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Abstract

The big empirical success of group equivariant networks has led in recent years to
the sprouting of a great variety of equivariant network architectures. A particular
focus has thereby been on rotation and reflection equivariant CNNs for planar
images. Here we give a general description of E(2)-equivariant convolutions in
the framework of Steerable CNNs. The theory of Steerable CNNs thereby yields
constraints on the convolution kernels which depend on group representations
describing the transformation laws of feature spaces. We show that these constraints
for arbitrary group representations can be reduced to constraints under irreducible
representations. A general solution of the kernel space constraint is given for
arbitrary representations of the Euclidean group E(2) and its subgroups. We
implement a wide range of previously proposed and entirely new equivariant
network architectures and extensively compare their performances. E(2)-steerable
convolutions are further shown to yield remarkable gains on CIFAR-10, CIFAR-100
and STL-10 when used as drop in replacement for non-equivariant convolutions.

1 Introduction
The equivariance of neural networks under symmetry group actions has in the recent years proven
to be a fruitful prior in network design. By guaranteeing a desired transformation behavior of
convolutional features under transformations of the network input, equivariant networks achieve
improved generalization capabilities and sample complexities compared to their non-equivariant
counterparts. Due to their great practical relevance, a big pool of rotation- and reflection- equivariant
models for planar images has been proposed by now. Unfortunately, an empirical survey, reproducing
and comparing all these different approaches, is still missing.

An important step in this direction is given by the theory of Steerable CNNs [1, 2, 3, 4, 5] which
defines a very general notion of equivariant convolutions on homogeneous spaces. In particular,
steerable CNNs describe E(2)-equivariant (i.e. rotation- and reflection-equivariant) convolutions on
the image plane R2. The feature spaces of steerable CNNs are thereby defined as spaces of feature
fields, characterized by a group representation which determines their transformation behavior under
transformations of the input. In order to preserve the specified transformation law of feature spaces,
the convolutional kernels are subject to a linear constraint, depending on the corresponding group
representations. While this constraint has been solved for specific groups and representations [1, 2],
no general solution strategy has been proposed so far. In this work we give a general strategy which
reduces the solution of the kernel space constraint under arbitrary representations to much simpler
constraints under single, irreducible representations.

Specifically for the Euclidean group E(2) and its subgroups, we give a general solution of this kernel
space constraint. As a result, we are able to implement a wide range of equivariant models, covering
regular GCNNs [6, 7, 8, 9, 10, 11], classical Steerable CNNs [1], Harmonic Networks [12], gated
Harmonic Networks [2], Vector Field Networks [13], Scattering Transforms [14, 15, 16, 17, 18] and
entirely new architectures, in one unified framework. In addition, we are able to build hybrid models,
mixing different field types (representations) of these networks both over layers and within layers.
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We further propose a group restriction operation, allowing for network architectures which are
decreasingly equivariant with depth. This is useful e.g. for natural images which show low level
features like edges in arbitrary orientations but carry a sense of preferred orientation globally. An
adaptive level of equivariance accounts for the resulting loss of symmetry in the hierarchy of features.

Since the theory of steerable CNNs does not give a preference for any choice of group representation
or equivariant nonlinearity, we run an extensive benchmark study, comparing different equivariance
groups, representations and nonlinearities. We do so on MNIST 12k, rotated MNIST SO(2) and
reflected and rotated MNIST O(2) to investigate the influence of the presence or absence of certain
symmetries in the dataset. A drop in replacement of our equivariant convolutional layers is shown to
yield significant gains over non-equivariant baselines on CIFAR10, CIFAR100 and STL-10.

Beyond the applications presented in this paper, our contributions are of relevance for general
steerable CNNs on homogeneous spaces [3, 4] and gauge equivariant CNNs on manifolds [5] since
these models obey the same kind of kernel constraints. More specifically, 2-dimensional manifolds,
endowed with an orthogonal structure group O(2) (or subgroups thereof), necessitate exactly the
kernel constraints solved in this paper. Our results can therefore readily be transferred to e.g. spherical
CNNs [19, 5, 20, 21, 22, 23] or more general models of geometric deep learning [24, 25, 26, 27].

