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a b s t r a c t

In this paper we present a novel unsupervised feature learning network named C-SVDDNet, a single-
layer K-means-based network towards compact and robust feature representation. Our contributions are
three folds: (1) we introduce C-SVDD encoding, a generalization of the K-means local encoding that
adapts to the distribution information and improves the robustness against outliers; (2) we propose a
method that effectively embeds the spatial information of 2D data into the final representation based on
a modified SIFT descriptor; and (3) we extend our C-SVDDNet to exploit multi-scale information for
better feature learning. Extensive experiments on several popular object recognition benchmarks, such
as STL-10, MINST, Holiday and Copydays shows that the proposed method yields comparable or better
performance than that of the previous state-of-the-art unsupervised feature learning methods.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Learning good feature representation from unlabeled data is
the key to making progress in recognition and classification tasks,
and has attracted great attention and interest from both academia
and industry recently. A representative method for this is the deep
learning (DL) approach [1] with its goal to learn multiple layers of
abstract representations from data. Among others, one typical DL
method is the so called convolutional neural network (ConvNet),
which consists of multiple trainable stages stacked on top of each
other, followed by a supervised classifier [2,3]. Many variations of
ConvNet network have been proposed as well for different vision
tasks [4–8] with great success.

In these methods layers of representation are usually obtained
by greedily training one layer at a time on the lower level [5,9,3],
using an unsupervised learning algorithm. Hence the performance
of single-layer learning has a big effect on the final representation.
Neural network based single-layer methods, such as autoencoder
[10] and RBM (Restricted Boltzmann Machine, [11]), are widely
used for this but they usually have many parameters to adjust,
which is very time-consuming in practice.

That motivates more simple and more efficient methods for
single-layer feature learning. Among others K-means clustering
algorithm is a commonly used unsupervised learning method,
which maps the input data into a feature representation simply by
ng),
associating each data point to its nearest cluster center. There is
only one parameter involved in the K-means based method, i.e.,
the number of clusters, hence the model is very easy to use in
practice. Coates et al. [12] shows that the K-means based feature
learning network is capable to achieve superior performance
compared to sparse autoencoder, sparse RBM and GMM (Gaussian
Mixture Model). However, the K-means based feature re-
presentation may be too terse, and does not take the non-uniform
distribution of cluster size into account ‐ Intuitively, “bigger”
clusters are likely to be part of the features with higher influential
power, compared to the smaller ones.

In this paper we present a novel unsupervised feature learning
network C-SVDDNet, which combines the strength of K-means
encoding [12] and SVDD (Support Vector Data Description,
[13–15]) towards compact and robust feature representation while
being rich enough to express the knowledge needed in problem
solving. Given the aforementioned weakness of traditional
K-means based methods, we make three improvements: One is
that we propose a more discriminative encoding method— SVDD
encoding which takes the distribution information into con-
sideration. We use SVDD encoding as the local encoding through
which an image can be transformed into a set of feature maps. Our
second contribution is that we propose an SIFT-based global re-
presentation which embeds spatial information of local codings
into the final representation. This is different from both the Bag of
Words model which simply histograms all local coding and the
traditional K-means coding [12] which ignores spatial information
in feature maps. Lastly we extend our C-SVDDNet to exploit multi-
scale information for better feature learning. Coates et al.'s work
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[12] shows that a small receptive field is more appropriate in
feature learning. But single scale receptive field can seldom char-
acterize an object well, and information at different scales (from
edges to poselets, objects) are complementary to each other to
make a better feature representation.

A naive implementation of the above idea, however, shows that
the centroid of an SVDD ball tends to be unreliable, because its
position is mainly determined by the support vectors on the
boundary and the noise in the data may deviate the center far
from the mode (c.f., Fig. 4 (left)). This makes the resulting feature
representation inconsistent with the data's distribution. Hence we
add a new constraint to the original SVDD objective function to
make the model align better with the data. We show that our
modified SVDD can be solved very efficiently as a linear pro-
gramming problem, instead of as a quadratic one. Usually we need
to compute hundreds of clusters, and a linear programming so-
lution can thus save us large amounts of time.

A preliminary version appeared in [16], and this work is a
significant extension to the previous one with more im-
plementation details added. We also present extensive experi-
mental results on several popular object recognition and image
retrieval benchmarks with competitive performance. The re-
maining parts of this paper are organized as follows: In Section 2,
preliminaries are provided regarding unsupervised feature learn-
ing representation, then we detail our improved feature learning
method in Section 3. In Section 4, we investigate the performance
of our method empirically over several popular datasets. We
conclude this paper in Section 5.
2. Unsupervised feature learning

The goal of unsupervised feature learning (UFL) is to auto-
matically discover useful hidden patterns/features in large data-
sets without relying on a supervisory signal, and those learnt
patterns can be utilized to create representations that facilitate
subsequent supervised learning (e.g., object classification). Com-
pared to supervised learning, unsupervised learning has its unique
characteristics and advantages. Among others, one of the major
advantages of UFL is that it allows to learn consistent patterns
from cheap and abundant unlabelled data, without the need to
manually annotate them. Such patterns distinguish from noise
since by definition noise can be thought of as random variations
presented in the data. This implies many potential applications of
unsupervised learning, e.g., to transfer knowledge from one do-
main to another related domain, to regularize the behavior of a
supervised algorithm, and to represent the data in a compact but
effective manner. Due to these reasons, unsupervised learning is
regarded as the future of deep learning [17].

There are many kinds of unsupervised learning methods in
computer vision, such as Bag of Words (BoW) [18], Vector of Lin-
early Aggregated Descriptors (VLAD) [19], Fisher vector (FV) [20],
and so on. A typical pipeline for unsupervised feature learning
includes three steps. The first step is to train a set of local filters
from the unlabeled training data. This is usually done by running
K-means (for BoW, VLAD) or GMM (for FV) on lots of local patches
sampled from the dataset and then using the centers of clusters as
filter bank. The second step is to partition a given image into
patches and encode them into a set of feature vectors using the
learnt filter bank. These feature vectors are finally combined and
normalized as the feature representation for the input image. In
what follows we give a brief review on these methods.

