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Abstract

Referring expression is a kind of language expression

that used for referring to particular objects. To make the

expression without ambiguation, people often use attributes

to describe the particular object. In this paper, we explore

the role of attributes by incorporating them into both re-

ferring expression generation and comprehension. We first

train an attribute learning model from visual objects and

their paired descriptions. Then in the generation task, we

take the learned attributes as the input into the generation

model, thus the expressions are generated driven by both

attributes and the previous words. For comprehension, we

embed the learned attributes with visual features and se-

mantics into the common space model, then the target ob-

ject is retrieved based on its ranking distance in the common

space. Experimental results on the three standard datasets,

RefCOCO, RefCOCO+, and RefCOCOg show significant

improvements over the baseline model, demonstrating that

our method is effective for both tasks.

1. Introduction

Referring expression [27] is a particular kind of hu-

man expressions that focuses on effectively describing the

unique object in some environments. The interactive pro-

cess of referring expression generation and comprehension

exists in our everyday life. Given the target object and its

distractions, one often uses the target’s unique attributes to

describe it. For instance, “a girl in a red skirt” contains the

attributes “girl”, “red” and “skirt” to differentiate the girl

from other people in a particular scenario. The more ac-

curate and rich the attributes are, the easier for the listener

to comprehend which object is referred. This is where the

difference lies between referring expression generation and

red double decker bus

man with red tie donut with hole

most front elephant

Figure 1. Some examples of our results. The first row are two

examples of referring expression generation. The target object is

shown in contour. The second row are two examples of referring

expression comprehension. The green boxes are ground truth and

the blue boxes are retrieved boxes.

natural language generation. On the other side, the task of

comprehension requires the listener to prove his compre-

hension by pointing to the target object’s location, which is

based on the quality of the listener’s interpretation of the ex-

pression. Figure 1 illustrates the two tasks. The top row and

bottom row are examples of generation and comprehension

respectively. In this paper, we mainly focus on the usage of

visual attributes in both referring expression generation and

comprehension, and the approach to effectively incorporate

them into both tasks.

Modern approaches of referring expression [7, 16, 31]

rely heavily on the encoding of both the image and the lan-

guage. For referring expression generation, discriminative

features from different modalities like appearance and loca-
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tion are encoded by a neural model like convolutional neural

network (CNN). Then a long short term memory (LSTM)

model is adopted to decode the visual encoding into a re-

ferring expression. For referring expression comprehen-

sion, there are two approaches generally used. The first one

is based on the generation model, wherein the probability

P (r|o) of the referring expression r given the object o can

be obtained. By Bayes’s rule, the most likely object can be

obtained with the maximum posterior probability P (o|r).
Another approach is to embed the target object and its ex-

pression into a common space. Then the task can be ad-

dressed in a retrieval manner, wherein the target object is

selected with the minimum distance to the expression in the

common space. To make the comprehension process an au-

tomatic system, object detection systems can be utilized to

obtain a group of candidate objects in the first place.

Our approach explores the role of attributes in referring

expression. A target object is unique because it has unique

attributes or a unique combination of attributes. For in-

stance, the expressions of “A man” and “A woman” are un-

ambiguous when there are only a man and a woman in a

scenario, but are ambiguous when there are two men and a

woman. To address the problem, an expression with more

attributes like “A man with a hat” has to be used. In this pa-

per, we address the tasks of referring expression generation

and comprehension in two separate models. In generation,

we extend the traditional CNN-LSTM model to take the

learned attributes as the extra input to the LSTM model, so

that the generated expression bears more accurate attributes

correlated with the input attributes. For the comprehen-

sion task, we frame the problem in the retrieval approach,

wherein the attributes and the expressions are embedded

into a common space. The target object is retrieved based

on its ranking distance to the queried expression. To model

difference between objects, the hinge loss based MMI [16]

is used in both models, wherein we dynamically alter the

margin to let the model be aware of the categories of the

distracted objects. Finally, we discuss the effective way to

construct the attribute learning model for referring expres-

sion. Though there have been some works [30, 28] using

semantic attributes in image caption and other tasks, we are

the first to embed it into both models in referring expres-

sion. We also analyze on the successful and failure cases of

our model in both tasks, and point out the correctness and

defects of modern attribute learning models.