2 General E(2) - Equivariant Steerable CNNs
Convolutional neural networks process images by extracting a hierarchy of feature maps from a given
input signal. The convolutional weight sharing ensures the inference to be translation-equivariant
which means that a translated input signal results in a corresponding translation of the feature maps.
However, vanilla CNNs leave the transformation behavior of feature maps under more general
transformations, e.g. rotations and reflections, undefined. In this work we devise a general framework
for convolutional networks which are equivariant under the Euclidean group E(2), that is, under
isometries of the plane R2. We work in the framework of steerable CNNs [1, 2, 3, 4, 5] which provides
a quite general theory for equivariant CNNs on homogeneous spaces, including Euclidean spaces Rd
as a specific instance. Sections 2.2 and 2.3 briefly review the theory of Euclidean steerable CNNs as
described in [2]. The following subsections explain our main contributions: a decomposition of the
kernel space constraint into irreducible subspaces (2.4), their solution for E(2) and subgroups (2.5),
an overview on the group representations used to steer features, their admissible nonlinearities and
their use in related work (2.6), the group restriction operation (2.7) and implementation details (2.8).

2.1 Isometries of the Euclidean plane R2

The Euclidean group E(2) is the group of isometries of the plane R2, consisting of translations,
rotations and reflections. Characteristic patterns in images often occur at arbitrary positions and
in arbitrary orientations. The Euclidean group therefore models an important factor of variation of
image features. This is especially true for images without a preferred global orientation like satellite
imagery or biomedical images but often also applies to low level features of globally oriented images.

One can view the Euclidean group as being constructed from the translation group (R2,+) and the
orthogonal group O(2) = {O ∈ R2×2 |OTO = id2×2} via the semidirect product operation as
E(2) ∼= (R2,+) o O(2). The orthogonal group thereby contains all operations leaving the origin
invariant, i.e. continuous rotations and reflections. In order to allow for different levels of equivariance
and to cover a wide spectrum of related work we consider subgroups of the Euclidean group of the
form (R2,+) o G, defined by subgroups G ≤ O(2). Specifically, G could be either the special
orthogonal group SO(2), the group ({±1}, ∗) of the reflections along a given axis, the cyclic groups
CN , the dihedral groups DN or the orthogonal group O(2) itself. While SO(2) describes continuous
rotations (without reflections), CN and DN contain N discrete rotations by angles multiple of 2π

N
and, in the case of DN , reflections. CN and DN are therefore discrete subgroups of order N and 2N ,
respectively. For an overview over the groups and their interrelations see Table 6 in the Appendix.

Since the groups (R2,+) o G are semidirect products, one can uniquely decompose any of their
elements into a product tg where t ∈ (R2,+) and g ∈ G [3] which we will do in the rest of the paper.

2.2 E(2) - steerable feature fields

Steerable CNNs define feature spaces as spaces of steerable feature fields f : R2 → Rc which
associate a c-dimensional feature vector f(x) ∈ Rc to each point x of a base space, in our case the
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plane R2. In contrast to vanilla CNNs, the feature fields of steerable CNNs are associated with a
transformation law which specifies their transformation under actions of E(2) (or subgroups) and
therefore endows features with a notion of orientation. Formally, a feature vector f(x) encodes the
coefficients of a coordinate independent geometric feature relative to a choice of reference frame or,
equivalently, image orientation (see Appendix A).

scalar field ρ(g) = 1 vector field ρ(g) = g

Figure 1: Transformation behavior of ρ-fields.

An important example are scalar feature fields
s : R2 → R, describing for instance gray-scale im-
ages or temperature fields. The Euclidean group acts
on scalar fields by moving each pixel to a new posi-
tion, that is, s(x) 7→ s

(
(tg)−1x

)
= s

(
g−1(x− t)

)
for some tg ∈ (R2,+) o G; see Figure 1, left.
Vector fields v : R2 → R2, like optical flow or gra-
dient images, on the other hand transform as
v(x) 7→ g · v

(
g−1(x− t)

)
. In contrast to the case of

scalar fields, each vector is therefore not only moved
to a new position but additionally changes its orientation via the action of g ∈ G; see Figure 1, right.

The transformation law of a general feature field f : R2 → Rc is fully characterized by its type ρ.
Here ρ : G 7→ GL(Rc) is a group representation, specifying how the c channels of each feature vector
f(x) mix under transformations. A representation satisfies ρ(gg̃) = ρ(g)ρ(g̃) and therefore models
the group multiplication gg̃ as multiplication of c× c matrices ρ(g) and ρ(g̃). More specifically, a
ρ-field transforms under the induced representation12

[
Ind

(R2,+)oG
G ρ

]
of (R2,+) oG as

f(x) 7→
([

Ind
(R2,+)oG
G ρ

]
(tg) · f

)
(x) := ρ(g) · f

(
g−1(x− t)

)
. (1)

As in the examples above, it transforms feature fields by moving the feature vectors from g−1(x− t)
to a new position x and acting on them via ρ(g). We thus find scalar fields to correspond to the trivial
representation ρ(g) = 1 ∀g ∈ G which reflects that the scalar values do not change when being
moved. Similarly, a vector field corresponds to the standard representation ρ(g) = g of G.

