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Abstract— This article proposes a novel Nonlinear Model
Predictive Control (NMPC) framework for Micro Aerial Vehicle
(MAV) autonomous navigation in indoor enclosed environments.
The introduced framework allows us to consider the nonlinear
dynamics of MAVs, nonlinear geometric constraints, while
guarantees real-time performance. Our first contribution is to
reveal underlying planes within a 3D point cloud, obtained
from a 3D lidar scanner, by designing an efficient subspace
clustering method. The second contribution is to incorporate
the extracted information into the nonlinear constraints of
NMPC for avoiding collisions. Our third contribution focuses
on making the controller robust by considering the uncertainty
of localization in NMPC using Shannon’s entropy to define
the weights involved in the optimization process. This strategy
enables us to track position or velocity references or none in
the event of losing track of position or velocity estimations.
As a result, the collision avoidance constraints are defined in
the local coordinates of the MAV and it remains active and
guarantees collision avoidance, despite localization uncertain-
ties, e.g., position estimation drifts. The efficacy of the suggested
framework has been evaluated using various simulations in the
Gazebo environment.

I. INTRODUCTION

The deployment of Micro Aerial Vehicles (MAVs) is
gaining more attention in different applications for interior
or exterior inspections. Examples include infrastructure in-
spection [1], underground mine tunnel inspection [2], [3],
and bridge inspection [4]. The obtained information from
the MAV inspections can be used for identifying various
types of damages, while providing real-time map-building
and navigation in unknown and complex environments.

One of the main challenges in deploying MAVs in real-
world applications is the ability to provide collision-free
paths, which strongly depend on an accurate and robust
localization. A failure in the localization adversely impacts
the overall mission quality, and in the worst-case scenario, it
leads to a collision/crash. Unfortunately, localization uncer-
tainties are inevitable in Global Positioning System (GPS)-
denied environments and in areas that lack prominent visual
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and geometric features. Hence, there is a need to develop
new methods to handle such uncertain cases in perceptually-
degraded and extreme environments such as subterranean
environments, to provide access to unreachable areas and
increase the personnel’s overall safety.

This article proposes a new Nonlinear Model Predictive
Control (NMPC) architecture for path planning and collision
avoidance that considers localization uncertainties as well as
geometrically-induced constraints. In the proposed method, a
novel and efficient subspace clustering technique [5] will be
presented for the transformation of geometric constraints into
equivalent plane constraints for modeling the surrounding
environment. The proposed approach significantly reduces
the computational complexity and memory usage of ex-
isting subspace clustering methods. Due to the real-time
constraints, traditional subspace clustering methods are not
applicable, as the computational time is often greater than
one second, even for one thousand data points (e.g., [6]). The
extracted equations are in the body frame and are thus de-
coupled from localization and used in the sequel as nonlinear
constraints in NMPC for avoiding collisions. Additionally, to
cope with uncertainties in the localization, we assume that
the weights of the trajectory following in the NMPC are
adaptive and vary based on Shannon’s entropy [7] of the
measurements. This feature permits the MAV to carry out
the mission despite significant uncertainties in localization
by dropping one or both of the position or velocity references
from tracking objectives. Hence, even a failure in the high
level path planner or localization will not lead to a collision
of the platform. The proposed control architecture allows
for continued mission by MAV even in the presence of
localization drift.

A. Background & Motivation

In the related literature, there have been many works
that addressed control, navigation and path planning of
MAVs [8], [9]. Most of these works decouple the problems
of designing controllers, navigation and path planning, and
proposed hierarchical structures for autonomous navigation.

Towards the topic of MAV navigation and path plan-
ning, exploration algorithms like frontier exploration algo-
rithms [10], entropy based algorithms [11], and information-
gain algorithms [12] provide a global planning strategy for
MAVs. These methods mainly rely on information concern-
ing the map and localization of the platform and compute
regions that reduce the map uncertainty. The obtained desired
areas to visit are then fed to the controller to generate com-
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mands for navigation of MAVs [13], [14]. As localization and
mapping suffer from uncertainties and drifts, an additional
reactive control layer is often considered for local obstacle
avoidance and to prevent collisions with the environment.
The most widely used reactive control layer is the artificial
potential field [15], which has seen wide use in multiple
application areas, as a local path planner for both MAVs
and other robotic platform applications, such as the mapping
of an infrastructure [16] or in the case of the multi-robot
coordination [17] for mobile robots. However, this method
suffers from getting stuck in a local optimum and the result
would be conservative and not optimal [18]. Few articles
have addressed collision avoidance of MAVs with the NMPC
framework. Much research focused on addressing formation
problems with a fixed number of agents [19], considered a
linear model [20], assumed global pose information of obsta-
cles [21], uncertainties of position estimations are excluded.