Figure 2 illustrates our framework, which is composed

of the attribute learning model, the expression generation

model, and the expression comprehension model. The at-

tribute learning model outputs the attributes of both the tar-

get object (green solid box) and its distraction (green dashed

box). Then the attributes are embedded into both the gener-

ation and comprehension model. To focus on the attributes

in the figure, we omit the display of other visual features.

Generative loss and hinge loss are computed on the two

models respectively.

2. Related Work

With the development of powerful neural models for vi-

sion and language, the intersection of vision and language

has witnessed the emergence of more and more tasks. From

early applications like image caption [2, 24, 9, 29, 19] and

image/text retrieval [4, 15], to image question answering [1]

and text based grounding object localization [21].

Image Caption: Modern approaches of image caption are

based on the CNN-RNN architecture [5, 2, 24]. The CNN

feature extracted from the image is taken as input to the

LSTM network, wherein both the visual signal and previous

words guide the generation of next words. Attention mod-

els first proposed in natural language processing have also

drawn inspiration on image caption. The attention mecha-

nism shifts attention either at spatial level [29] or semantic

level [30]. A more specific variation of image caption is

to exploit the caption at a region(object) level, e.g., struc-

tured alignment of words/phrases in sentences and regions

in images [11], and provide a dense group of region cap-

tions [10]. These tasks do not focus on the unambiguity of

the caption, so that differ from referring expression genera-

tion/comprehension.

Image/Text Retrieval: Different from image caption

model that generates the sentence, image/text retrieval ad-

dresses the problem in a data-driven approach. Multi-modal

embedding has been studied a lot recently [26, 8]. Tradi-

tional approaches adopt CNN and CNN/LSTM to encode

the image and texts/sentences in their feature space, then

neural models like MLP embed them into a common space.

The retrieval can be formulated as a classification or a rank-

ing based framework. The method in [8] includes a multi-

modal context-modulated attention scheme so that it can se-

lectively attend to pairwise instances of image and sentence,

and then dynamically aggregate measured similarity to ob-

tain a global matching score for image and text.

Referring Expression Generation/Comprehension: Re-

ferring expression generation and comprehension are two

complementary tasks which are always jointly addressed

within the field. The generation task requires the system to

generate an unambiguous expression that describes a par-

ticular object. Both visual features and location features

are commonly used as the representation of target objects.

To focus more on the uniqueness of the target object, re-

cent works of [31, 18] also model the contexts of the target

object. The context can either be used as the target’s asso-

ciated attributes or its contrast. Early works use rule-based

model [17, 3] to generate the expression, while recent works

rely on the LSTM model [6]. To model the difference of

objects Max-margin Maximum Mutual Information(MMI)
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man 0.95
sit 0.68
...

wheel 0.82

man 0.88
stand 0.77
...
bag 0.79

<start>       guy              in         wheelchair

 guy              in       wheelchair   <end>

LSTM

Euclidean distance

Euclidean distance

Hinge Loss guy in wheelchair

attributes

attributes

embedding

embedding

comprehension model

generation model

attribute learning model

LSTM

Figure 2. Illustration of the attribute embedded model. The framework is composed of the attribute learning model, the expression gener-

ation model and the expression comprehension model. The attribute learning model outputs the attributes of the target object (solid green

box) and its distraction (dashed green box). The attributes are embedded into the generation model and the comprehension model. The

generative loss and hinge loss are computed on the two models respectively.

is adopted in [16]. The generated expressions can be re-

ranked by an offline comprehension model in the postpro-

cess. For the comprehension task, early methods of [7, 16]

base on the trained generation model, selecting the object

with the maximum posterior probability, where more recent

approach [21] applies embedding model to retrieve the tar-

get object.

3. Model

We address referring expression generation and compre-

hension in two separate models. In Section 3.1, we review

the basic framework of the generation model, and the at-

tribute embedded framework. In Section 3.2, we introduce

the common space embedding model with attribute embed-

ded. In Section 3.3, we discuss how to effectively train an

attribute learning model.