In analogy to the feature spaces of vanilla CNNs comprising multiple channels, the feature spaces of
steerable CNNs consist of multiple feature fields fi : R2 → Rci , each of which is associated with its
own type ρi : G→ GL(Rci). A stack f =

⊕
i fi of feature fields is then defined to be concatenated

from the individual feature fields and transforms under the direct sum ρ =
⊕

i ρi of the individual
representations. A common example for a stack of feature fields are RGB images f: R2→R3. Since
the color channels transform independently under rotations we identify them as three independent
scalar fields. The stacked field representation is thus given by the direct sum

⊕3
i=1 1 = id3×3 of

three trivial representations. While the input and output types of steerable CNNs are given by the
learning task, the user needs to specify the types ρi of intermediate feature fields as hyperparameters,
similar to the choice of channels for vanilla CNNs. We discuss different choices of representations in
Section 2.6 and investigate them empirically in Section 3.1.

2.3 E(2) - steerable convolutions

In order to preserve the transformation law of steerable feature spaces, each network layer is required
to be equivariant under the group actions. As proven for Euclidean groups in [2], the most general
equivariant linear map between steerable feature spaces, transforming under ρin and ρout, is given by
convolutions with G-steerable kernels3 k : R2 → Rcout×cin , satisfying a kernel constraint

k(gx) = ρout(g)k(x)ρin(g−1) ∀g ∈ G, x ∈ R2 . (2)

Intuitively, this constraint determines the form of the kernel in transformed coordinates gx in terms
of the kernel in non-transformed coordinates x and thus its response to transformed input fields.
It ensures that the output feature fields transform as specified by Ind ρout when the input fields are
being transformed by Ind ρin; see Appendix G.1 for a proof.

1 Induced representations are the most general transformation laws compatible with convolutions [3, 4].
2 Note that this simple form of the induced representation is a special case for semidirect product groups.
3 As k : R2 → Rcout×cin returns a matrix of shape (cout, cin) for each position x ∈ R2, its discretized version

can be represented by a tensor of shape (cout, cin, X, Y ) as usually done in deep learning frameworks.
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Since the kernel constraint is linear, its solutions form a linear subspace of the vector space of
unconstrained kernels considered in conventional CNNs. It is thus sufficient to solve for a basis of the
G-steerable kernel space in terms of which the equivariant convolutions can be parameterized. The
lower dimensionality of the restricted kernel space enhances the parameter efficiency of steerable
CNNs over conventional CNNs similarly to the increased parameter efficiency of CNNs over MLPs.

2.4 Irrep decomposition of the kernel constraint

The kernel constraint (2) in principle needs to be solved individually for each pair of input and
output types ρin and ρout to be used in the network. Here we show how the solution of the kernel
constraint for arbitrary representations can be reduced to much simpler constraints under irreducible
representations (irreps). Our approach relies on the fact that any representation of a finite or compact
group decomposes under a change of basis into a direct sum of irreps, each corresponding to an
invariant subspace of the representation space Rc on which ρ acts. Denoting the change of basis
by Q, this means that one can always write ρ = Q−1

[⊕
i∈I ψi

]
Q where ψi are the irreducible

representations of G and the index set I encodes the types and multiplicities of irreps present in ρ.
A decomposition can be found by exploiting basic results of character theory and linear algebra [28].

The decomposition of ρin and ρout in the kernel constraint (2) leads to

k(gx) = Q−1out

[⊕
i∈Iout

ψi(g)
]
Qout k(x) Q−1in

[⊕
j∈Iin

ψ−1j (g)
]
Qin ∀g ∈ G, x ∈ R2,

which, defining a kernel relative to the irrep bases as κ := QoutkQ
−1
in , implies

κ(gx) =
[⊕

i∈Iout
ψi(g)

]
κ(x)

[⊕
j∈Iin

ψ−1j (g)
]

∀g ∈ G, x ∈ R2.