2.1. Bag of words and its variants

The simple and basic unsupervised feature learning method is
the BoW model. In this model local filters are usually the centers
of clusters from K-means. These filters are looked as bins, which
serves to pool the local patches nearest to them. This can be re-
garded as a “hard voting” method:
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to encode the information of an input image.
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1 1 2 2 . VLAD [19] is a sim-
plified version of FV, with the difference signal between a patch x
and a filter ck defined as ( ) = −f x x ck k. As in FV, these difference
signals are concatenated into a K-dim vector for feature re-
presentation. Obviously, both FV and VLAD encode much richer
information than that of BoW, hence being more discriminative in
subsequent tasks such as object classification.

2.2. Coates et al.'s method

To the best of our knowledge, the work of [12] is the first “deep”
unsupervised learning method that is based on the K-means
method, hence having close connection with the aforementioned
BoW, VLAD and FV methods. Particularly, after learning a filter
bank, instead of using it as basin of attraction like in BoW or as
references for calculating difference vectors, it is utilized to gen-
erate a series of feature maps, one for each filter. This has at least
two potential advantages: (1) compared to VLAD and FV, the en-
coded information is even more rich; (2) the feature maps pre-
serve the spatial information well and hence the whole procedure
could be repeated, leading to a deep unsupervised learning
architecture.

Furthermore, to deal with the problem of “hard coding” in
K-means, the following “triangle” encoding is proposed [12]:

μ( ) = { ( ) − ( )} ( )f x z z xmax 0, 3k k

where ( ) = ∥ − ∥z x x ck k 2, and μ ( )z is the mean of the elements of z.
This activation function only suppresses the response for such
feature fk with its distance to the centroid ck above the average,
hence leading to a less sparse representation (roughly half of the
features could be set to be 0). Interestingly, this “triangle” encoding
strategy can be also looked at as a ReLU (rectified linear unit) ac-
tivation function [21] shifted by μ ( )z . This builds the connection
with other modern deep learning literature. Last but not least, this
strategy allows us to learn a distributed representation using the
simple K-means method instead of using more complicated net-
work-based methods (e.g., autoencoder and RBM).

However, this method does not take the characteristics of each
cluster into consideration. Actually, the number of data point in
each cluster is usually different, so is the distribution of data points



Fig. 1. Illustration of the unequal cluster effect, where the distances from a test
point x to two cluster centers C1 and C2 are equal but the size of two clusters are
different.
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in each cluster. We believe that these differences would make a
difference in feature representation as well. Unfortunately the
aforementioned K-means feature mapping scheme completely
ignores these and only uses the position of center for feature en-
coding. As shown in Fig. 1, although the data point x has the same
distance to the centers C1 and C2 of two clusters, it should be as-
signed a different score on C1 than on C2 since the former cluster
C1 is much bigger than the latter. In practice such unequal clusters
are not uncommon and the K-means method by itself cannot re-
liably grasp the size of its clusters due to the existence of outliers.
To this end, we propose an SVDD based method to describe the
density and distribution of each cluster and use this for more ro-
bust feature representation.
3. The proposed method

In this section, after presenting an overview of the proposed
method, we give the details of our Centered-SVDD method for
feature encoding, and compare it with the K-means “triangle”
encoding method. Then we describe our SIFT-based post-pooling
layer and discuss how to extend the method to extract multi-scale
information.

3.1. Overview

A typical single-layer network contains several components: an
input image is first mapped into a set of feature maps using filter
banks (or dictionary), which are then subjected to a pooling/sub-
sampling operation to condense the information contained in the
feature maps. Finally, the pooled feature maps are concatenated to
a feature vector, which serves as the representation for the sub-
sequent classification/cluster tasks. There are several design op-
tions in this procedure, where the size of filter bank and that of the
pooling grids are the major tradeoff one has to make.

Generally speaking, bigger filter banks help each sample find its
nearby representative points more accurately but at the cost of
C-SVDD encoding Pooling S

Fig. 2. The architecture of the propos
yielding a high-dimensional representation, hence a crude pool-
ing/subsampling is needed to reduce the dimensionality. Overall
this type of architecture emphasizes more on the global aspects of
the samples than on the local ones (e.g., local texture, local shape,
etc.). Actually, Coates et al. show that this kind of network is able
to yield state-of-the-art results on several challenging datasets
[12]. On the other hand, other works use smaller filter banks but
highlight the importance of detailed local information in con-
structing the representation, usually based on some complicated
feature encoding strategy, as done in PCANet [22] or Fisher Vector
[23].

In this work, we follow the second design choice, based on the
consideration that the learned representation should preserve
enough local spatial information for the subsequent processing.
Fig. 2 gives the architecture of our single layer network. Compared
to [12], we use an improved feature encoding method named
C-SVDD (detailed in the next section) and adopt the architecture of
relatively small dictionary. Different to [22] or [23], we learn filter
banks for feature encoding but add an SIFT-based post-pooling
processing procedure onto the network, which essentially projects
the responses of a pooling operation into a more compact and
robust representation space.

3.2. Using SVDD ball to cover unequal clusters

Traditional K-means based method only uses the centroid to
represent the data of each cluster, while ignoring the distribution
and density information, which is important for feature encoding.
In this section we describe a method which incorporates such
information into the representation model based on the SVDD
(Support Vector Data Description, [13]). Formally, assume that a
dataset contains N data objects, { } = …x i n, 1, ,i . The goal of SVDD
is to find a closed spherical boundary around the given data points.
In this work, such a closed spherical boundary is called an SVDD
ball and is described by its center a and the radius R. In order to
avoid the influence of outliers, SVDD actually faces the tradeoff
between two conflicting goals, i.e., minimizing the radius while
covering as many data points as possible.

