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Abstract— Easy, yet robust long-term localization is still an
open topic in research. Existing approaches require either
dense maps, expensive sensors, specialized map features or
proprietary detectors.

We propose using semantic segmentation on a monocular
camera to localize directly in a HD map as used for automated
driving. This combines lightweight, yet powerful HD maps with
the simplicity of monocular vision and the flexibility of neural
networks.

The major challenges arising from this combination are data
association and robustness against misdetections. Association is
solved efficiently by applying distance transform on binary per-
class images. This provides not only a fast lookup table for a
smooth gradient as needed for pose-graph optimization, but
also dynamic association by default.

A sliding-window pose graph optimization combines single
image detections with vehicle odometry, smoothing results and
helping overcome even misclassifications in consecutive frames.

Evaluation against a highly accurate 6D visual localization
shows that our approach can achieve accuracy levels as required
for automated driving, being one of the most lightweight and
flexible methods to do so.

I. INTRODUCTION

Almost all approaches for automated driving still heavily

rely on maps. In order to use map information, a vehicle

needs to determine its position within the map. This task

is called localization and requires precision up to few cen-

timeters in lateral direction. For research and as reference

for evaluation, expensive RTK-GNSS systems are coupled

with high-precision IMUs. While this achieves the goal in

terms of accuracy, these solutions do not scale well from an

economic point of view. Also, their performance degrades in

GNSS-denied areas like tunnels.

As an alternative, landmark-based localization has been

established and recent publications were able to achieve

comparable accuracy [1], [2]. As localization is supposed

to be independent of daytime and weather, but also robust

against structural changes, landmarks have to be chosen

appropriately. Furthermore, localization is supposed to work

with more than one kind of sensor to have a redundant

and portable solution. Finally, landmarks need to be com-

pact in memory. This requires landmarks that are sparse,

rarely changing and robustly detectable with multiple sensor

modalities.
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A. HD Maps

For automated driving, HD maps [3] that contain informa-

tion required for enhanced perception or prediction of other

traffic participants have become the de facto standard.

The idea to directly use HD map elements, such as

lanes, curbs, lane markings, traffic lights or traffic signs, for

localization, is not new [4], [5]. They are not only sparse

and more robust against changes than image descriptors that

change with seasonality or weather conditions, they are also

needed for other driving functions, anyways. Thus, they do

not need extra memory or maintenance. Moreover, it also

allows to share the maps with a humanly verifiable meaning

across vehicles, fleets or even manufacturers. Additionally, it

eliminates the need to properly align localization layer and

other map elements [6].

The disadvantage that HD map elements are not dense or

rich enough to provide sufficient localization accuracy will

be gone with the increasing demand on HD map features.

B. Semantic Segmentation

For detecting HD map elements, previous approaches [1],

[4] used proprietary detections from camera or lidar sensors.

While this is valid, those detectors are rarely made publicly

available. Approaches like [7] are an exception, but poles

are not necessary for automated driving functions other than

localization, thus, representing additional landmarks.

In this paper, we propose using convolutional neural

networks (CNNs) trained for semantic segmentation tasks as

an alternative. Not only are they widely available for research

use [8], even with pretrained weights, we also show an easily

reproducible approach to solve the association problem that

stands between landmark detection and pose optimization.

Bounding box [9]–[11] or instance-level detections could

be an alternative to pixel-wise segmentation. However, lanes,

curbs and solid lane markings often to not fit well to such a

spatially restricted representation.

C. Contribution and Outline

This paper contains three contributions. First, we propose

to use CNNs that are trained for semantic segmentation in

order to overcome spatial limitations of previously often used

bounding box detectors. This allows to detect all kinds of

map elements that are typically contained in sparse, share-

able, sensor-independent HD maps for automated driving.

The second contribution is the use of distance transform

in order to solve the association problem for dense semantic

information on a pixel level. Additionally, this makes asso-

ciation inherently dynamic.
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Fig. 1: Overview of our approach. Camera images are fed into a multi-head, real-time capable neural network that predicts

enhanced Cityscapes+LMand lane semantics, the latter being post-processed morphologically (Section III). Distance transform

is applied on each relevant semantic slice of the output tensor (Section IV). Semantically corresponding elements of the

HD map are gated and polylines are sampled to obtain semantic point landmarks in 3D (Section V). Finally, combining

this semantic localization with vehicle odometry in a pose graph optimization (Section VI) yields a smooth and robust

localization result.