The left and right multiplication with a direct sum of irreps reveals that the constraint decomposes
into independent constraints

κij(gx) = ψi(g) κij(x) ψ−1j (g) ∀g ∈ G, x ∈ R2 where i ∈ Iout, j ∈ Iin (3)

on blocks κij in κ corresponding to invariant subspaces of the full space of equivariant kernels; see
Appendix H for a visualization. In order to solve for a basis of equivariant kernels satisfying the
original constraint (2), it is therefore sufficient to solve the irrep constraints (3) to obtain bases for
each block, revert the change of basis and take the union over different blocks. Specifically, given
dij-dimensional bases

{
κij1 , · · ·, κ

ij
dij

}
for the blocks κij of κ, we get a d=

∑
ijdij-dimensional basis{

k1, · · · , kd
}

:=
⋃

i∈Iout

⋃
j∈Iin

{
Q−1out κ

ij
1 Qin, · · · , Q−1out κ

ij
dij
Qin

}
(4)

of solutions of (2). Here κij denotes a block κij being filled at the corresponding location of a matrix
of the shape of κ with all other blocks being set to zero; see Appendix H. The completeness of
the basis found this way is guaranteed by construction if the bases for each block ij are complete.
Note that while this approach shares some basic ideas with the solution strategy proposed in [2], it is
computationally more efficient for large representations; see Appendix J. We want to emphasize
that this strategy for reducing the kernel constraint to irreducible representations is not restricted to
subgroups of O(2) but applies to steerable CNNs in general.

2.5 General solution of the kernel constraint for O(2) and subgroups

In order to build isometry-equivariant CNNs on R2 we need to solve the irrep constraints (3) for the
specific case of G being O(2) or one of its subgroups. For this purpose note that the action of G on
R2 is norm-preserving, that is, |g.x| = |x| ∀g ∈ G, x ∈ R2. The constraints (2) and (3) therefore
only restrict the angular parts of the kernels but leave their radial parts free. Since furthermore all
irreps of G correspond to one unique angular frequency (see Appendix I.2), it is convenient to expand
the kernel w.l.o.g. in terms of an (angular) Fourier series

κijαβ
(
x(r, φ)

)
= Aαβ,0(r) +

∑∞

µ=1

[
Aαβ,µ(r) cos(µφ) + Bαβ,µ(r) sin(µφ)

]
(5)

with real-valued, radially dependent coefficients Aαβ,µ : R+ → R and Bαβ,µ : R+ → R for each
matrix entry κijαβ of block κij . By inserting this expansion into the irrep constraints (3) and projecting
on individual harmonics we obtain constraints on the Fourier coefficients, forcing most of them to be
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zero. The vector spaces of G-steerable kernel blocks κij satisfying the irrep constraints (3) are then
parameterized in terms of the remaining Fourier coefficients. The completeness of this basis follows
immediately from the completeness of the Fourier basis. Similar approaches have been followed in
simpler settings for the cases of CN in [7], SO(2) in [12] and SO(3) in [2].

The resulting bases for the angular parts of kernels for each pair of irreducible representations of
O(2) are shown in Table 1. It turns out that each basis element is harmonic and associated to one
unique angular frequency. Appendix I gives an explicit derivation and the resulting bases for all
possible pairs of irreps for all groups G ≤ O(2) following the strategy presented in this section. The
analytical solutions for SO(2), ({±1}, ∗), CN and DN are found in Tables 8, 10, 11 and 12. Since
these groups are subgroups of O(2), they enforce a weaker kernel constraint as compared to O(2).
As a result, the bases for G < O(2) are higher dimensional, i.e. they allow for a wider range of
kernels. A higher level of equivariance therefore leads simultaneously to a guaranteed behavior of the
inference process under transformations and on the other hand to an improved parameter efficiency.

ψi ψj trivial sign-flip frequency n ∈ N+

trivial
[
1
]

∅
[

sin(nφ), 9 cos(nφ)
]

sign-flip ∅
[
1
] [

cos(nφ), sin(nφ)
]

frequency
m ∈ N+

[
sin(mφ)

9cos(mφ)

] [
cos(mφ)

sin(mφ)

] [
cos
(
(m9n)φ

)
9sin

(
(m9n)φ

)
sin
(
(m9n)φ

)
cos
(
(m9n)φ

)],[cos
(
(m+n)φ

)
sin
(
(m+n)φ

)
sin
(
(m+n)φ

)
9cos

(
(m+n)φ

)]
Table 1: Bases for the angular parts of O(2)-steerable kernels satisfying the irrep constraint (3) for different pairs
of input field irreps ψj and output field irreps ψi.The different types of irreps are explained in Appendix I.2.

2.6 Group representations and nonlinearities

A question which so far has been left open is which field types, i.e. which representations ρ of G,
should be used in practice. Considering only the convolution operation with G-steerable kernels for
the moment, it turns out that any change of basis P to an equivalent representation ρ̃ := P−1ρP is
irrelevant. To see this, consider the irrep decomposition ρ = Q−1

[⊕
i∈I ψi

]
Q used in the solution

of the kernel constraint to obtain a basis {ki}di=1 of G-steerable kernels as defined by Eq. (4). Any
equivalent representation will decompose into ρ̃ = Q̃−1

[⊕
i∈I ψi

]
Q̃ with Q̃ = QP for some P and

therefore result in a kernel basis {P−1out kiPin}di=1 which entirely negates changes of bases between
equivalent representations. It would therefore w.l.o.g. suffice to consider direct sums of irreps
ρ =

⊕
i∈I ψi as representations only, reducing the question on which representations to choose to

the question on which types and multiplicities of irreps to use.