3.1. Attribute Embedded Generation Model

The input of the generation model is an image I and a

target object o, and the output is the referring expression r.

The generation model is trained to maximize the likelihood

of the correct expression by using the following formula-

tion:

θ∗ = argmax
θ

∑

i

log p(ri|Ii, oi) (1)

where θ are the parameters of the model. In this paper, we

use the CNN-LSTM framework commonly used in previous

works [7, 16] as our generation model. Human often use

features from different modalities, e.g., appearance and lo-

cation/size descriptions to refer to the target. To encode the

visual feature, activations from VGG-fc7 are extracted from

the object region as in [16]. For the location/size feature li,
a 5-dimension vector

[
xl

W
, yt

H
, xr

W
, yb

H
, w·h
W ·H

]
is often used to

encode the information, where xl, yt, xr, yb are coordinates

of the object region and w, h,W,H are widths and heights

of the region and the image. Other features, e.g., global

features and comparison features [16, 31] are also used to

improve the performance. The final visual representation

vi of the target object is a concatenation of above features

followed by a fully-connected layer of them.

vi = Wt ([oi, li]) + bt (2)

On top of the above visual features, we define the attributes

of a target as ai = [ai1, ai2, . . . , ain]. ai is a vector of

dimension n. n is the number of attributes and each di-

mension of ai denotes the likelihood of a particular kind

of attribute. The attributes are composed of various kinds,

e.g., the name of an entity, color, action, etc. In Section 3.3

we will discuss how to train an attribute learning model to

obtain ai in detail. To effectively use the attributes ai, we

extend the LSTM module to embed ai as the input:

it = σ (Wixxt +Wihht−1 +Wiaai +Wivvi) (3)

ft = σ (Wfxxt +Wfhht−1 +Wfaai +Wfvvi) (4)

ot = σ (Woxxt +Wohht−1 +Woaai +Wovvi) (5)
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c̃t = tanh (Wcxxt +Wchht−1 +Wcaai +Wcvvi) (6)

ct = ft ⊙ ct−1 + it ⊙ c̃t (7)

ht = ot ⊙ tanh (ct) (8)

where xt is the input token word at each time step and the

various W matrices are the training parameters. The at-

tribute ai influences on the input gate it, forget gate fT ,

output gate ot and the state ct. The whole model can then

be trained by minimizing the cross entropy loss, or equiva-

lently the negative log-likelihood:

L1(θ) =−
∑

i

logP (ri|oi; θ)

−
∑

i

T∑

t=1

logP (ri,t|ri,<t, oi; θ)

(9)

The property of referring expression is that no two objects in

the same image should be described by the same sentence.

Following the paradigm in [31], we apply the triplet hinge

loss to encourage the target object to have a larger probabil-

ity than other objects towards its descriptions. Considering

the fact that objects from different categories normally have

larger variance in appearance than those from the same cate-

gory, we dynamically assign different margins during train-

ing according to the sampled objects’ categories:

L2(θ) =−
∑

i

max(0,M1✶C(oi)=C(ok) +M2✶C(oi) 6=C(ok)

+ logP (ri|ok)− logP (ri|oi))

(10)

where M1 and M2 are margins and C(oi) indicates the cat-

egory of object oi.

3.2. Attribute Embedded Comprehension Model

Referring expression comprehension requires the lis-

tener to interpret the semantic meaning in the sentence. The

listener should prove its understanding by pointing to the

correct object. The input to the problem is an image I , a

set of candidate regions (objects) {o} and a referring ex-

pression r. All previous methods address the problem in

a ranking based retrieval approach, either using the trained

generation model or learning a common space embedding

model of the region and the expression. In this paper, we

use the latter one since it performs better in practice.