Plane segmentation has been extensively investigated, and
we present a brief overview. These methods can be divided
into three categories. (a) Point clustering, based on similar-
ities between the measurements such as distance and angle
between surface normal [22]. (b) Region growing, where the
method chooses seed points or regions, and cluster the points
based on that information. The authors in [23] proposed fast
segmentation of 3D point clouds for autonomous vehicles.
This method extracts a set of seed points based on low
height values to estimate the ground surface and then extract
the points close to initial ground plane. (c) Random sample
consensus (RANSAC)-based plane fitting where points from
the point cloud are sampled, and planar models are fitted
to them. In [24], a RANSAC method was proposed for
performing normal coherence check on points and removed
the data points whose normal directions were contradictory
to the fitted plane. While plane detection has received sig-
nificant attention over the last years, most research relies on
organized point clouds, such as RGB-D images [25], where
the neighbor information can be used. However, extracting
planes from unorganized point clouds is more challenging
because of the cloud size variations, which means that the
neighbor information cannot be immediately used [26].

In machine learning, sparse subspace clustering [27] is the
state-of-the art method for segmenting points drawn from a
union of subspaces. These methods consist of two steps: 1)
solving the sparse representation problem to find a similarity
matrix, 2) employing spectral clustering to partition the data.
Previous research efforts focused solely on reducing the
cost associated with step 1. Unfortunately, existing methods
did not attempt to reduce the cost of spectral clustering.
Therefore, state-of-the-art subspace clustering methods rely
on the increase in computational power to perform step 2,
which is a bottleneck for real-time data processing.

B. Contributions

The first contribution is to design a scalable subspace clus-
tering technique that finds clusters in the form of subspaces
within a 3D point cloud. We develop a scalable method for
partitioning the input data into clusters using three tools: (1)

randomized sampling, (2) fast sparse representation solvers,
and (3) efficient methods for computing the eigenvalue de-
composition. Thus, the proposed method enables extracting
the required information for avoiding collisions.

The second contribution stems from coupling the 3D
collision avoidance and controller in the body frame. The ob-
tained plane equations in local coordinates are considered as
non-linear constraints in the optimization scheme, while the
controller tracks the desired trajectory in global coordinates.
The proposed NMPC is solved by Optimization Engine
(OpEn) [28] that uses the Proximal Averaged Newton-type
method for Optimal Control (PANOC) algorithm [29], while
a penalty method is used for enforcing equality constraints
that guarantees obstacle avoidance.

The third contribution enables the framework to handle
localization uncertainties by defining adaptive weights for
tracking the position and velocity reference way-points. The
weights are calculated based on uncertainties associated with
measurements, while drifts in localization estimations result
in position or velocity tracking or neither. The constraints are
defined based on the local point cloud and will be active in all
cases, and collision avoidance is guaranteed. The proposed
solution results in progressing the MAV navigation, instead
of terminating the mission or collision of the platform.

The final contribution is to thoroughly examine the perfor-
mance of the proposed method in corridor and confined envi-
ronments using Gazebo. The proposed method successfully
avoids collisions, even when the localization estimations are
uncertain. These results show the capability of the proposed
architecture in challenging scenarios and can be found in the
following link: https://youtu.be/76ob9HSrOAs

C. Outline

Section II introduces notations used in the article. Then,
the segmentation approach is presented in Section III. In
the sequel, a presentation of the NMPC formulation, and
the solver are described in Section IV. Section V presents
our simulation results in the Gazebo environment. Finally,
Sections VI and VII conclude the article by summarizing the
findings and offering some directions for future research.

