

Very High Temperature Reactor

Collaborative R&D, Demo Projects, Market

Michael A. Fütterer (EU)

on behalf of the GIF VHTR System Steering Committee michael.fuetterer@ec.europa.eu

GIF – IAEA Interface Meeting

Vienna, 26-27 March 2018

Outline

- 1. System overview
- 2. Projects and Highlights
 - Materials
 - Fuel and Fuel Cycle
 - Hydrogen Production
 - Computational Methods, Validation & Benchmarks
- 3. Future collaborative projects
- 4. Related international activities
- 5. Main potential HTR vendors
- 6. Market Studies and Economics
- 7. Wrap-up and Announcement of HTR 2018

1. System Overview

- 7 Signatories: CH, EU, FR, JP, KR, US, CN
 - + CDN in H₂ Production project
 - + Australia in Materials project
- Next SSC Meeting: 17-19 April 2018 in Sydney

Active projects:

- 1. Materials
- 2. Fuel and Fuel Cycle
- 3. Hydrogen Production
- 4. Computational Methods, Validation & Benchmarking (approved by SSC, ready for signature)

2.1 Materials

Objectives:

- Development and qualification of materials
 - Irradiation-induced and/or environmental and/or time-dependent material failure
 - ≤ 950°C: existing materials
 - ≤ 1 000°C (incl. safe operation under off-normal conditions and involving corrosive process fluids): new materials with development and qualification needs
- Design codes and standards
- Manufacturing methodologies
- Improved multi-scale modelling to support inelastic FEM analyses
- High-temperature heat exchangers and steam generators

3 Material Categories and corresponding WG:

- 1. graphite for core structures, fuel matrix, etc.;
- 2. very/medium-high-temperature metals;
- 3. ceramics and composites.

https://gen4www.ornl.gov

Materials handbook: developed and used to store and manage VHTR data, facilitate international R&D co-ordination and support modelling to predict damage and lifetime. Thousands of data sets uploaded.

2.1 Materials

- Two scheduled tracks at the GIF Symposium in October 2018 may include structural materials activities that crosscut multiple reactor systems, including advanced manufacturing methods
- A dedicated crosscutting session of VHTR Materials PMB meeting to be held in conjunction with the GIF Symposium will include participation from other structural materials related PMBs/SSCs
 - SFR PMB on Advanced Fuel
 - MSR Provisional SSC
 - LFR Provisional SSC
 - GFR SSC
 - SCWR PMB on Chemistry & Materials had conflicts/was absent
- A GIF Task Group to examine overall materials crosscutting needs to be formed

Example from VHTR Materials PMB Graphite Working Group

Irradiation effects on Oxidation-resistant Graphite(1/3)

1.6: Graphite Irradiation Effects

JAEA

Objectives

To clarify irradiation effects on oxidation-resistant graphite

Collaboration

- > JAEA : Analysis, Evaluation
- INP Kazakhstan : Irradiation using WWR-K reactor
- TovoTanso, IBIDEN, TOKAI CARBON, Nippon Techno-Carbon : Supply graphite specimen

Under the framework of ISTC partner project

<u>R&D Items</u>

- Evaluation of irradiation effects and oxidation behaviour
 - Integrity of SiC surface coating
 - Oxidation resistant performance

Present Status

- Irradiation test by WWR-K reactor: completed 200days, 1200C
- Capsule dismantling: completed specimens were extracted from 2 capsules
- First PIE at INP: completed dimension, weight, surface condition
- Second PIE at INP: completed
 Oxidation test for irradiated samples

2.2 Fuel and Fuel Cycle

- Several fuel irradiation tests completed, PIE and safety testing ongoing (US, EU+CN, KR)
- Data analysis from irradiation and PIE: fission product balance, safety testing, destructive analysis (deconsolidation-leach-burn-leach, gamma counting of individual particles, finding and analyzing particles with failed SiC, non-destructive particle x-ray analysis, particle microanalysis)
- Property measurements of irradiated coatings (EU, FR, JA, KR)
- Sample preparation for Leach-Burn-Leach round robin (US, KR, CN)

X-rays of simulated coating defects

- AGR-2 Completing analysis of fission product inventory in the graphite fuel holders, study of irradiated compact cross-sections. Destructive compact examination and safety tests in progress.
- AGR-3/4 PIE is currently in progress
- AGR-5/6/7 is the final fuel qualification irradiation and performance margin test. Fuel fabrication completed at BWXT
- Progress has been made on the round robin experiment to benchmark the Leach-Burn-Leach (LBL) process
- Conceptual design for an in-cell furnace for heating fuel specimens in gases containing oxygen and moisture completed

- Two INET pebbles irradiated in Europe were transferred from NRG to JRC in April 2016, together with 5 irradiated pebbles for HTR-PM. PIE on HFR-EU1 will be performed in 2018. (HTR-PM irradiation and safety testing performed between China and EU as a bilateral contract.)
- Hot cells and key equipment was designed. Construction started in October 2017.
- R&D on coated particles with UCO kernel and ZrC coating ongoing.
 First stage on UCO kernel manufacturing completed.