This can be formulated as the following objective,

∑λ ξ
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ξ
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≥ ( )
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where the slack variable ξ represents the penalty related with the
deviation of the i-th training data point outside the ball, and λ is a
user defined parameter controlling the degree of regularization
imposed on the objective. With the KKT conditions, we have

= ∑ =a xi
N

i1 , i.e., the center a of the ball is a linear combination of
the data xi. The dual function of Eq. (4) is
IFT representation Concatenating Classification

ed method (see text for details).
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where αi and αj are Lagrangian multipliers. By solving the
quadratic programming problem we can get the center a and the
radius R.

The SVDD method can be understood as a type of one-class
SVM and its boundary is solely determined by support vectors
points. SVDD allows us to summarize a group of data points in a
nice and robust way. Hence it is natural to use SVDD ball to model
each cluster from K-means, thereby combining the strength of
both models. In particular, for a given data point we first compute
its distance hk to the surface of each SVDD ball Ck, and then use the
following modified “triangle” encoding method for feature re-
presentation (c.f., Eq. (3)),

( ) = { ( ) − ( )} ( )f x g h h xmax 0, , 6k k

where ( ) = ∥ − ∥h x x Rk k 2 is the distance from the point x to the
surface of the k-th SVDD ball, while g(h) is the average of the
values hk.

Shown in Fig. 3 for a data point x, =C i, 1, 2i respectively are
the centroids of two SVDD balls with =R i, 1, 2i being the radius.
Since the distances from x to C1 and C2 are equal, xwill be assigned
the same scores on the two ball with the K-means scheme (c.f., Eq.
(3)). However, if we take the density and size of the clusters into
accounts, the score from C2 should be higher in our method. Hence
our method potentially provides more detailed information to the
subsequent processing components compared to the traditional
K-means encoding method, e.g., [12].

3.3. The C-SVDD model

Although SVDD ball provides a robust way to describe the
cluster of data, one unwelcome property of the ball is that it may
not align well with the distribution of data points in that cluster.
As illustrated in Fig. 4 (left), although the SVDD ball covers the
cluster C1 well, its center is biased to the region with low density.
This should be avoided since it actually gives suboptimal estimates
on the distribution of the cluster of data.

To address this issue, inspired by the observation that the
centers of K-means are always located at the corresponding mode
of their local density, we propose to shift the SVDD ball to the
centroid of the data such that it may fit better with the distribu-
tion of the data in a cluster. Our new objective function is then
Fig. 3. Using the SVDD ball to cover the clusters of K-means, where two SVDD balls
cover two clusters with different sizes, respectively. For a test point x, we encode its
feature using its distance h to the surface of an SVDD ball. This can be calculated by
subtracting the length R of the radius of the ball from the distance z between x to
the ball center C. Hence for two SVDD balls with different sizes, the encoded fea-
tures for the same point x would be different.
formulated as,1
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where α ≥ 0i and β ≥ 0i are the corresponding Lagrange multi-
pliers. According to KKT Conditions, we have,
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Taking Eqs. (9) and (10) into the Lagrange function (8) we get that
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This can be reformulated as

α α

α α λ

−

= ∈ [ ] = … ( )
N

He F

e i N

min
2

s. t. 1, 0, , 1, , , 12

T T

T
i

where = (〈 〉) ×H x x,i j N N , = (〈 〉) = ( … )×F x x e, , 1, 1, , 1i i N
T

1 . This ob-
jective function is linear to α, and thus can be solved efficiently
with a linear programming algorithm.

Since the model is centered towards the mode of the dis-
tribution of the data points in a cluster, we named our method as
C-SVDD (centered-SVDD). Fig. 4 shows the difference between
SVDD and C-SVDD, where the left is from SVDD and the right from
C-SVDD. We can see that our new model aligns better with the
density of the data points, as expected. It is also worth mentioning
that the normalization parameter λ plays an important role in our
model-a larger λ value would allow more noise to enter the ball,
while λ = 0, the C-SVDD model actually reduces to the naive sin-
gle-cluster K-means. More discussions on setting this value em-
pirically will be given in Section 4.

After the model is trained, we use the modified “triangle” en-
coding (Eq. (6)) for feature encoding, with almost the same com-
putational complexity with its K-means counterpart.
1 We choose the squared L2 norm distance as a convenient for optimization.
There are also other robust distance such as non-squared L2 norm distance [24].
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Fig. 4. Illustration of the difference between SVDD and C-SVDD. Note that after centering the SVDD ball (left), the center of C-SVDD ball (right) aligns better with the high
density region of the data points.
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3.4. K-means encoding versus C-SVDD encoding

In the previous sections, we present the C-SVDD encoding
methods and show that the coding is more discriminative than
K-means encoding in distinguishing between different inputs. In
this section we will show another advantage of the C-SVDD en-
coding, that is, it tends to suppress the response values of “useless”
feature atoms, which helps to improve the robustness of feature
presentation.

It will be useful to first take a brief discussion on the difference
of two kinds of feature maps, i.e., K-means-based “triangle” en-
coding (Eq. (3)) and our C-SVDD-based one.2 For this a pilot ex-
periment is conducted. Particularly, we learn a very small dic-
tionary containing only five atoms using five face images, by
clustering ZCA-whitened patches randomly sampled from the fa-
ces, and then take these for feature encoding. Fig. 5 illustrates the
face images used for dictionary learning (top) and the five learnt
atoms (leftmost). The feature maps of face images encoded by the
K-means encoding method and those by the C-SVDD encoding
method are respectively shown in Fig. 5(a) and (b), where each
row is corresponding to one dictionary atom next to it and each
column corresponding to one face.

By comparing the feature maps shown in Fig. 5(a) and (b), one
can see that the C-SVDD-based ones contain more detailed in-
formation than the K-means feature maps for the first three atoms,
while the responses of the last two atoms are largely suppressed
by our method (c.f., last two rows of Fig. 5(b)). To further under-
stand this phenomenon, we plot the entropy of each atom (by
treating them as a small image patch) in Fig. 6(c). The figure shows
that the entropy of the last two atoms is much smaller than that of
the first three ones, which indicates that the local appearance
patterns captured by these last two atoms are much simpler than
those by the first three. Hence these two atoms will tend to be
widely used by many faces, resulting in reduced discriminative
capability in distinguishing different subjects. In this sense, it will
be useful to suppress their responses (c.f., the last two rows of
Fig. 5(b)).