In practice, however, convolution layers are interleaved with other operations which are sensitive to
specific choices of representations. In particular, nonlinearity layers are required to be equivariant
under the action of specific representations. The choice of group representations in steerable CNNs
therefore restricts the range of admissible nonlinearities, or, conversely, a choice of nonlinearity allows
only for certain representations. In the following we review prominent choices of representations
found in the literature in conjunction with their compatible nonlinearities.

All equivariant nonlinearities considered here act spatially localized, that is, on each feature vector
f(x) ∈ Rcin for all x ∈ R2 individually. They might produce different types of output fields
ρout : G→ GL(Rcout), that is, σ : Rcin → Rcout , f(x) 7→ σ(f(x)). As proven in Appendix G.2,
it is sufficient to require the equivariance of σ under the actions of ρin and ρout, i.e. σ ◦ ρin(g) =
ρout(g)◦σ ∀g ∈ G, for the nonlinearities to be equivariant under the action of induced representations
when being applied to a whole feature field as σ(f)(x) := σ(f(x)).

A general class of representations are unitary representations which preserve the norm of their
representation space, that is, they satisfy |ρunitary(g)f(x)| =

∣∣f(x)
∣∣ ∀ g ∈ G. As proven in

Appendix G.2.2, nonlinearities which solely act on the norm of feature vectors but preserve their
orientation are equivariant w.r.t. unitary representations. They can in general be decomposed in
σnorm : Rc → Rc, f(x) 7→ η

(
|f(x)|

) f(x)
|f(x)| for some nonlinear function η : R≥0 → R≥0 acting

on the norm of feature vectors. Norm-ReLUs, defined by η(|f(x)|) = ReLU(|f(x)| − b) where
b ∈ R+ is a learned bias, were used in [12, 2]. In [29], the authors consider squashing nonlinearities
η(|f(x)|) = |f(x)|2

|f(x)|2+1 . Gated nonlinearities were proposed in [2] as conditional version of norm
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nonlinearities. They act by scaling the norm of a feature field by learned sigmoid gates 1
1+e−s(x)

,
parameterized by a scalar feature field s. All representations considered in this paper are unitary
such that their fields can be acted on by norm-nonlinearities. This applies specifically also to all
irreducible representations ψi of G ≤ O(2) which are discussed in detail in Section I.2.

A common choice of representations of finite groups like CN and DN are regular representations.
Their representation space R|G| has dimensionality equal to the order of the group, e.g. RN for CN
and R2N for DN . The action of the regular representation is defined by assigning each axis eg of R|G|
to a group element g ∈ G and permuting the axes according to ρGreg(g̃)eg := eg̃g . Since this action is
just permuting channels of ρGreg-fields, it commutes with pointwise nonlinearities like ReLU; a proof
is given in Appendix G.2.3. While regular steerable CNNs were empirically found to perform very
well, they lead to high dimensional feature spaces with each individual field consuming |G| channels.
Regular steerable CNNs were investigated for planar images in [6, 7, 8, 9, 10, 17, 18, 30], for spherical
CNNs in [19, 5] and for volumetric convolutions in [31, 32]. Further, the translation of feature maps
of conventional CNNs can be viewed as action of the regular representation of the translation group.

Closely related to regular representations are quotient representations. Instead of permuting |G|
channels indexed by G, they permute |G|/|H| channels indexed by cosets gH in the quotient
space G/H of a subgroup H ≤ G. Specifically, they act on axes egH of R|G|/|H| as defined by
ρ
G/H
quot (g̃)egH := eg̃gH . As permutation representations, quotient representations allow for pointwise

nonlinearities; see Appendix G.2.3. Quotient representations were considered in [1, 11].

Regular and quotient fields can furthermore be acted on by nonlinear pooling operators. Via a
group pooling or projection operation max : Rc → R, f(x) → max(f(x)) the works [6, 7, 9,
32, 31] extract the maximum value of a regular or quotient field. The invariance of the maximum
operation implies that the resulting features form scalar fields. Since group pooling operations
discard information on the feature orientations entirely, vector field nonlinearities σvect : RN → R2

for regular representations of CN were proposed in [13]. Vector field nonlinearities do not only
keep the maximum response max(f(x)) but also its index arg max(f(x)). This index corresponds
to a rotation angle θ = 2π

N arg max(f(x)) which is used to define a vector field with elements
v(x) = max(f(x))(cos(θ), sin(θ))T . The equivariance of this operation is proven in G.2.4.