Objectives:

Was original driver for VHTR development. After initial work by several signatories, SI and HTSE identified as most promising.

 Feasibility, optimization, efficiency and economics at small and large scale

nternational

- Performance and optimization in test loops, from lab scale through pilot and demo scale
- Component development (e.g. advanced process heat exchangers)
- Coupling technology with the nuclear reactor incl. risk analysis of potential interactions between nuclear and non-nuclear systems
- Technical and economic feasibility in dedicated or cogen mode
- Reduction of process temperature to gain compatibility with other GIF concepts

- Signatories: CDN, EU, FR, US, KR, JA + CN
- Most recent PMB meeting Cologne, Germany, 17-19 October 2017
- Processes:
 - Sulfur/Iodine cycle: KR, JA, CN
 - High-Temperature Steam Electrolysis: FR, US, EU, CN, CDN
 - Hybrid copper-chloride cycle: CDN
 - > Hybrid sulfur cycle: ?
- Output:
 - Use of HTTR as heat source will enhance credibility of nuclear H₂ production;
 - Good: Contributions from non-nuclear projects
 - Project successfully re-invigorated, more collaboration

- **Canada:** Copper-Chlorine cycle for demonstration over the next 3 to 5 years. Collaboration with University of Ontario.
- US: New INL Project DETAIL (Dynamic Energy Transport and Integration Laboratory): dynamic coupling of nuclear, renewables, electrolyzers (PEM & HT), and industrial processes to maximize renewable penetration, revenue, grid stability, etc.
- Japan: Continuous H₂ production tests on the IS process engineering facility
- Korea: 50 I/h scale SI Integration Test (2014), Modification of Sec I & Sec III and 50 I/h scale SI Integration Reproducibility
- Europe: HTSE using solar energy; use of H₂ for Hybrid Energy Systems;
- China (observer): Safety of SI process, development of prototype acid decomposers for H₂SO₄ and HI;

- Several facilities combining 3 elementary processes to a thermo-chemical cycle process were built and operated (JA, CN)
- Continuous, stable operation at 20-60 l/h for almost 4 days
- Progress in materials, components, optimization of elementary processes, process control, safety, system integration, cost evaluation etc.

Hydrogen production test facility at JAEA Oarai

2.4 Computational Methods, Validation & Benchmarking

Objectives:

- Tools to assess reactor performance in normal, upset and accident conditions.
 - Construction of a phenomena identification and ranking table
 - Computational fluid dynamics
 - Reactor core physics and nuclear data
 - Chemistry and transport
 - Reactor and plant dynamics
- Code validation
 - benchmark tests
 - code-to-code comparison
 - basic phenomena to integrated experiments
 - supported by HTR-10 and HTR-PM tests or by past reactor data (e.g. AVR, THTR and Fort Saint-Vrain)
- eliminate unnecessary design conservatisms and improve construction cost estimates

2.4 Computational Methods, Validation & Benchmarking

Output:

- HTR-10 in-core temperature measurement ongoing
- CN considers input from one or several of 16 HTR-PM engineering test facilities (useful for V&V of codes and methods)
- KR works on experimental validation of hybrid air/water RCCS (safety relevant)
- US has constructed test facilities (HTTF, NSTF, MIR...) to validate codes

Productive upfront collaboration:

Good: several signatories already active and will contribute results as BPI

KAERI Hybrid RCCS Test Facility

3. Future Collaborative R&D Topics

- Targeted towards medium-term demonstration and long-term performance.
- Some topics suitable for collaboration within GIF, others more for IAEA or OECD/NEA or bilateral collaboration frameworks.
- Headlines (cf. GIF R&D Outlook):
 - 1. Materials (advanced), Components and Supply Chain
 - 2. Design, System Integration and Cost Reduction
 - 3. Safety Demonstration and Licensing (IAEA CRP, OECD/NEA GSAR)
 - 4. Fuel, (advanced) Fuel Cycle, and Waste Minimization
 - 5. Coupling to Cogeneration Applications
 - 6. Energy System Integration (Advanced Energy Use and Storage Methods, Hybrid Energy Systems)

➔ Ample opportunities for further fruitful cooperation on HTGR, VHTR and process heat applications

4. Related international activities

PRIME

- Joint effort of NC2I, NGNP IA, JAEA and KAERI for demo
- Workshops in Paris, Washington, Piketon, Brussels, Las Vegas, Warsaw
- Related EU project kicked off in Sept 2017 (GEMINI+), focus on Poland; expected results similar to various NGNP business plans (Wyoming, Kentucky), synergies with INL project DETAIL, next meeting on 13 April 2018 in Prague;
- Modular design to meet common needs:
 - similar components
 - e.g. 165 MWth pure steam to meet industry requirements in Poland