II. NOTATION AND PRELIMINARIES

The empty set in Rn is denoted by ∅n. A vector in Rn is
predetermined as column vector in Rn×1. The scalar product
between two vectors r, t ∈ Rn is denoted by r · t. The
identity matrix in Rn×n is denoted by In. The transpose
of a matrix M ∈ Rn×m is denoted by M>. The set P =
{(xi, yi, zi), i ∈ N} presents the set of point clouds in R3.
The set S = {(αi, βi, γi, ζi), i ∈ N} denotes the set of plane
equation in the form of αx+βy+γz+ζ = 0, α, β, γ, ζ ∈ R.
x, u are called state and input vectors respectively. p =
[px, py, pz]

> ∈ R3 is the position and v = [vx, vy, vz]
> ∈

R3 is the vector of linear velocities, φ ∈ R ∩ [−π, π] and
θ ∈ R∩[−π, π] are the roll and pitch angles. Figure 1 depicts
the block diagram of the proposed structure with the high
level NMPC controller, and the low level controller with the
MAV in the loop. The set S is provided from the plane



segmentation module (Section III) and the NMPC module
(Section IV) generates control actions u for navigating to the
reference way point xr, based on the odometry uncertainty
σ, the estimated states x̂, and the plane equations.

III. SEGMENTATION OF 3D POINT CLOUD

In this section, we propose an efficient subspace clustering
technique to extract planes or surfaces that are presented
in a point cloud. Suppose that the obtained 3D point cloud
consists of n points, i.e., P = {(xi, yi, zi)}ni=1, then we will
form a data matrix B = [b1, . . . ,bn] ∈ R3×n by assuming
each data point as a column vector. As these points are drawn
from a union of subspaces in R3, we can express each point
as a sparse linear combination of all the other data points.

Subspace clustering techniques aim to partition the data
into multiple clusters and fit each cluster with a low-
dimensional subspace (e.g., a 2D surface). A popular ap-
proach to subspace clustering relies on solving the following
optimization problem for each point bj , j = 1, . . . , n:

min
cj∈Rn

‖cj‖1 +
λ

2
‖bj −

∑
i 6=j

cijbi‖22 s.t. cTj 1n = 1, (1)

where ‖ · ‖q represents the `q norm for vectors, λ is a reg-
ularization parameter, cj = [c1j , . . . , cnj ]

T is the coefficient
vector associated with bj , and 1n is the vector of all ones.
The constraint i 6= j avoids the trivial solution of expressing
bj via itself, and the constraint cTj 1n = 1 allows us to extract
the general case of affine subspaces.

The above optimization problem can be cast in a more
concise form for the entire data set, i.e., bj , j = 1, . . . , n:

min
C∈Rn×n

‖C‖1 +
λ

2
‖B−BC‖2F (2a)

s.t. diag(C) = 0n, CT1n = 1n, (2b)

where ‖C‖1 =
∑
i,j |cij |, ‖C‖2F =

∑
i,j c

2
ij , and diag(C)

is the vector of the diagonal elements of C. After solving
the above optimization problem and finding the coefficient
matrix C = [c1, . . . , cn], the next step is to find the
segmentation of the data into multiple subspaces. To this end,
we build a weighted graph with n nodes corresponding to
the n original data points, and the similarity matrix is defined
as W = |C| + |C|T . Finally, we apply spectral clustering
to W for partitioning the data into subspaces. To be formal,
we form the normalized graph Laplacian matrix L = In −
D−1/2WD−1/2, where D is the diagonal degree matrix.
Then, the K eigenvectors v1, . . . ,vK ∈ Rn corresponding
to the K smallest eigenvalues of L are found (K represents
the number of clusters). The last step of spectral clustering
is to perform K-means clustering on the rows of the matrix
V = [v1, . . . ,vK ] ∈ Rn×K to find the segmentation of the
original data points. The optimization problem in (2) can be
solved using the Alternating Direction Method of Multipliers
(ADMM) [30], which scales poorly with the data size. The
computational cost of existing implementations is cubic or
quadratic in terms of the number of data points. Moreover,
one has to form various n-dimensional square matrices (e.g.,

C and W) that will lead to high memory usage. Hence,
existing subspace clustering methods are not appropriate
for our problem of interest. We address these problems by
developing a scalable subspace clustering technique.

The high computational cost of constructing the coefficient
matrix originates from computing a regularized representa-
tion of every single data point with respect to the whole
dataset. Thus, the first step of our novel method is to form
two subsets of the original data by uniform sampling with-
out replacement. Furthermore, we eliminate the constraint
CT1n = 1n by mapping the original data from R3 to R4.
This trick is known as homogeneous embedding [31], where
we add a new coordinate which is 1 (or another constant) to
every column of the matrix B, i.e., P = {(xi, yi, zi, 1)}ni=1.