2.7 Group restrictions and inductions

The key idea of equivariant networks is to exploit symmetries in the distribution of characteristic
patterns in signals. The level of symmetry present in data might thereby vary over length scales. For
instance, natural images typically show small features like edges in arbitrary orientations. On a larger
length scale, however, the rotational symmetry is broken as manifested in visual patterns exclusively
appearing upright but still in different reflections. Each individual layer of a convolutional network
should therefore be adapted to the symmetries present in the length scale of its fields of view.

A loss of symmetry can be implemented by restricting the equivariance at a certain depth to a sub-
group (R2,+)oH ≤ (R2,+)oG, e.g. from rotations and reflections G = O(2) to mere reflections
H = ({±1}, ∗) in the example above. This requires the feature fields produced by a layer with a
higher level of equivariance to be reinterpreted in the following layer as fields transforming under a
subgroup. Specifically, a ρ-field, transforming according to ρ : G → GL(Rc), needs to be reinter-
preted as a ρ̃-field, where ρ̃ : H → GL(Rc) is a representation of the subgroup H ≤ G. This is natu-
rally achieved by using the restricted representation ρ̃ := ResGH(ρ) : H → GL(Rc), h 7→ ρ(h) ,
defined by restricting the domain of ρ to H . Since a subsequent H-steerable convolution layers can
map fields of arbitrary representations we can readily process the resulting ResGH(ρ)-field further.

2.8 Implementation details

E(2)-steerable CNNs rely on convolutions with O(2)-steerable kernels. Our implementation therefore
requires the precomputation of steerable kernel bases according to the analytical solutions in Eq. (4)
with arbitrary radial parts. Since the kernel basis is sampled on a discrete pixel grid, care has to be
taken that no aliasing artifacts occur. During runtime, the sampled basis is expanded using learned
weights. The resulting G-steerable kernel is then being used in a standard convolution routine. For
more details we refer to Appendix C. Our implementation is provided as a PyTorch extension which
is available at https://github.com/QUVA-Lab/e2cnn.
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Figure 2: Test errors of CN and DN regular steerable CNNs for different orders N for all three MNIST variants.
Left: All equivariant models improve upon the non-equivariant baseline on MNIST O(2). The error decreases
before saturating at around 8 orientations. Since the dataset contains reflected digits, the DN -equivariant models
perform better than their CN counterparts. Middle: Since the intraclass variability of MNIST rot is reduced, the
performances of the CN model and the baseline improve. In contrast, the DN models are invariant to reflections
such that they can’t distinguish between MNIST O(2) and MNIST rot. For N = 1 this leads to a worse
performance than that of the baseline. Restricted dihedral models, denoted by DN |5CN , make use of the local
reflectional symmetries but are not globally invariant. This makes them perform better than the CN models. Right:
On MNIST 12k the globally invariant models CN and DN don’t yield better results than the baseline, however,
the restricted (i.e. non-invariant) models CN |5{e} and DN |5{e} do. For more details see Appendix D.1.

3 Experiments
Since the framework of general E(2)-equivariant steerable CNNs supports many choices of groups,
representations and nonlinearities, we first run an extensive benchmark study over the space of
supported models in Section 3.1. The insights from these benchmark experiments are then applied to
classify CIFAR and STL-10 images in Sections 3.2 and 3.3. All of our experiments are found in a
dedicated repository at https://github.com/gabri95/e2cnn_experiments.

3.1 Model benchmarking on transformed MNIST datasets

We first perform a comprehensive benchmarking to compare the impact of the different design
choices covered in this work. All benchmarked models are evaluated on three different versions
of the MNIST dataset, each containing 12000 training and 50000 test images. The digits in the
three variations MNIST 12k, MNIST rot and MNIST O(2) are left untransformed, are rotated and
are rotated and reflected, respectively. These datasets allow us to study the benefit from different
levels of G-steerability in the presence or absence of certain symmetries. In order to not disad-
vantage models with lower levels of equivariance, we train all models using data augmentation
by the transformations present in the corresponding dataset.

Representation and nonlinearity benchmarking: Table 7 in the Appendix shows the test errors
of 57 different models on the three MNIST variants. The first four columns state the equivariance
groups, representations, nonlinearities and invariant maps which distinguish the models. The invariant
maps of each model are applied after the last convolution layer to produce G-invariant features.
Appendix D.1 compares and analyzes all results in detail. In particular, it discusses regular and
quotient models, group pooling and vector field networks, as well as SO(2) and O(2)-equivariant
irrep models. The latter employ new kinds of gated-nonlinearities and norm-nonlinearities and, in
the case of O(2), introduce induced representations as new feature types. The results of all models
whose feature fields transform according to regular representations, are summarized in Figure 2.