The common space embedding model requires both the

visual object and the referring expression have an effective

representation in the first place. Then neural networks are

commonly used to project different-modality features into

the same space so that metric can be calculated. The train-

ing encourages paired object and expression to be close in

the common space, and unpaired ones to be apart. The em-

bedding of language has been studied a lot in recent years

[4, 15, 25, 26, 23]. CNN and LSTM are commonly used to

encode the words/phrases or sentences, either at a character

level or a word level. In this paper, we use a unidirectional

LSTM to encode it, and the hidden state h of the last time

step is extracted as its final representation. For the encod-

ing of the visual object oi, we follow the same setting in the

generation model, i.e. the VGG-fc7 and the attributes entry

vector ai. They are scaled to the same scale, concatenated

and followed by a fully-connected layer to the final visual

feature vi.
The next step is to embed features from both modalities

to the common space, layers of MLPs are adopted to project

them to have the same dimension sizes. After that, either

similarity or distance functions can be used to compute the

loss. In this paper, we use the Euclidean distance as the

measurement.

d(f(v), g(h)) = ‖f(v)− g(h)‖2 (11)

where f(v) and g(h) are the encoded visual and semantic

features. So there are two commonly used approaches to

frame the problem, a binary classification one which de-

cides r and o is a pair or not, and a multi-classification

one that assigns each r/o to a o/r from a candidate group.

While referring expression focuses more on the difference

between the target object and its distractions, we follow the

paradigm used in the generation model. For each pair of ri
and oi, we sample a negative pair of ri and oj , and another

negative pair of rk and oi, then formulate the function of

two triplet hinge losses:

L2(θ) =−
∑

i

[λ1 max(0,M1✶C(oi)=C(oj) +M2✶C(oi) 6=C(oj)

− d(ri, oj) + d(ri, oi))

+ λ2 max(0,M1✶C(ri)=C(rk) +M2✶C(ri) 6=C(rk)

− d(rk, oi) + d(ri, oi))]

(12)

where λ1 and λ2 are the weights of the two losses. Follow-

ing the paradigm for generation, we also dynamically alter

the margin according to whether two regions or expressions

are from the same category.

3.3. Attribute Learning

The first step of attribute learning is to construct an at-

tribute set, which has been studied in other tasks like im-

age caption and visual question answering [30, 28]. Like

[28], we define attributes in various forms, e.g. name enti-

ties, properties (color, material, etc.) and motions. We first

use NLP toolbox to exclude stopping words like “a”, “the”,

“of”, etc., then we exclude the words with low frequency.

To make the attribute set more accurate and concise, we

treat synonyms, e.g. “bike” and “bicycle” as the same at-

tribute.
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After the construction of the attribute set, we can ex-

tract attributes from the referring expression of each ob-

ject region. Unlike attributes describing different parts of

the image in the image caption model, attributes in refer-

ring expression have already been bounded in the bounding

box. Therefore we do not need to frame it as a Multiple

Instance Learning problem that used in image caption. In-

stead, we directly formulate it as a multi-label classification

problem. Multi-label classification is a traditional problem

and has been studied a lot. We test the performance of hinge

loss, the margin ranking loss and the binary sigmoid cross-

entropy loss. Unexpectedly, we find that the simple binary

sigmoid cross-entropy loss works best in practice. We think

it is due to the inconsistent annotation in the dataset. There-

fore the cost function to minimize is:

E =
1

n

n∑

i

m∑

j

[yij log(pij) + (1− yij) log(1− pij)]

(13)

where m is the size of the attribute set. yi =
[yi1, yi2, . . . , yim] is the label vector of the ith image. yij =
1 or 0 denotes whether the object has the attribute or not.

pi = [pi1, pi2, . . . , pim] denotes the probability vector.

4. Experiments

Our experiments are conducted on the three standard

datasets, RefCOCO, RefCOCO+ and RefCOCOg within

the field of referring expression.

RefCOCO(UNC RefExp) [31] contains 142,209 refer-

ring expressions for 50,000 objects in 19,994 images from

COCO [14]. The dataset is collected using an interactive

interface called ReferitGame [12]. Since people are much

more frequent than other objects in the dataset, the split is

person vs. objects: images containing multiple people are

in Test A and images containing multiple objects from other

categories are in Test B.

RefCOCO+ [31] has 141,564 expressions for 49,856 ob-

jects in 19,992 images from COCO. This dataset is also

collected using ReferitGame, but this time players are dis-

allowed to use location words to describe the object. There-

fore this dataset focuses more on the purely appearance

based description. The split in RefCOCO+ follows the same

rule used in RefCOCO.