It is also useful to inspect the distribution of local facial patches
attracted by these atoms. Fig. 6(a) gives the results. It can be seen
that this distribution is not uniform and the number of local pat-
ches attracted by the fourth atom is significantly larger than those
by other atoms. As a result, for K-means encoding method, the
feature maps yielded by this atom show much more rich details
than others (see the fourth row of Fig. 5(a)), potentially indicating
that it could play more important roles than others in the sub-
sequent classification task. However, as explained above, since this
atom actually contains much less information than the first three
2 Hereinafter we will call them respectively “K-means encoding” and “C-SVDD
encoding” for short without confusion.
atoms (low entropy and being a “common word”), it is really not
good to over-emphasize its importance in feature encoding.

This drawback of K-means feature mapping is largely bypassed
by our C-SVDD-based scheme. As shown Fig. 6(b), the fourth atom
actually represents a very small cluster. In fact, the radius of
C-SVDD ball corresponding to the more informative atom tends to
be large, and one major advantage of our C-SVDD-based strategy is
that it is capable to exploit this characteristic of dictionary atoms
for more effective feature encoding, as shown in the first three
rows of Fig. 5(b). This partially explains the superior performance
of the proposed C-SVDD method compared to its K-means coun-
terpart (c.f., experimental results in Section 4).

3.5. Encoding feature maps with SIFT representation

In this section we describe the final component of the proposed
method, i.e., constructing a global output representation for a gi-
ven input image. Ideally, a good global feature should encode in-
formation rich enough for the subsequent processing and be
compact enough for efficient representation. To enrich the re-
presentation, we embed the spatial relationship of local codings in
feature maps into the output, rather than simply histogramming
over them as in the Bag of Words (BoW) model [18]. However, the
requirements of richness and compactness in feature representa-
tion are somewhat conflicting to each other, since preserving
spatial information in feature representation would lead to huge
dimension of the output features.

Suppose that the size of a receptive field is ×r r , and the size of
an input image is ×D D. After densely extracting patches and
encoding them, we would obtain K feature maps, one for each
filter, with each of size × ( = − + )S S S D r 1 . Particularly, for small
images with D¼96, and a small dictionary with size K¼256 and
with size of its filter r¼5, the resulting dimension of K feature
maps is nearly 2M, which is too large for many applications. One
can use such methods as average pooling or max pooling to reduce
the size of feature maps. For ×p p sized pooling blocks, the size of
a feature map can be reduced to ⌈ ⌉ × ⌈ ⌉S

p
S
p
. In the above example if

we set p¼5, the dimension of each map becomes × =19 19 361,
which is still too big when concatenating K maps. However, if we
choose a bigger pooling window, the more spatial information will
be lost.

In this paper we proposed a variant of SIFT-representation to
address the above issues. SIFT is a widely used descriptor in
computer vision and is helpful to suppress the noise and improve
the invariant properties of the final feature representation. How-
ever the traditional SIFT representation which extracts a 128-bit
feature-descriptor could lead to a very high dimensionality of re-
presentation. For example, if we extract 128 dimensional SIFT-
descriptors densely in 256 feature maps with the size of 16�16 in
pixel, the dimension of the obtained representation vector will be



Fig. 5. Illustration of feature maps of five face images (a) using K-means (c) and C-SVDD (d) respectively, based on five local dictionary atoms (b), where maps in each row are
corresponding to one atom next to it while each column corresponding to one face. For the response values in a feature map, the darker the lower.
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Fig. 6. Distribution of the number of patches attracted by each atom (a), the radius of the corresponding SVDD ball (b), and the entropy (c) over the five atoms shown in
Fig. 5 (leftmost).
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as high as over 11.8 M ( × × × = )250 19 19 128 11, 829, 248 . To
address this issue, we first divide each feature map into ×m m
blocks and then only extract an 8-bit gradient histogram from each
block in the same way as SIFT does. This results in a feature re-
presentation with dimension of × ×m m 8 for each map (Such as if
m¼3, then the dim is only 72 bit). In this way we significantly
reduce the dimensionality while preserving rich information for
the subsequent task.

3.6. Multi-scale receptive field voting

Next we extend our method to exploit multi-scale information
for better feature learning. Multi-scale method is a way to describe
the objects of interest in different sizes of context. This would be
useful since patches of a fixed size can seldom characterize an
object well - actually they can only capture local appearance in-
formation limited in that size. For example, if the size is very small,
information about edges could be captured but the information on
how to combine these into more meaningful patterns such as
motifs, parts, poselets, and object, is lost, while information about
these entities at different levels is valuable in that they are not
only discriminative by itself but complementary to each other as
well. Most popular manually designed feature descriptors, such as
SIFT or HoG, address this problem to some extend by pooling
image gradients into edglets-like features, but it is still unclear, for
example, how to assemble edglets into motifs using these meth-
ods. Convolutional neural network provides a simple and com-
prehensive solution to this issue by automatically learn hierarchies
of features ranging from edglets to objects. However, during this
procedure, information on where those high-level patterns are
found becomes more and more ambiguous.

Since our C-SVDDNet is a single-layer network, it is not suitable
to learn multi-scale information in a hierarchical way. Instead we
obtain multi-scale information by using receptive fields of differ-
ent sizes. In particular, we fetch patches with × =S S i, 1, 2, 3i i

squares in size from training images and use these to train



Fig. 7. Visualization of features learned from face images. (a), (b), (c) are from C-SVDDNet in 3 scales: 5�5, 10�10, 15�15 respectively. For comparison we also visualize
some features from a famous convolution neural network—vggface [25]. (d), (e), (f) are from vggface in 3 different layers (low to high).
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dictionary atoms with corresponding size through K-means.
Fig. 7 shows some examples of atoms we learnt on a face da-

taset. For comparison, we also illustrate the results from a typical
Convolutional Neural Network (ConvNet)—vggface [25]. One may
notice that the features learnt by the two types of networks look
very similar to each other at each scale. Specifically, with the in-
creasing window size, the learnt features become more under-
standable - for example, as shown in Fig. 7(c), using a receptive
field with size of 20�20 on face images of 64�64, we success-
fully learned facial parts such as the eyes, the mouth, and so on,
while a smaller receptive field gives us some oriented filters, as
shown in Fig. 7(a). Capturing such information is beneficial to the
subsequent processing (c.f., Fig. 11). The major differences between
our network and the vggface [25] are two folds: (1) training multi-
scale features in C-SVDDNet is much easier than in ConvNets,
because in ConvNets features are learned layer by layer while in
C-SVDDNet they can be learnt at once from the same input;
(2) there is no need of labelled data for a C-SVDDNet to learn,
while this is not possible for a ConvNet.

