionality against the impurities is sufficient, the impurity flux is dominated by
the drive from the friction, and the effect of the weak impurity pressure anisotropy can
be neglected. This requirement sets the range of validity of the analysis here, which can
potentially be satisfied in W7-X type equilibria, during cooler phases of operation. The
notable result is that in this mixed collisionality limit impurity temperature screening can
arise, and it is independent of the details of the system geometry or impurity content.
Such behaviour was indicated in a previous numerical study with the SFINCS code [7]
and has been confirmed in the dedicated comparison started here.

The calculation of the radial flux by a flux-friction relation requires the piece of the
bulk ion distribution which is odd in the parallel velocity. As this also gives the parallel ion
flow, we have evaluated the bulk ion contribution to the bootstrap current in this regime,
accounting for the presence of impurities and momentum conservation in collisions. The
geometry dependent factors which appear are unchanged from those in existing calcula-
tions for a pure plasma, and our results reduce to these expressions in the appropriate
limit. We have also evaluated the radial profile of the predicted ion contribution to the
bootstrap current numerically for a W7-X-like equilibrium, and find that the correction
to the profile predicted using only a pitch angle scattering collision operator is modest.



THC/PDP-15 8

The main limitation of the analysis presented here is the neglect of the effect of the
radial electric field on the bulk ion trajectories. Whilst this is not an unreasonable as-
sumption for the collisional impurity species, we expect that the bulk ions will usually be
in one of the lower collisionality regimes during hot operational phases, where the electric
field is necessary to ensure their confinement. The light electrons will typically remain
in the 1/ν regime, and so can be described by a similar formalism to that presented.
An extension of the calculation to such a regime is under consideration, which would be
needed to determine the value of the ambipolar electric field.
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