Finally, we show how to compose this semantic informa-

tion with a standard vehicle odometry into a robust pose

graph that overcomes the weaknesses of semantic localiza-

tion using single images and enables accurate 6D localization

in lightweight HD maps with widely available hardware and

software.

The next section puts our contribution in the context

of related work. Section III explains the output of the

CNN used for detection and how it is post-processed. In

Section IV, association using distance transform is described.

The resulting pose optimization problem for a single image

is formulated in Section V, the subsequent pose graph and

its optimization in Section VI. The final two sections contain

evaluation, conclusion and future work.

II. RELATED WORK

Various approaches proposed localization in HD maps

using proprietary or handcrafted detectors for road fea-

tures [4], [12], [13], such as lane markings or curbs, or traffic

signs [14], often involving error-prone inverse perspective

mapping in case of flat landmarks. While the results per-

formed comparable, the detectors are hard to reproduce or

limited to only a single class of semantic landmarks, like

traffic signs.

Other approaches used additional landmarks like poles [2],

[7], [15], [16] or facades of buildings [2] or simply assumed

some kind of detector [1]. This is valid, but means extra

memory and maintenance compared to an HD map with only

lanes and regulatory elements.

The third approach is to use deep learning-based ap-

proaches to detect semantic landmarks. [9]–[11] proposed

bounding box detectors in 2D and 3D, respectively, to

map and recognize objects. This, however, does only work

for spatially bounded objects. Sharing the idea of using a

distance transform with our approach, but with a custom,

learned framework and a dense output, lane-level accurate

localization in 2D was proposed by [5]. While the customiza-

tion can easily adapt to new data, it is not as available as

simpler neural networks and similar performance in 3D has

to be proven.

Closest to our approach is the idea to extract and store

semantically labeled points and curves in 3D and use them

for localization [17]. However, their error functions are not

as generic as a simple distance transform. Also, they use 3D

points and curves that only partially resemble actual objects

and, thus, are neither as ubiquitous nor as shareable across

sensor modalities or vehicles as HD maps are.

III. SEMANTIC SEGMENTATION AND POST-PROCESSING

For map feature detection, we use a modified ResNet-38

CNN that has multiple detection heads [18].

One head predicts enhanced Cityscapes [19] classes, here-

after called Cityscapes+LM . Enhanced means that we ex-

tended the Cityscapes dataset by an additional lane markings

class, containing all kinds of lane markings.

The second head predicts lanes. This head works particu-

larly well for the ego lane. Here, we use the approach by [20].

Note that the whole network is optimized to run on our

measurement vehicle. For offline use or to easily reproduce

our results, the significantly slower Seamseg approach [21]

would be an interesting alternative. This is due to their use of

the Mapillary Vistas dataset [22] which contains HD map-

related classes such as road surface, lane markings, curbs,

traffic signs or traffic lights.
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The semantic prediction output of a CNN is one class

c(u) ∈ C for each pixel u = (u, v) with image coordinates

u and v. Usually, c(u) is determined as the class which has

the highest activation ak(u):

c(u) = argmax
k=1,...,|C|

(ak(u))

Using this one-hot encoding, the predicted output can be seen

as a M ×N ×C tensor T where exactly one entry along the

C dimension is 1 while all others are 0.

For localization, only those classes which correspond to

map elements matter. In our case, these are curbs (C), lane

borders (LB), lane markings (LM), traffic lights (TL) and

traffic signs (TS), defining the set of classes of interest

CI ⊂ C. Slicing T to only those classes defines the tensor

of interest, TI .

Our network cannot directly detect lane borders, but for

localization, they are far more informative than the lane area.

Thus, we subtract the eroded LB slice, T−
LB, from the dilated

LB slice, T+
LB, to morphologically extract the borders of the

ego lane: TLB = T+
LB − T−

LB.