To use the learnt multi-scale information for classification, we
train a separate classifier on the output layer of the corresponding
network (view) according to different receptive sizes and different
pooling sizes, then combine them under a boosting framework.
Particularly, assume that the total number of categories is C, and
we have M scales (with K different numbers of pooling sizes for
each scale), then we have to learn × ×M K C output nodes. These
nodes are corresponding to ×M K multi-class classifiers. Let us
denote the parameter of the t-th classifier θ ∈ ×Rt

D C (D is the di-
mension of feature representation) as θ = [ … ]w w w, , ,t t t tC1 2 , where
wtk is the weight vector for the k-th category. We first train these
parameters using a series of one-versus-rest L2-SVM classifiers,
and then normalize the outputs of each classifier using a soft max
function,
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Finally, the normalized predictions ftk are combined to make
the final decision,
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where = { … }f f f f, , ,t t t tC1 2 is the output vector of the t-th classifier,
and the corresponding combination coefficients atc are trained
using the following objective,

∑ ∑ λ− ( ) + ∥ ∥
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟a f x amin max 0, 1

15a
i t

tc
T

t i c

2

2
c

This is the same type of one-versus-rest L2-SVMmentioned before.



Table 1
Default parameter settings for our methods.

Parameter Value

#Clusters ≤500
Size of receptive field 5�5,a 7�7, 9�9
Size of average pooling 4�4,a 1�1, 3�3
λ of C-SVDD 1,a 0.005

a Default setting for the non-multi-scale network.
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Fig. 8. The effect of different number of features on the performance with different
methods on the STL-10 dataset. All parameters here (such as pooling size) are set as
the same as in Fig. 9.
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4. Experiments and analysis

To evaluate the performance of the proposed C-SVDDNet, we
conduct extensive experiments on four datasets including two
object classification datasets (STL-10 [12], MINST [2]) and two
image retrieval datasets (Holiday [26], INRIA Copydays [27]).

4.1. Experiment settings

All the images undergo whitening preprocessing before feeding
them into the network. The whitening operation linearly trans-
forms the data such that their covariance matrix becomes unit
sphere, hence justifying the Euclidean distance we use in the
K-means clustering procedure.

Unless otherwise noted, the parameter settings listed in Table 1
apply to all experiments. The influence of some important para-
meters, such as the number of filters, will be investigated in more
detail in the subsequent sections. For single scale network, the
receptive field is set to be 5�5 by default across all the datasets, as
recommended in [12], while in multi-scale version, we use re-
ceptive fields in three scales, as shown in Table 1.

For C-SVDD ball, there is a regularization parameter λ to set.
This parameter allows us to control the amount of noise we are
willing to tolerant to. As can be seen from Eq. (1), a small λ value
encourages a tight ball. We set λ = 1 by default for most datasets
except for those with too noisy background are set to 0.005. Fur-
thermore, the centers in C-SVDD are set as the same as those in
k-means, so that we can safely ignore the effect of the initialization
of k-means.

Throughout the experiments, we use Coates’ K-means “triangle”
encoding method [12] (c.f., Section 2.2) as baseline (denoted as ‘K-
means’), while its direct counterpart method by simply replacing
“triangle” encoding with C-SVDD encoding is denoted as ‘C-SVDD’.
Furthermore, we denote the proposed single layer network as ‘C-
SVDDNet’, and its multi-scale version as ‘MSRV þ C-SVDDNet’. In
addition, we re-evaluate the baseline method [12] within the
proposed network by replacing its component of C-SVDD with the
K-means-based encoding, denoted as ‘K-meansNet’.

4.2. Analysis of the proposed method

In this section, we want to investigate various factors and
components which may have critical influence on the performance
the proposed method, including: (1) the number of filters: Coates's
work [12] demonstrates the needs of a very big filter bank to en-
sure good performance, while we show that this is not necessary
the case; (2) the pooling size: in our method this is viewed as a
preprocess of feature maps for better global representation;
(3) various way to construct the final global/output representa-
tion: we compare our SIFT based representation with other de-
scriptors such as LBP, SURF and HOG; (4) the multi-scale in-
formation. Finally we evaluate the contribution of each stage that
defines the C-SVDDNet.

We choose to conduct this series of experiments on the STL-10
dataset. The STL-10 is a large image dataset popularly used to
evaluate algorithms of unsupervised feature learning or self-
taught learning. Besides 100,000 unlabeled images, it contains
13,000 labeled images from 10 object classes, among which 5000
images are partitioned for training while the remaining 8000
images for testing. All the images are color images with 96�96
pixels in size. There are 10 pre-defined overlapped folds of training
images, with 1000 images in each fold. In each fold, a classifier is
trained on a set of 1000 training images, and tested on all 8000
testing images. In consistence with [12], we report the average
accuracy across 10 folds. For unsupervised feature learning we
randomly select 20,000 unlabeled data. The size of spatial pooling
is 4�4, hence the size of feature maps fed for SIFT representation
is 23�23. For multi-scale receptive voting we use 2 scale (5�5
and 7�7), on each of which we perform spatial pooling in 5 sizes
ranging from 2�2 to 6�6.