Group restriction: All transformed MNIST datasets show local rotational and reflectional symme-
tries but differ in the level of symmetry present at the global scale. While DN and O(2)-equivariant
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restriction depth MNIST rot MNIST 12k

group test error (%) group test error (%) group test error (%)

(0) C16 0.82± 0.02 {e} 0.82± 0.01 {e} 0.82± 0.01

1

D16,C16

0.86± 0.05

D16, {e}

0.79± 0.03

C16, {e}

0.80± 0.03

2 0.82± 0.03 0.74± 0.03 0.77± 0.03

3 0.77± 0.03 0.73± 0.03 0.76± 0.03

4 0.79± 0.03 0.72± 0.02 0.77± 0.03

5 0.78± 0.04 0.68± 0.04 0.75± 0.02

no restriction D16 1.65± 0.02 D16 1.68± 0.04 C16 0.95± 0.04

Table 2: Effect of the group restriction operation at different depths of the network on MNIST rot and MNIST 12k.
All restricted models perform better than non-restricted, and hence globally invariant, models.

model group representation test error (%)

[6] C4 regular/scalar 3.21 ± 0.0012

[6] C4 regular 2.28 ± 0.0004

[12] SO(2) irreducible 1.69
[33] - - 1.2
[13] C17 regular/vector 1.09
Ours C16 regular 0.716± 0.028

[7] C16 regular 0.714± 0.022

Ours C16 quotient 0.705± 0.025

Ours D16|5C16 regular 0.682± 0.022

Table 3: Final runs on MNIST rot

model CIFAR-10 CIFAR-100

wrn28/10 [34] 3.87 18.80
wrn28/10 D1 D1 D1 3.36± 0.08 17.97± 0.11

wrn28/10* D8 D4 D1 3.28± 0.10 17.42± 0.33

wrn28/10 C8 C4 C1 3.20± 0.04 16.47± 0.22

wrn28/10 D8 D4 D1 3.13± 0.17 16.76± 0.40

wrn28/10 D8 D4 D4 2.91± 0.13 16.22± 0.31

wrn28/10 [35] AA 2.6 ± 0.1 17.1 ± 0.3

wrn28/10* D8 D4 D1 AA 2.39± 0.11 15.55± 0.13

wrn28/10 D8 D4 D1 AA 2.05± 0.03 14.30± 0.09

Table 4: Test errors on CIFAR (AA=autoaugment)

models exploit these local symmetries, their global invariance leads to a considerable loss of informa-
tion. On the other hand, models which are equivariant to the symmetries present at the global scale of
the dataset only are not able to generalize over all local symmetries. The proposed group restriction
operation allows for models which are locally equivariant but are globally invariant only to the level
of symmetry present in the data. Table 2 reports the results of models which are restricted at different
depths. The overall trend is that a restriction at later stages of the model improves the performance.
All restricted models perform significantly better than the invariant models. Figure 2 shows that this
behavior is consistent for different orders N .

Convergence rate: In our experiments we find that steerable CNNs converge significantly faster
than non-equivariant CNNs. Figure 4 in the Appendix shows this behavior for regular CN -steerable
CNNs in comparison to a vanilla CNN. The rate of convergence thereby increases with the order N
and, as already observed in Figure 2, saturates at approximately N = 8. All models share about the
same number of parameters. The faster convergence of equivariant networks is explained by the fact
that they generalize over G-transformed images by design which reduces the amount of intra-class
variability which they have to learn. Conversely, a conventional CNN has to learn to classify all
transformed versions of an image explicitly which requires an increased batch size or more training it-
erations. The enhanced data efficiency of E(2)-steerable CNNs thus leads to a reduced training time.

Competitive runs: As a final experiment on MNIST rot we are replicating the regular C16 model
from [7]. It is mostly similar to the models evaluated before but is wider and adds additional fully
connected layers; see Table 14 in the Appendix. As reported in Table 3, our reimplementation
matches the accuracy of the original model. Replacing the regular feature fields with the quotient
representations used in the benchmarking leads to slightly better results. We refer to Appendix F for
more insights on the improved performance of quotient model. A further significant improvement and
a new state of the art is being achieved by a D16 model, which is restricted to C16 in the final layer.