RefCOCOg(Google RefExp) [16] consists of 85,474 re-

ferring expressions for 54,822 objects in 26,711 images

from COCO. Different from RefCOCO and RefCOCO+,

this dataset is collected using a non-interactive setting and

contains much longer sentences. The split of this dataset is

on a per-object basis. Objects are randomly partitioned into

training and validation splits.

Table 2. Human evaluation results on RefCOCO and RefCOCO+.

RefCOCO RefCOCO+

TestA TestB TestA TestB

baseline [16] 66% 65% 34% 34%

attr 73% 69% 39% 38%

attr+MMI 76% 72% 43% 38%

attr+visdif 77% 74% 39% 44%

attr+MMI+visdif 78% 83% 41% 43%

4.1. Parameter Settings

For attribute learning, the size of the attribute set is

600. The training model is fine-tuned on the VGG-19 net-

work [22] pretrained on the Imagenet. The softmax loss

layer is replaced with the binary sigmoid cross-entropy

layer. Object regions are extracted from the training set of

the three standard datasets. The regions’ aspect ratios are

kept and padded with zero values to resize to 256 × 256.

Then 224 × 224 patches are randomly cropped as input to

the network. The model is optimized using SGD in 10,000

iterations, with an initial learning rate of 0.0001, decreasing

to 0.00001 after 5,000 iterations. The batch size is 32.

For referring expression generation and comprehension,

the basic visual encoding features are VGG-fc7 and the lo-

cation feature mentioned before. Global or context features

are not used in our experiments. Additionally, we test our

model with the visdif [31] since it complements our method

well. Adam [13] is adopted as the optimization tool. The

initial learning rate is 0.0005, halved every 8,000 iterations

with a batch size of 32. The visual feature embedding size

and the hidden state size of LSTM are both 512. For the task

of generation, both visual features and attributes are taken

as input at each time step of LSTM. For the task of com-

prehension, two layers of MLPs are followed by the initial

encoding visual and language features. We set M1 = 0.2
and M2 = 0.4 in Eq. 10, and λ1 = 1 and λ2 = 1 in Eq. 12.

4.2. Generation

For the expression generation task, we use beam search

to select our sampled expressions. We evaluate our gener-

ated expressions using automatic caption generation met-

rics, including BLEU1, BLEU2, ROUGE and METEOR.

Due to space limitation we only display ROUGE and ME-

TEOR in Table 1. Complete results are shown in our

supplementary material. MMI is the max mutual informa-

tion method [16] re-implemented in [31]. “Visdif” and

“tie” are two techniques used in [31], and are orthogo-

nal to our methods. We denote our methods as “attr” in

the table. The results show that our method can consis-

tently improve the performance over the baseline method

in all datasets. In most experiment settings, the attribute

embedded generation model has better performances than
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1 woman in pink
2 woman in blue shirt
3 woman in blue

1 white car
2 truck in back
3 truck on left

1 man on right
2 boy on right
3 blue shirt

1 red shirt
2 woman on right
3 woman in black on left

1 yellow bowl
2 bowl of food in middle
3 top left container

1 blue boat
2 plane in the middle
3 plane in the back

1 black jecket
2 man with hat
3 man with hat

1 white shirt
2 bride
3 bride

1 man in white shirt
2 man on bike
3 white shirt

1 smaller screen
2 tv
3 screen with black and
   white on it

1 blue cup
2 white bottle
3 white cup

1 big couch
2 the bed that is not
   on the side
3 big bed

1 a young boy in a blue shirt
2 a woman in a white shirt 
   and black shorts
3 a woman in a white shirt

1 a bottle of water
   with white label on it
2 a bottle of green sauce
3 a green bottle with a
   green label on it

1 a hot dog on a plate
2 a hand holding a hot dog
3 a hand holding a hot dog

RefCOCO TestA RefCOCO TestB RefCOCO+ TestA RefCOCO+ TestB RefCOCOg Val

Figure 3. Some referring expression generation results on the three datasets. The generated expressions from the top to the bottom row are

from the methods of baseline, attr and attr+visdif respectively.

Table 1. Referring expression generation results evaluated by automated metrics on RefCOCO, RefCOCO+ and RefCOCOg.