Given two sampling parameters 0 < κ1 < κ2 < 0.5, we
create two sets of indices I1 and I2 with n1 = bκ1nc and
n2 = bκ2nc elements from {1, . . . , n} selected uniformly
at random, respectively. Then, we modify the sparse repre-
sentation problem for each bj , j ∈ I2: mincj∈Rn1 ‖cj‖1 +
λ
2 ‖bj−

∑
i∈I1

cijbi‖22. This problem does not return a trivial
solution because I1 ∩ I2 = ∅, and we propose to use the
SPArse Modeling Softwares (SPAMSs) package [32].

After solving the new optimization problem, we should
apply spectral clustering to the obtained coefficient matrix
C = [c1, . . . , cn2

]. However, the matrix C is not square
anymore because n1 6= n2, and we often want n1 to be
much smaller than n2 to reduce the computational cost.

State-of-the-art techniques seek to build a square matrix
of size n2 × n2, which can be quite expensive. To tackle
this problem, we implicitly form the similarity matrix W =
C̃T C̃ ∈ Rn2×n2 , where C̃ = |C|. Next, we present an
efficient approach to perform spectral clustering using the
new similarity matrix. We compute i-th element of D as:

n2∑
j=1

wij =

n2∑
j=1

c̃Ti c̃j = c̃Ti η = c̃i · η, (3)

where η =
∑n2

j=1 c̃j ∈ Rn1 . Thus, we compute the diagonal
degree matrix D using n2 scalar products.

The remaining task is to compute the K smallest eigenvec-
tors of the graph Laplacian matrix. We can reduce the com-
putational cost and memory usage of this step by computing
the top K eigenvectors of In − L = D−1/2WD−1/2. Let
UΣPT be the singular value decomposition of C̃D−1/2 ∈
Rn1×n2 , where U ∈ Rn1×r (left singular vectors), P ∈
Rn2×r (right singular vectors), Σ contains the singular
values, and r is the rank parameter. Then, the top K
eigenvectors of D−1/2WD−1/2 are equivalent to the top
K right singular vectors of C̃D−1/2 since we have [33]:

D−1/2WD−1/2 = (UΣPT )T (UΣPT ) = PΣ2PT . (4)

After computing the top eigenvectors and performing K-
means clustering, we obtain the segmentation of the data.
The final step picks three points within each subspace to
find the equation of each subspace for collision avoidance.



Fig. 1: Control scheme of the proposed NMPC module, where way point and yaw rate references are provided from the high
level controller, NMPC generates thrust and attitude commands and the low level controller generates motor commands.

IV. NONLINEAR MODEL PREDICTIVE CONTROL

A. Objective Function

We develop the NMPC with 3D collision avoidance
constraints, and we solve it by PANOC [29] to guarantee
real-time performance. The objective of NMPC is to track
the reference trajectory x = [p, v, φ, θ]> from high level
planner or operator and to generate thrust T and attitude
commands φd, θd for a low level controller, while guaran-
teeing safety distance from all extracted planes. Based on
u = [T, φd, θd]

>, and reference yaw rate command ψ̇r from
a high level planner, the low level controller generates motor
commands [n1, . . . , n4]> for the MAV.

The states of the non-linear dynamics of
the MAV based on [34] can be presented
as, x = [px, py, pz, vx, vy, vz, φ, θ]

>, x̂ =
[p̂x, p̂y, p̂z, v̂x, v̂y, v̂z, φ̂, θ̂]

> is the estimated state from
Extended Kalman Filter (EKF) for MAV dynamics, and
the control input is: u = [T, φd, θd]

>. The discrete-time
dynamical system is obtained by Euler method and with a
sampling time of Ts as xt+1 = f(xt,ut).