3.2 CIFAR experiments

The statistics of natural images are typically invariant under global translations and reflections but
are not under global rotations. Here we investigate the benefit of G-steerable convolutions for
such images by classifying CIFAR-10 and CIFAR-100. For this purpose we implement several DN
and CN -equivariant versions of WideResNet [34]. Different levels of equivariance, stated in the
model specifications in Table 4, are thereby used in the three main blocks of the network. Regular
representations are used throughout the whole model. For a fair comparison we scale the width
of all layers such that the number of parameters of the original wrn28/10 model is preserved. We
further add a small model, marked by an additional *, which has about the same number of channels
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as the non-equivariant wrn28/10. All runs use the same training procedure as reported in [34] and
Appendix K.3. We want to emphasize that we perform no further hyperparameter tuning.

The results of the D1 D1 D1 model confirm that incorporating the global symmetries of the data
yields a significant boost in accuracy. Interestingly, the C8 C4 C1 model, which is rotation but not
reflection-equivariant, achieves better results, which shows that it is worthwhile to leverage local
rotational symmetries. Both symmetries are respected simultaneously by the wrn28/10 D8 D4 D1

model. While this model performs better than the two previous ones on CIFAR-10, it surprisingly
yields slightly worse result on CIFAR-100. The best results are obtained by the D8 D4 D4 model
which suggests that rotational symmetries are useful even on a larger scale. The small wrn28/10*
D8 D4 D1 model shows a remarkable gain compared to the non-equivariant wrn28/10 baseline despite
not being computationally more expensive. To investigate whether equivariance is useful even when a
powerful data augmentation policy is available, we further rerun both D8 D4 D1 models with AutoAug-
ment (AA) [35]. As without AA, both equivariant models outperform the baseline by a large margin.

3.3 STL-10 experiments

model group #params test error (%)

wrn16/8 [36] - 11M 12.74±0.23

wrn16/8* D1 D1 D1 5M 11.05±0.45

wrn16/8 D1 D1 D1 10M 11.17±0.60

wrn16/8* D8 D4 D1 4.2M 10.57±0.70

wrn16/8 D8 D4 D1 12M 9.80±0.40

Table 5: Test errors of different equivariant
models on the STL-10 dataset. Models with *
preserve the number of channels of the baseline.

In order to test whether the previous results generalize
to natural images of higher resolution we run experi-
ments on STL-10 [37]. We adapt the experiments in [36]
by replacing the non-equivariant convolutions of their
wrn16/8 model with regular DN -steerable convolutions.
As in the CIFAR experiments, we adopt the training set-
tings and hyperparameters of [36] without changes. Our
four adapted models, reported in Table 5, are equivariant
under either the action of D1 in all blocks or the actions
of D8, D4 and D1. For both choices we build a large
model, preserving the number of parameters of the baseline, and a small model, which preserves its
number of channels and thus computational requirements. All models improve significantly over the
baseline. Due to their extended equivariance, the small D8 D4 D1 model performs better than the
large D1 D1 D1 model. In comparison to the CIFAR experiments, rotational equivariance gives a
larger boost in accuracy since the higher resolution of 96px of STL-10 allows for more detailed local
patterns which occur in arbitrary orientations. Appendix D.3 reports the results of a data ablation
study. The results validate that the gains from incorporating equivariance are consistent over all
training set sizes. More information on the training procedures is given in Appendix K.4.

4 Conclusions
In this work we presented a general theory of E(2)-equivariant steerable CNNs. By analytically solv-
ing the kernel constraint for any representation of O(2) or its subgroups we were able to reproduce and
compare many different models from previous work. We further proposed a group restriction opera-
tion which allows us to adapt the level of equivariance to the symmetries present on the corresponding
length scale. When using G-steerable convolutions as drop in replacement for conventional convolu-
tion layers we obtained significant improvements on CIFAR and STL-10 without additional hyperpa-
rameter tuning. While the kernel expansion leads to a small overhead during train time, the final ker-
nels can be stored such that during test time steerable CNNs are computationally not more expensive
than conventional CNNs of the same width. Due to the enhanced parameter efficiency of equivariant
models it is a common practice to adapt the model width to match the parameter cost of conventional
CNNs. Our results show that even non-scaled models outperform conventional CNNs in accuracy.

We believe that equivariant CNNs will in the long term become the default choice for tasks like
biomedical imaging, where symmetries are present on a global scale. The impressive results on
natural images demonstrate the great potential of applying E(2)-steerable CNNs to more general
vision tasks which involve only local symmetries. Future research still needs to investigate the wide
range of design choices of steerable CNNs in more depth and collect evidence on whether our findings
generalize to different settings. We hope that our library will help equivariant CNNs to be adopted by
the community and facilitate further research.
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