RefCOCO RefCOCO+ RefCOCOg

TestA TestB TestA TestB Val

Rouge Meteor Rouge Meteor Rouge Meteor Rouge Meteor Rouge Meteor

baseline [16] 0.413 0.173 0.499 0.228 0.356 0.140 0.322 0.135 0.363 0.149

MMI [16] 0.418 0.175 0.497 0.228 0.346 0.136 0.320 0.133 0.354 0.144

visdif+MMI [31] 0.441 0.185 0.531 0.247 0.360 0.142 0.325 0.135 0.370 0.151

visdif+tie [31] 0.446 0.189 0.533 0.249 0.372 0.150 0.328 0.143 - -

attr 0.472 0.208 0.532 0.247 0.362 0.150 0.345 0.149 0.389 0.163

attr+visdif 0.494 0.222 0.546 0.258 0.374 0.155 0.355 0.155 0.378 0.160

previous methods. We also test our model combined with

visdif [31], which models the visual difference among ob-

jects of the same category. We find it especially effective

in modeling the relative locations among objects and thus

complement our method. Except for the results in Ref-

COCOg, where expressions have more descriptions of at-

tributes and no location words, the results are further im-

proved in other datasets. We also perform human evalua-

tion on attr, attr+MMI, attr+visdif and attr+MMI+visdif of

each split in RefCOCO and RefCOCO+. We first randomly

select 100 target objects from each split. Then we ask two

human “listeners” to click on the box after showing them

the generated expression. The candidate boxes are all the

annotated objects in MSCOCO. If both listeners click on

the correct box of the target, then the result is counted as a

correct expression. Table 2 shows the comparison results,

where attributes contribute consistently to the unambiguity

of the generated expression.

Figure 3 shows some expression generation results on

the three datasets. From the top to the bottom row are the re-

sults based on the baseline, attr and attr+visdif methods re-

spectively. The results show that attribute embedded model

can detect more accurate properties of the objects, while

the baseline model has difficulty in distinguishing the sim-
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Table 3. Referring expression comprehension results. Top half shows results given ground truth bounding boxes for all objects in the image.

Bottom half shows results using automatic object detectors to provide a candidate group of objects.

RefCOCO RefCOCO+ RefCOCOg

Test A Test B Test A Test B Val

baseline [16] 63.15% 64.21% 48.73% 42.13% 55.16%

MMI [16] 71.72% 71.09% 58.42% 51.23% 62.14%

visdif+MMI [31] 73.98% 76.59% 59.17% 55.62% 64.02%

Neg Bag [18] 75.6% 78.0% - - 68.4

attr+MMI 78.12% 75.89% 60.76% 54.97% 67.43%

attr+MMI+visdif 78.85% 78.07% 61.47% 57.22% 69.83%

RefCOCO(det) RefCOCO+(det) RefCOCOg(det)

Test A Test B Test A Test B Val

baseline [16] 58.32% 48.48% 46.86% 34.04% 40.75%

MMI [16] 64.90% 54.51% 54.03% 42.81% 45.85%

visdif+MMI [31] 67.64% 55.16% 55.81% 43.43% 46.86%

Neg Bag [18] 58.6% 56.4% - - 39.5%

attr+MMI 70.55% 54.80% 56.38% 43.14% 50.02%

attr+MMI+visdif 72.08% 57.29 57.97% 46.20% 52.35%

Figure 4. Some results of referring expression comprehension. The top two rows are correct hits. The bottom row shows some failure

examples.

ilar visual concepts, e.g. “tv” towards “screen”, “bride” to-

wards “woman”, “bottle” towards “cup” etc. Another inter-

esting observation is that the attr+visdif method sometimes

ignores the visual attributes, which we think is due to the

computation of visual difference would obliterate the com-

mon attributes among objects.