UK Department for Business, Energy & Industrial Strategy

SMR Techno-Economical Assessment and £ 250 million SMR call (participation of GEMINI);

LWR and HTGR with high TRL are being considered for medium-term deployment; Next steps: financing of approx. 10 feasibility studies, thereafter technology development for shortlisted designs (£ 10 million each)

5. Main potential HTR Vendors

All contacted to complete GIF SIAP questionnaire Details received from INET, AREVA, JAEA

Vendor	Product		
CNNC	HTR-PM, 250 MWth / HTR-PM600, 600 MWe, pebble bed, electricity		
AREVA Inc.	SC-HTGR, 625 MWth, block, cogen, http://us.areva.com/EN/home-3225/areva-inc-areva-htgr.html		
(NIA/NC2I/KNHA)	NHSS, 350 MWth (200 – 625 MWth), block, cogen, <u>www.ngnpalliance.org</u>		
X-Energy	Xe-100_200 MWth_people bed_https://www.x-energy.com/		
HTMR	HTMR-100, 100 MWth, pebble bed, http://www.thorium100.com/HTMR-100%20Reactor.php		
	36 MWth + 20 MWe, cogen, static pebble bed (2013, http://starcorepower.com), now block		
Starcore Nuclear	(<u>http://starcorenuclear.ca</u>)		
JAEA	GTHTR-300, 600 MWth, block, electricity, cogen, H ₂ , <u>http://httr.jaea.go.jp/eng/</u>		
LI Battery cons	II Battery 10 MWth block cogen https://www.u-battery.com/what-is-u-battery		
o battery cons.	o battery, to wwith, block, cogen, https://www.d battery.com/what is a battery		

6. Market Studies and Economics

Very significant information compiled and analyzed by:

- IAEA TECDOCS, Technical Meetings etc.
- OECD/NEA publications (cf. slides by Marc Deffrennes)
- German HTR Program (PNP for coal refining) in 1970-1989, especially after oil crises
- South Africa: Techno-economics of use of process heat from HTGR for CTL

Focus here on (process heat, H₂, electricity):

- EU: NC2I (MICANET, Europairs, ARCHER, NC2I-R, GEMINI+)
- US/Canada: NIA (Wyoming, Kentucky, Texas, oil sand recovery)
- China: electricity and process heat
- South Korea: process heat and H₂
- cf. summary at GIF PG meeting October 2017

6. Market Studies and Economics

Kegion	Plug-in market	Total market	GDP 2011 (approx.)
Europe	~ 800 TWh/y (EUROPAIRS)	~ 3,000 TWh/y (EUROPAIRS)	17,000 bn€ / 25% of world
USA	~ 1,100 TWh/y (MPR Associates)	~ 3,600 TWh/y (MPR Associates)	15,000 bn€ / 22% of world
Japan		1,000 – 1,400 TWh/y (est.)	5,900 bn€ / 8% of world
China		1,200 – 1,700 TWh/y (est.)	7,000 bn€ / 10% of world
India		300 – 500 TWh/y (est.)	2,000 bn€ / 3% of world
Russia		300 – 500 TWh/y (est.)	2,000 bn€ / 3% of world
World total	3,000 - 5,000 TW h/y ~ 370 – 630 GWth	11,000 – 16,000 TWh/y	69,000 bn€

Not a niche market but room for several hundred reactors!

Source: Bredimas

6. Market Size in EU28

7. Wrap-up

- GIF VHTR projects share expertise and infrastructure and progress well
- FFC and MAT projects are in a productive harvesting phase
- HP and CMVB projects were successfully revitalized (increased interest from energy system integration, improved personal commitments)
- Excellent collaborative achievements confirm usefulness of GIF
- Several countries active in VHTR (several companies, new projects)
 - Safety, high efficiency, process heat applications (steam, H₂)
 - PRIME [Poly-generation Reactor with Inherent safety, Modularity and Economic competitiveness (EU,US,JA,KOR)], Test Reactor and Demo in PL BATAN (Indonesia), StarCore Nuclear (Canada), X-Energy (US)
 - HTTR (Japan) accelerated regulator OK would be extremely positive
 - HTR-10 (China) is running
 - HTR-PM (China) start-up at end-2018
- Synergistic cooperation with IAEA and OECD/NEA

Warsaw (Novotel), 8-10 October 2018

More than 100 papers received

Track-1: National Research Programs and Industrial Projects Track-2: Industrial Applications and Markets Track-3: Fuel and Waste Track-4: Materials, Components and Manufacturing Track-5: Reactor Physics Analysis Track-6: Computer Codes and Analysis Track-7: Development, Design and Engineering Track-8: Safety and Licensing

24