4.2.1. Do we really need a large number of local features?
By the number of features, we mean the number of filters K

used for feature extraction, which is equal to the number of dic-
tionary atoms. One of the major conclusions of Coates et al.'s series
of controlled experiments on single layer unsupervised feature
learning network [12] is that compared to the choice of particular
learning algorithm, the parameters that define the feature ex-
traction pipeline, especially the number of features, have much
more deep impact on the performance. Using a K-means network
with 4000 features, for example, they are able to achieve sur-
prisingly good performance on several benchmark datasets—even
better than those with much deeper architectures such as Deep
Boltzmann Machine [28] and Sparse Auto-encoder [12].

However, one drawback accompanying this large dictionary is
that a very crude pooling size has to be adopted (e.g., 46�46 over
92�92 feature maps) to condense the resulting feature maps,
otherwise the dimensionality of the final feature representation
could be prohibitively high. For example, a 3�3 pooling over 4000
feature maps with 92�92 in size would lead to a total number of
features over 3.8 M. Hence the first question we investigate is that
whether such a large number of features are really needed all the
time?

Fig. 8 gives the performance curves according to varying
number of features with different methods on the STL-10 dataset.
Besides the aforementioned methods, in this figure we also give



Table 2
Comparative performance (%) on the STL-10 dataset.

Algorithm Accuracy (%)

Selective receptive fields [29] (2011) 60.1071.0
Trans. Invariant RBM [33] (2012) 58.70
Simulated visual fixation [34] (2012) 61.00
Discriminative sum-prod. net [35] (2012) 62.3071.0
Hierarchical matching pursuit [36] (2013) 64.5071.0
Deep feedforward networks [37] (2014) 68.0070.55
BoW(K¼4800, D¼4800) 51.5070.6
VLAD(K¼512, D¼40,960) 57.6070.6
FV (K¼256, D¼40,960) 59.1070.8
K-means (K¼4800, D¼19,200) [29] (2011) 53.8071.6
C-SVDD (K¼4800, D¼19,200) 54.6071.5
K-meansNet (K¼500, D¼36,000) 63.0770.6
C-SVDDNet (K¼500, D¼36,000) 65.9270.6
MSRVþK-meansNet 64.9670.4
MSRVþC-SVDDNet 68.2370.5

Fig. 9. The effect of different pooling sizes on the performance of the proposed
method on the STL-10 dataset.

Fig. 10. Comparative performance on STL-10 dataset in the C-SVDDNet with its
global representation constructed by various descriptors, i.e., LBP, SURF, HOG and
SIFT. The black line is the baseline performance without using any feature
descriptors.
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the results of random dictionary (i.e, local dictionary atoms are
obtained randomly without being fine tuned by k-means, denoted
as “Random” ) and of the combination of random dictionary and
SIFT representation (denoted as ‘RandomNet’).

It can be seen that with the increasing number of features, the
performance of both K-means and C-SVDD methods rises, which is
consistent with the results by Coates et al. [12]. One possible ex-
planation is that since both K-means encoding and C-SVDD en-
coding use the learnt dictionary to extract non-linear features,
more dictionary atoms help to disentangle factors of variations in
images. In our opinion the capability to learn a large number of
atoms at relatively low computational cost is one of the major
advantages of K-means based methods for unsupervised feature
learning over other algorithms such as Gaussian Mixture Model
(GMM), sparse coding, and RBM. For example, it is difficult for a
GMM to learn a dictionary with over 800 atoms [12].

On the other hand, a too large dictionary can increase the re-
dundancy and decrease the efficiency. Hence it is desirable to re-
duce the number of features while not hurting the performance
too much. Fig. 8 shows that our C-SVDD encoding method con-
sistently works better than the K-means encoding at different
number of features, and combining C-SVDD encoding and SIFT-
based representation dramatically reduces the needs for large
dictionary without scarifying the performance. Actually, Table 2
and Fig. 8 show that using our C-SVDD encoding and the SIFT
feature representation, the dictionary size reduces by 10 times
(from 4800 [29] to 500) while the performance improves by 12%
(from 53.80% [29] to 65.92%).

As for the random dictionary (denoted as ‘Random’ and ‘Ran-
domNet’ in Fig. 8), it is interesting to see that when the number of
atoms is small, random atoms perform much worse than those
finetuned by k-means. But as the size of dictionary increases, the
performance difference between the random dictionary and
K-means dictionary begins to reduce. For example, at 500 features,
using random atoms gives a performance of 54.77%, slightly worse
than that of k-means (56.63%), and the performance of RandomNet
(62.45%) is also close to that of K-meansNet (63.07%). However the
performance of both random methods is all much lower than that
of the C-SVDD based methods.

4.2.2. Effect of the pooling size
To investigate the effect of different pooling sizes on the per-

formance using the proposed method, we conduct a series of ex-
periments on the STL-10 dataset. Particularly, for a 96�96 original
image, we use a receptive field of 5�5 in pixel for feature ex-
traction and obtain a layer of feature maps with 92�92. The
pooling blocks are set to be ×m m such that the size of final
feature maps after pooling is ×
m m
92 92 . We vary ×m m from 1�1 to

31�31 and record the yielded accuracy. Fig. 9 gives the results
under different settings. We can see from the figure that generally
for the one layer K-means-based network we need bigger block
sizes for improved translation invariance, but adding a robust SIFT
encoding layer after pooling effectively reduces the needs for large
pooling size while obtaining better performance. One possible
reason is that this tends to characterize more detailed information
of the objects to be represented.

4.2.3. Alternative ways to construct global representation
As illustrated in Fig. 2, the final global/output representation of

the proposed method is constructed based on a modified SIFT
descriptors. To verify the effectiveness of this method, we also
replace this component with several other popular feature de-
scriptors, including LBP [30], SURF [31] and HOG [32]. For fair
comparison, we set the parameters of different descriptors in the
same configuration, as listed in Table 1.

Fig. 10 gives the results. One can see that the performance of all



Fig. 11. Detailed performance of 10 different representations and their ensemble
on the STL-10 dataset. These representations are obtained by combining a different
receptive field size (rfs) and a pooling size (pls), where rfs indicates a receptive field
of ×s s, and plm denotes a pooling block of ×m m in pixel.