IV. DISTANCE TRANSFORM

To solve the association problem between dense image

pixels and sparse, vectorial map elements, we propose ap-

plying distance transform on a per-class image level. This

spreads the information of the few pixels belonging to the

detections across the whole image, later allowing to use this

information for optimization.

Each slice of the tensor of interest TI corresponding to a

class c can also be seen as a binary image Bc as required

for a distance transform.

Bc(u) =

{

1 if c(u) = c

0 else

Distance transform can be used to transform Bc into a

distance image Dc of equal dimensions, but continuous pixel

values.

Dc(u) =







0 if Bc(u) = 1

min
ũ:Bc(ũ)=1

‖u− ũ‖ else

Using OpenCV [23] as software and L2 as norm, a distance

image Dc for each class of interest can be created efficiently.

V. SEMANTIC LOCALIZATION

Next, map features of each class c ∈ CI are projected into

the corresponding distance images Dc using an initial pose.

As HD map format, we use Lanelet2 [3] (see the HD map

in Figure 1 for an example). In a Lanelet2 map, there is a

physical element layer which can be annotated with types.

Physical elements are either points or linestrings/polylines

made up by a sequence of points, all in 3D. A left and a

right polyline serve as borders of a so-called lanelet, a short

piece of a lane that has contiguous semantics of both borders.

For TL/TS landmarks, we use the four or eight points

defining their shape as landmarks. Lane boundaries contain

only very sparse points. For lane markings or boundaries,

Fig. 2: Example of the semantic single image localization.

Map elements of different types are reprojected into the

image based on an erroneous initial pose (red). By applying

our optimization on a single image, new reprojections are

obtained (green).

we sample landmarks as points along the polyline using

sampling distance ds = 0.05m, converting a sparse, vectorial

HD map into denser, categorical point landmarks l ∈ R
3 with

an additional semantic class c(l). The same approach can be

used for arbitrary shapes and the sampling distance offers a

trade-off between accuracy and optimization speed.

Next, using a camera model and an initial pose p0 ∈
SE(3), all landmarks within or close to the (initial) field of

view are projected into the distance images Dc. This allows,

already for a single image, to optimize the camera pose

p ∈ SE(3) by minimizing the distances of all landmarks l.

This is expressed by the cost function J(p).

J(p) =
∑

l

ρ
(

(

Dc(l)

(

p
−1

l
))2

)

The idea is that a pose is optimal if all landmarks lie perfectly

in image patches of the corresponding semantic class. For

non-optimal cases, each landmark has to move to the next

suitable image patch. This information can be extracted by

interpolating the distance images to derive a smooth gradient.

Hence, the interpolated distance image can be used as a

fast lookup table that is computed only once and used in

each optimization step. Another advantage is that this lookup

makes the association between landmark and image patch

dynamic, i.e. it can change in each optimization step without

extra work.

Bi-cubic interpolation is done using Ceres [24]. Finally,

also using Ceres, the the sparse optimization problem can

be solved by Cholesky factorization [25].

For outlier rejection, we apply Tukey’s biweight loss as

robust loss function ρ with variable width. As some map

elements, like traffic signs and traffic lights, are typically

detected from farther away than lane markings or lanes

boundaries, the width depends on the semantic class and

ranges from 80 to 120 pixels.

For distinct locations, like when approaching intersections,

this optimization based on a single image already leads to

a unique pose. In many places, however, the pose is only

laterally constrained given the very sparse map information

and the limited range of view.
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VI. POSE GRAPH OPTIMIZATION

Semantic segmentation – in particular for real-time capa-

ble neural networks – is hardly perfect. Significant areas are

misclassified, making the single-image problem to converge

to a solution that seems acceptable for the semantic labeling,

but does not fit well to the actual image.

Additionally, long, straight roads without traffic signs,

intersections or other landmarks with information for lon-

gitudinal localization make the localization problem under-

constrained: Mainly longitudinal position, but to some degree

also height, roll and pitch angles are not well-observable or

well-determined.

To solve both problems and provide a stable, smooth

trajectory, we couple single-image localization with vehicle

odometry (VO) in a sliding-window pose graph optimization.