4.3. Comprehension

We evaluate our comprehension results on the datasets

of RefCOCO, RefCOCO+ and RefCOCOg. In RefCOCO

and RefCOCO+, we follow the split of people/non-people

in TestA and TestB. For RefCOCOg, we evaluate the result

on the validation set since the test set is not released. Ad-

ditionally, there are two experimental settings for the task

of comprehension. The first setting assumes the observer

has already known what an object is, so the input region set

{r} consists of all the ground truth objects labeled in the

COCO dataset. The model is required to select the target

object from those ground truth objects. The second setting

assumes the whole process as an automatic system. The
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Table 4. Recall of some representative predicted attributes with p(a) > 0.1 in RefCOCO.

human color food animal pose shape

man 0.97 white 0.84 pizza 0.88 dog 0.74 run 0.43 round 0.37

woman 0.92 black 0.78 donut 0.92 cat 0.87 sit 0.58 square 0.25

boy 0.78 red 0.85 apple 0.88 horse 0.86 stand 0.49 hole 0.20

girl 0.88 green 0.82 cake 0.64 sheep 0.93 eat 0.34 stripe 0.69

baby 0.71 blue 0.87 broccoli 0.97 bird 0.76 jump 0.48 check 0.46

model needs to detect potential objects from the image in

the first place, so the quality of object detectors will influ-

ence the final result. In this paper, we adopt Faster-RCNN

[20] as our object detector. The metric follows the one used

in object detection: a hit is counted if the model chooses a

bounding box whose overlap is above 0.5 with the ground

truth.

Table 3 shows the comprehension performance on the

three datasets. The top half shows results given ground truth

bounding boxes for all objects in the image. The bottom

half shows results using Faster-RCNN to provide a candi-

date group of objects. We directly evaluate our model com-

bined with MMI, which has been the standard approach

adopted in comprehension [16, 31, 18]. The results show

that the attribute embedded model has consistently better

performance than the MMI [31]. The attributes contribute

more performance improvements in the “people” split of

Test A than in the “non-people” split of Test B. The reason

is that people often show in different visual appearances of

cloths, poses and motions, while other objects more often

show in similar appearances. The most illustrative exam-

ples are categories in animals and food. For instance, if ex-

cluding location words, it often requires more subtle words

to clearly describe an elephant from other elephants. Addi-

tionally, we also test our method combined with visdif. The

results in the last row demonstrate it complements well to

the attribute embedded model.

In Figure 4 we show some qualitative comprehension re-

sults of “attr” on the three datasets based on the first prob-

lem setting. The top two rows are correct hits and the bot-

tom row shows some failure examples. The failure exam-

ples in the last row include three representative cases: First,

objects with similar visual attributes shown in the first col-

umn. Second, expressions rely on complex location based

words shown in the second column. Third, objects have dis-

criminative but abstractive visual attributes, like “looking at

phone” and “blank” in the third and forth column. In the

following, we provide a more comprehensive analysis on

attributes learning in referring expression.

4.4. Analysis on Attributes

To evaluate which attributes are correctly predicted in

the attribute learning process, we compute the recall of at-

tributes with the requirement p(a) > 0.1, where p(a) is the

predicted likelihood of an attribute. We manually select at-

tributes from some representative categories, which can be

grouped into several classes of human, color, food, animal,

pose and shape. The experiment is conducted on RefCOCO

and the recall is evaluated on the training set. Table 4 shows

the result. As expected, entity attributes like human, food,

animal are at high recall. Color is also easy to predict as

it is visually discriminative. More abstractive attributes of

pose and shape are much harder for the model to learn. We

attribute the reason to mainly two aspects. First, they are

much more implicit, e.g. the attribute “stand” can be both

used to describe human and animals, thus confuse the clas-

sifier especially if pretrained on solid object entities like Im-

ageNet. Second, they are much less frequent in expressions.

Since people describe objects from different aspects, there-

fore making the annotation inconsistent.

5. Conclusion

In this paper we demonstrate the effectiveness of the vi-

sual attributes in referring expression generation and com-

prehension. We first train an attribute learning model from

visual objects and their paired descriptions. Then the

learned attributes are embedded into both the generation

model and the comprehension model. Experimental results

demonstrate that our model significantly improves the base-

line method and is competitive to the state-of-the-art results.

We also analyze the correctness and defects of attributes

with deeper studies. We believe these studies would pro-

vide future directions to the researchers who want to con-

tinue along this approach.
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