Fig. 12. The contribution of the three major components of the proposed method
to the performance.

Table 3
Comparative performance (%) on the MINST dataset.

Algorithm Error (%)

Deep Boltzmann machines [28] (2009) 0.95
Convolutional deep belief networks [38] (2009) 0.82
Multi-column deep neural networks [39] (2012) 0.23
Network in network [40] (2013) 0.47
Maxout networks [41] (2013) 0.45
Regularization of neural networks [42] (2013) 0.21
PCANet [22] (2014) 0.62
Deeply-supervised nets [43] (2014) 0.39
K-means (1600 features) 1.01
C-SVDD (1600 features) 0.99
K-meansNet (400 features) 0.45
C-SVDDNet (400 features) 0.43
MSRVþK-meansNet 0.36
MSRVþC-SVDDNet 0.35
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the descriptors is higher than that of the baseline (i.e, without
adopting any feature descriptors, c.f., the black horizontal line in
Fig. 10). Note that although SURF is faster than the other three, the
modified SIFT and the HoG descriptors perform better in terms of
recognition accuracy, showing that the gradient histogram based
representation is beneficial for those images in the wild. The LBP
descriptor may not be a good choice in our network due to the
huge dimension it results in.

4.2.4. Effect of the multi-scale receptive field voting
Fig. 11 gives the detailed accuracy of 10 representations using

2 sizes of receptive fields and 5 sizes of pooling blocks. One can see
that a different representation leads to a different prediction ac-
curacy but combining them leads to better performance. This
shows that the representations captured with different receptive
fields and pooling sizes are complementary to each other.

4.2.5. Contribution of components
To illustrate the contributions of the individual stages of the

proposed method (i.e., C-SVDD local encoding, SIFT-based global
representation and multi-scale voting), we conduct a series of
experiments on the STL-10 dataset by removing each of the three
main stages in turn while leaving the remaining stages in place
(the comparison is thus against our full method). Fig. 12 gives the
results. In general each stage is beneficial and (not shown) the
results are cumulative over the stages, but the SIFT stage seems to
contribute most to the performance improvement. This suggests
that taking spatial information into global representation is of
importance.

4.3. Object classification

4.3.1. STL-10 dataset
Table 2 gives our results on the STL-10 dataset. The major

challenges of this dataset lie in that its images are captured in the
wild with cluttered background, objects in various scales and po-
ses. As before, we compared our method with several feature
learning methods with state-of-the-art performance. One can see
that our one scale C-SVDD network obtains 65.92% accuracy, using
a filtering dictionary of 500 atoms, outperforms several other
feature encoding methods, such as Bag of Words (BoW), Vector of
Linearly Aggregated Descriptors (VLAD), Fisher vector (FV) and
other unsupervised deep learning methods (e.g, Trans. Invariant
RBM (TIRBM) [33], Selective Receptive Fields (SRF) [29], and Dis-
criminative Sum-Product Networks (DSPN) [35]). This also in-
dicates that spatial information preserving using SIFT is indeed
useful in unsupervised feature learning. Also note that replacing
the proposed C-SVDD encoding with K-means encoding leads to
nearly 3.0% performance loss, while fusing the multi-scale in-
formation gives us about 2.3% improvement in accuracy, exceeding
the current best performer [37] on this challenging dataset.

4.3.2. MINST dataset
The MNIST is one of the most popular datasets in pattern re-

cognition. It consists of grey valued images of handwritten digits
between 0 and 9. It has a training set of 60,000 examples, and a
test set of 10,000 examples, all of which have been size-normal-
ized and centered in a fixed-size image with 28�28 in pixel. In
training we use a dictionary with 400 atoms for feature mapping,
and after pooling/subsampling we break each feature map into
9 blocks to extract SIFT features. For multi-scale receptive voting,
we use 3 types of receptive fields: 5�5, 7�7 and 9�9. Combined
these with two settings for pooling sizes (i.e., 1�1 and 2�2, re-
spectively), 6 different views/representations can be obtained for
each image in this dataset.

Table 3 gives our experimental results on the MINST dataset. It



Fig. 13. All misclassified 35 handwritten digits among 10,000 test examples by our
method. The small digit in each white square is the ground truth label of the
corresponding image, and the one in the green square is the prediction made by
our method. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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is well-known that deep learning has achieved great success on
this task of digit recognition. For example, only 95 among 10,000
test digits are misclassified by the Deep Boltzmann Machines [28],
while Convolutional Deep Belief Networks [38] and Maxout Net-
works [41] respectively reduce this number to 82 and 45. Our
simple single layer network (MSRVþ C-SVDDNet) achieves an
error as low as 0.35 %, which is highly competitive to other
complex methods using deep architecture. Fig. 13 shows all the 35
misclassified digits by our method, and one can see that these
misclassified digits are very confusing even for human beings.
Compared to the original K-means network [12], the proposed
method reduces the error rate by 65%, with much smaller number
of filters. This reveals that at least on this dataset with clean
background, it is very beneficial to focus more on the re-
presentation of the details of the image, rather than emphasizing
too much on its global aspects using a large number of filters and a
large pooling size.
Table 4
Comparative performance (mAP %) on the Holiday dataset.

Algorithm K D Holidays (mAP %)

Best ′ =D

BoW [19] (2012) 20,000 20,000 45.2 41.8
FV [19] (2012) 256 16,384 62.6 62.6
VLAD [19] (2012) 256 16,384 62.1 62.1
(2013) 256 16,384 64.6 –

K-means 3200 12,800 55.2 54.5
C-SVDD 3200 12,800 57.4 56.8
K-meansNet 256 8192 62.5 59.8
C-SVDDNet 256 8192 66.0 63.7
MSRVþK-meansNet 256 8192�8 66.5 65.0
MSRVþC-SVDDNet 256 8192�8 70.2 68.6
4.4. Image retrieval

4.4.1. Holiday dataset
INRIA Holiday dataset consists of 1491 images from personal

holiday photos. There are 500 queries, most of which have 1–2
ground truth images. mAP (mean average precision) is employed
to measure the retrieval accuracy. We resize all the images to
96�96. In training we use a dictionary with 256 atoms for feature
mapping, and after pooling/subsampling we break each feature
map into 4 blocks to extract SIFT features. Thus the dimension of
final representation is 8196. And we also run PCA for dimension-
ality reduction as [19]. For multi-scale receptive voting, we use
2 types of receptive fields: 5�5 and 7�7. Combined these with
four settings for pooling sizes (i.e., 3�3, 4�4, 5�5 and 6�6,
respectively), 8 different views/representations can be obtained
for each image in this dataset. Note that in image retrieval task, we
cannot train classifiers so that we just concatenate all the views'
representations to combine multi-scale information. In retrieval
stage we use Euclidean distance in nearest neighbor searching as
in [19] and [44], facilitating a fair comparison between various
feature representation methods on this task.