As VO, we obtain high-frequency measurements of longitu-

dinal velocity and yaw rates. Both information is available

on most vehicle interfaces.

We combine VO and semantic image (SI) measurements

in a pose graph by creating a pose for each of the most recent

20 images. VO is integrated between two SI poses to obtain

a motion estimate between consecutive frames.

For VO integration, the vehicle is abstracted as a point

mass, which can move in longitudinal direction with constant

velocity v and rotate around the up axis with constant yaw

rate ω. Thus, the vehicle movement is modeled using a

modified constant turn rate and velocity (CTRV) model [26].

The non-linear update of the partial 2D pose p̃ = (x, y, θ)
in the vehicle frame is given as follows.

∆p̃ =













































v
ω
sin(ω∆T )

v
ω
(1− cos(ω∆T ))

ω∆T






if ω ≥ ωmin







v∆T

0

ω∆T






if ω < ωmin

∆T denotes the temporal difference between two consecutive

frames and ωmin allows to avoid singularities.

This partial pose update is then transformed to the camera

frame and complemented with a weak regularization on

height, pitch and roll angle as a simplified 6D motion model.

VII. EVALUATION

The approach is evaluated on two urban scenarios in

the cities of Karlsruhe (scenario 1) and Ludwigsburg (sce-

nario 2). As even our reference-grade GNSS/IMU solution

tends to degrade in urban environments, we instead use a

multi-camera visual localization system [27], [28] that uses

DIRD image features [29], vehicle odometry and GNSS.

Additional pole landmarks are used for georeferencing [6]

for scenario 1 where the map is supplied by a third-party

company. This solution provides smooth, high-precision lo-

calization in 6D with only few centimeters errors, but at map

sizes of multiple gigabytes.

In case of scenario 1, the map was supplied in Lanelet2

format by a third-party map supplier, not containing curbs.

For scenario 2, the map was created semi-automatically in

a process similar to the one described in [13], containing

curbs, but no traffic lights. Also, in both scenarios, only a

few traffic signs are contained in the map.

A. Qualitative Analysis

By reprojecting map elements into the original images, the

localization result can be judged qualitatively.

Since not only for the pose estimation algorithm, but also

for humans, localization results are hard to judge on straight

roads, we refer to the quantitative section to judge them and

mainly consider intersections for qualitative analysis.

In Figure 3a, you can see that the localization result is

accurate despite the lane prediction being confused by the

dashed line for the crossing bike lane, an artifact rarely

occurring in Cityscapes.

Both, Figures 3a and 3b show that the optimum is often

already reached when map elements only lie on the border

of a detection. This is to the distance images which cannot

distinguish if a map element lies on the border or well within

an areal or extended detection. To overcome this effect,

signed distance transform could help to generate a slight

gradient even within a detection.

The intersection depicted in Figure 3c is a negative exam-

ple. In the frames before, tram rails were often misclassified

as lane markings, leading to an obviously wrong height and

pitch estimate. As the only recommendable solution would

be to add a class for tram rails, we stopped evaluating our

approach just after intersection I3 and more than 4 km of

our 5 km urban track.

Figures 3d and 3e show that well-detected lane markings

and curbs lead to good pose estimates even without traffic

signs or traffic lights.

B. Quantitative Analysis

Using the poses of our reference system, we can also

evaluate the performance of our approach quantitatively.

Hereby, the reference system serves as ground truth. Note

that for scenario 1, due to a non-perfect georeferencing, this

might not always be optimal. For scenario 2, the reference

poses are almost perfect.

TABLE I: Mean absolute errors (MAE) and root mean

squared errors (RMSE) in meters or degrees relative to the

6D visual localization reference.

lon lat up roll pitch yaw

Scenario 1
MAE 0.70 0.19 0.06 1.19 0.28 0.45

RMSE 0.86 0.23 0.08 1.53 0.37 0.58

Scenario 2
MAE 0.73 0.07 0.06 0.77 0.28 0.28

RMSE 0.90 0.11 0.07 1.00 0.38 0.56

Table I and Figure 4 show that the lateral error and yaw

angle is accurate up to the demand of automated driving by

providing far more than lane-level accuracy. Especially in

scenario 2, which is free from possible georeferencing errors,

only after one intersection, there is any significant lateral

error. Typically, error spikes occur after turns or intersections,
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(a) Karlsruhe, intersection I2. Note that the traffic lights belong to the road coming from the right while the traffic lights for the road
ahead are not included in the map.