In the NMPC approach, a finite-horizon problem with
prediction horizon N is solved at every time instant k.
The states and control actions k + j steps ahead of the
current time step k are expressed by xk+j|k, and uk+j|k
respectively. At each time step, NMPC generates an optimal
sequence of control actions u?k|k, . . . , u?k+N−1|k, and the
first control action u?k|k is applied to the flight controller
using a zero-order hold element, that is, u(t) = u?k|k for
t ∈ [kTs, (k+ 1)Ts]. For the proposed NMPC, the following
finite horizon cost function is introduced:

J =

N−1∑
j=0

‖xk+j+1|k − xr‖2Qx︸ ︷︷ ︸
way point error

+ ‖uk+j+1|k − ur‖2Qu︸ ︷︷ ︸
actuation

+ ‖uk+j|k − uk+j−1|k‖2Q∆u︸ ︷︷ ︸
smoothness cost

. (5)

The first term of J gives the tracking of the reference
way points by penalizing a deviation from xr. The second
term is the hovering term, where uref is [g, 0, 0]>, which
is the hover thrust with horizontal angles. The third term
penalizes the aggressiveness of the obtained control actions.

Additionally, Qx ∈ R8×8, Qu ∈ R3×3, Q∆u ∈ R3×3 are
the weights for each term of the objective function, which
reflects the relative importance of each term. To consider
uncertainties in the localization estimation, the term Qx is
a diagonal matrix and elements are updated based on the
Shannon entropy of the measurements. We consider set of
measurements variances as:

σ = {(σpxi , σ
py
i , σ

pz
i , σ

vx
i , σ

vy
i , σ

vz
i ),

i ∈ {k − (nmax − 1), . . . , k}}, (6)

where σ is the variance of measurements and nmax is
limited window size of stored previous variances. We
compute the Shannon entropy for each set of variance
at time instant k by first defining probabilities Pi =
σi/(

∑nmax

i=1 σi). Next, we compute the Shannon entropy,
i.e., H = −

∑nmax

i=1 Pi log(Pi). Then, the obtained H
will be used as diagonal terms of Qx as Qx =
diag(Hpx , Hpy , Hpz , Hvx , Hvy , Hvz )

B. Obstacle Definition and Constraints

1) Collision Avoidance Constraint: The set of extracted
planes are presented by:

S = {(αi, βi, γi, ζi), i = 1, . . . , ncluster}, (7)

where ncluster is the number of clusters and α, β, γ, ζ are the
plane coefficients. To avoid the obstacles, for each extracted
plane equation, the constraints are defined in (8). It should be
highlighted that the constraints are defined in the body frame
(pk+j|k − pk|k) and the MAV is considered in the center of
the point cloud so that the global position is not required.

ds ≤
|[αi, βi, γi] · [pk+j|k − pk|k]> + ζi|√

α2
i + β2

i + γ2
i

, (8)

for i = 0, . . . , ncluster and j = 0, . . . , N − 1. The proposed
constraints guarantee that the MAV has at least ds distance
to each plane.

2) Input Constraint: To prevent the aggressive behavior
of control actions, the following input constraints on the
successive differences of control actions are defined as:

|φd,k+j|k − φd,k+j+1|k| ≤ ∆φmax, (9a)
|θd,k+j|k − θd,k+j+1|k| ≤ ∆θmax, (9b)



for j = 0, . . . , N −1. Where ∆φmax and ∆θmax are bounds
for changes.

C. Embedded Optimization

The following optimization problem can be defined:

minimize
{uk+j|k}N−1

j=0

J (10a)

subject to : xk+j+1|k = f(xk+j|k,uk+j|k), (10b)
Constraints (8), (9), (10c)
uk+j|k ∈ [umin,umax], (10d)

for j = 0, . . . , N − 1.
Problem (10) is a parametric non-convex optimization

problem that must be solved online. We use the fast optimiza-
tion solver Optimization Engine (for short OpEn) developed
by [28]. We first eliminate the state sequence following the
procedure detailed in [29]. Hence, we have a problem of
the decision variable u = (uk|k,uk+1|k, . . . ,uk+N−1|k) ∈
R3N , which is constrained in U = [umin,umax]N . For the
ith plane equation, constraint (8) reduces to:

max

{
0, ds −

|[αi, βi, γi] · [pk+j|k − pk|k]> + ζi|√
α2
i + β2

i + γ2
i

}
= 0.