Table 4 gives our experimental results on this dataset. We
compare our method with BOW, VLAD, FV under different di-
mensions (reduced through PCA). BoW takes a 20k sized filter
bank but has the lowest mAP (45.2%). Replacing BoW with
K-means triangle encoding improves mAP by 10% (55.2%), but still
needs a large filter bank of 3.2 K.

Previous state-of-art unsupervised feature learning methods,
i.e., VLAD and FV [19], can achieve a high mAP of 62.1% 62.6% re-
spectively. And both of them only take a small set of filters of size
256. In [44] Arandjelovic combines VLAD with adaptive filter bank
and a new normalization to achieve an accuracy of 64.6%. Our
proposed C-SVDDNet can get a mAP of 66.0% with 256 filters as
well. It outperforms VLAD by 3.9% and VLADþadaptþ innorm by
1.4%. Even if we reduce its dimension to smaller sizes with PCA, it
consistently achieves the best performance among the compared
ones.

Also note that replacing K-means encoding with C-SVDD en-
coding results in significant improvement (from K-means 55.2% to
C-SVDD 57.4%, and from K-meansNet 62.5% to C-SVDDNet 66.0%).
When concatenating multi-scale representation from 8 views, we
are able to achieve the highest mAP of 70.2%, without using any
supervision information.

4.4.2. Copydays dataset
INRIA Copydays dataset was designed to evaluate near-dupli-

cate detection [18]. The dataset contains 157 original images. To
obtain query images relevant in a copy detection scenario, each
image of the dataset has been transformed with three different
types of transformation: image resizing, cropping (Here we use
2048 ′ =D 512 ′ =D 128 ′ =D 64 ′ =D 32

0 44.9 45.2 44.4 41.8
57.0 53.8 50.6 48.6
56.7 54.2 51.3 48.1
– 62.5 – –

54.9 51.6 48.3 44.5
57.0 53.1 50.5 46.8
62.5 61.3 55.5 49.5
65.8 64.7 59.3 52.1
66.3 65.3 58.3 51.5
69.8 68.5 62.5 53.8



Table 5
Comparative performance (mAP %) on the Copydays dataset.

Algorithm K D Crop 50% Transformations

Best ′ =D 128 best ′ =D 128

BoW [19] (2012) 20k 20k 100.0 100.0 54.3 29.6
FV [19] (2012) 64 4096 98.7 92.7 59.6 41.2
VLAD [19] (2012) 64 4096 97.7 94.2 59.2 42.7
K-means 3200 12,800 95.2 91.5 47.6 32.80
C-SVDD 3200 12,800 97.4 93.8 52.2 36.60
K-meansNet 256 8192 96.8 94.3 55.4 37.80
C-SVDDNet 256 8192 100.0 98.1 62.2 52.0
MSRVþK-meansNet 256 8192�6 99.7 97.9 58.2 41.8
MSRVþC-SVDDNet 256 8192�6 100.0 100.0 65.6 55.3
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only the queries with the cropping parameter fixed to 50%), strong
transformations (print and scan, occlusion, change in contrast,
perspective effect, blur, etc). There is in total 229 transformed
images, each of which has only a single matching image in the
database. All images are resized to 75�75. We use 2 types of re-
ceptive fields 5�5 and 7�7, together with three pooling sizes
(i.e., 3�3, 4�4 and 5�5 respectively), which result 6 different
views. To challenge ourself in this experiments we also merge the
database with 10k web images as [19] does.

It is a large scale retrieval task. Table 5 gives our experimental
results on this dataset. We can see that in the 50% cropped cir-
cumstance, our C-SVDDNet with only 256 filters can be robust
enough to achieve a mAP of 100% as BoW with 20k filters. When
reducing its dimension to 128 bits, it still performs the second
best. In the strong transformation setting, our C-SVDDNet achieves
a mAP of 62.2% which outperforms VLAD (59.2%) and FV (59.6%)
by nearly 3%.

Furthermore, one can see that C-SVDD encoding allows our
C-SVDDNet improve upon K-meansNet by 6.8% in terms of mAP.
When reduced to 128 bits, our C-SVDDNet achieves a mAP of 52%
under the difficult cases of strong transformation, which outper-
forms other compared methods by more than 10%, while our
multi-scale version improves the mAP by 3%.
5. Conclusion

In this paper, we propose a simple one-layer neural network
termed C-SVDDNet for unsupervised feature learning. One of the
major advantages of the proposed method is that it allows effec-
tive feature representation for many applications, such as object
classification and image retrieval, by exploiting unlabeled data
which are often cheap and readily available. We show that when
properly combined with the SIFT descriptors, such representation
could be made even more efficient and discriminant. Extensive
experiments on several challenging object classification datasets
and image retrieval datasets demonstrate that the proposed
method significantly outperforms previous state-of-the-art un-
supervised feature learning methods such as Bag of Word, VLAD
[19], and FV [20].

Additionally, we show that for feature representation, a very
big dictionary is not necessary, as one could accumulate rich in-
formation in each feature map and preserve them with compact
encoding (e.g, using the proposed method). This significantly re-
duces the computational cost. Last but not least, we show that one
can use multi-scale information to further improve the perfor-
mance without training many layers of networks—after all train-
ing several shallow networks is much easier than training a deep
one.
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