(b) Karlsruhe, intersection I3. Only the traffic lights belonging to the turning lane are mapped, the right of which is ignored due to gating.

(c) Karlsruhe, intersection I4. The tram rails on the left were often misclassified as lane markings in the previous frames, leading to an
unrealistic height and pitch estimate.

(d) Ludwigsburg, turn T1. Splitting lane markings serve as longitudinal cues.

(e) Ludwigsburg, intersection I2. Note that traffic lights are not contained in the map.

Fig. 3: Qualitative results. The original, cropped images are overlaid with lane (left) and Cityscapes+LM (right) segmentation

results as well as with map elements. Best viewed in color with digital zoom. Cityscapes+LM segmentation follows the

original Cityscapes colors but also uses yellow for lane markings. Lane segmentation encodes lanes as follows: ego lane =

green, left adjacent = yellow, right adjacent = orange, other lanes = violet. For map elements, lane borders = white, curbs

= green, lane markings = blue and traffic lights = white/blue.
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Fig. 4: 6D errors relative to the reference poses for scenario 1 / Karlsruhe (upper six plots) and scenario 2 / Ludwigsburg

(lower six plots). T and I denote turns and intersections with longitudinal cues, respectively.

leading to the assumption that our motion model is not

perfectly parametrized or too simple.

Overall, the results in lateral direction and yaw angle are

in the same range as pole-based localization approaches [1],

[7], methods using other additional landmarks not necessar-

ily contained in a typical HD map [2] or methods using

proprietary detectors [13].

Longitudinal accuracy cannot keep up to this during long

straight sections, but always comes down to comparable level

(few centimeters) at turns or intersections, thus, where it

actually matters. Figure 3d together with the longitudinal

error plot for scenario 2 in Figure 4 shows that only splitting

lane markings can serve as longitudinal cues, too. However,

this also gives the impression that more traffic signs could

improve performance.

Interestingly, even roll and pitch angle as well as the height

can be estimated well. While these degrees of freedom might

not be necessary for motion planning, other tasks like traffic

light classification can benefit from the map using an accurate

6D localization. Additionally, this means that, with better

detections and additional cues, our system could also serve

as reference in 6D.

VIII. CONCLUSION

We proposed to use widely available neural networks

trained for semantic segmentation as detection front end,

overcoming the spatial limitations of previously used bound-

ing box approaches. This enables detecting elements con-

tained in lightweight HD maps for automated driving, such

as lanes, lane markings or traffic lights/signs. Combined with

vehicle odometry, our approach requires only a monocular

camera as hardware and still provides pixel-accurate local-

ization in 6D.

Association is done implicitly by applying a distance

transform on binary images of each semantic class of interest.

A gradient can be interpolated and used by projecting map

elements into the distance images. Advantageously, this leads

to an inherently dynamic association between landmarks and

detections.

HD map elements are transformed into 3D points, thus,

making the approach adaptable to arbitrary shapes of land-

marks. To iron out misclassifications and to provide a smooth

localization result, we combined multiple consecutive images

with vehicle odometry in a sliding window pose graph

optimization.

The approach only failed completely in one section where

tram rails are consistently misclassified as lane markings.

Otherwise, results provide similar accuracy as more expen-

sive or more complex approaches in lateral direction and

yaw angle. In longitudinal direction, this is only the case

when there are enough cues. However, around intersections

and turns where longitudinal accuracy is actually necessary,
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usually enough cues are present.

In future work we will include a more advanced motion

model as well as GNSS information. Storing all relevant traf-

fic signs or even single lane markings would yield additional

information in longitudinal direction, helping to overcome

the longitudinal drift on straight roads.

Improving or learning intermediate steps, like [5], could

boost accuracy even further. Finally, better, but slower, neural

networks, like [21], are an obvious way to improve results

as landmarks can be detected more accurately, from greater

distance and with fewer misclassifications.
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