(11)
Likewise, constraint (9) can be written as an equality con-
straint for φ and similarly for θ as follow:

max
{

0, φd,k+j|k − φd,k+j+1|k −∆φmax

}
=0, (12a)

max
{

0, φd,k+j+1|k − φd,k+j|k −∆φmax

}
=0. (12b)

V. RESULTS

A. Simulation Setup

The Gazebo robot simulator is used to evaluate the per-
formance of the overall system architecture. The quad-copter
in the simulations is equipped with the 3D lidar Velodyne
VLP-16. During the simulations the ground truth odometry
information provided from the Gazebo environment is used
without considering any on-board sensor fusion. For eval-
uating the adaptive weights performance of the controller,
random noises are added to the odometry measurements. We
generate noise with the normal distribution N (µ, σ2) [35],
where µ and σ2 are the mean and standard deviation for each
term of the states. From the practical point of view, position
estimations suffer from higher uncertainties compared to
velocity estimations [36], since position drift is more difficult
to recover compared to velocity drifts that can recover after
few time steps. Thus, we consider higher standard deviation
of noise for position estimations. The normal distributions,
for the position and velocity estimation, are N (0, 1.5) and
N (0, 0.5), respectively.

Two environments are chosen to demonstrate the main
attributes of the proposed navigation framework. The first
environment is inspired from corridor areas, where the goal
is to navigate from one end to the other, while avoiding
collisions with the walls, the second case mainly focuses on
the effect of odometry uncertainties in confined environments
and demonstrates the performance when adaptively updating

the uncertainty weights in the position and velocity in the
controller. In all simulations, the term ψ for the MAV is set
to be zero because plane segmentation and NMPC are in
the body frame of MAV and independent of the yaw. The
simulations can be found in the link: https://youtu.
be/76ob9HSrOAs

The parameters of the MAV model are identical to the
nonlinear model in [2]. Moreover, the tuning parameters of
NMPC are Q∆u = [20, 20, 20]>, Qu = [10, 10, 10]>, T =
[0, 1], and φd, θd = [−0.4, 0.4] rad. The NMPC prediction
horizon N is 40, the control sampling frequency Ts is 20 hz,
ds sets to 1 m, nmax and ncluster are 10, and ∆φmax and
∆θmax are 0.05 rad/sec. Moreover, the mean and maximum
computation time of the proposed NMPC, in all the studied
scenarios, are 1.7 msec and 8.8 msec respectively. Finally,
for the plane segmentation κ1 is 0.1, κ2 is 0.2, and λ sets
to 0.15, while the mean and maximum running time of the
proposed segmentation method are 0.05 sec and 0.4 msec.

B. Simulation Evaluation

1) Plane Segmentation: Figure 2 depicts the results of
plane segmentation for different complex environments.
The point clouds are in body coordinates, thus the MAV
is located in the center. We also compared the running
time of our method with Sparse Subspace Clustering Or-
thogonal Matching Pursuit (SSC-OMP) [6], Sparse Sub-
space Clustering Alternating Direction Method of Multipliers
(SSC-ADMM) [27], and Elastic Net Subspace Clustering
(ENSC) [37]. As depicted in Figure 3, our approach reduces
the computational cost by at least an order of magnitude.

2) Navigation in Corridor Environment: Figure 4 depicts
the trajectory of the MAV with the collision avoidance con-
straints of the NMPC in the “house maze” world, a Gazebo
environment available in VoxBlox repository1. The way-
points are generated beforehand with different velocities,
where some way-points have been intentionally selected
close to the wall to demonstrate the collision avoidance
capabilities of the framework in cases where the planner
designs a trajectory prone to collisions with the environ-
ment. This simulation does not include uncertainty linked
with localization measurements. The proposed NMPC con-
troller avoids collisions for all velocities [0.3, 0.5, 0.8, 1.0,
1.2] m/sec. Additionally, the potential field method [16] as
a baseline local collision avoidance is evaluated with way-
point generated with 0.3 m/sec, while the same desired safety
distance is set. The potential field trajectory is oscillating in
the environment and it failed to reach the final goal. This
is due to repulsive forces and large number of point clouds,
which push the MAV from one side to another side.

The Mean Absolute Error (MAE) between the desired
trajectory and way-points are 0.16, 0,16, 0.22, 0.27, 0.36,
and 1.4 m for our proposed method with velocities of 0.3,
0.5, 0.8, 1.0, 1.2 m/sec and potential field with velocity of
0.3m/sec respectively. It should be highlighted that the MAE
cannot be zero as some points are violating the constraints

1https://github.com/ethz-asl/voxblox
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Fig. 2: The extracted surfaces from various 3D point clouds in different scenarios based on the proposed segmentation
method, each cluster is indicated with a different color. Best viewed in color.
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Fig. 3: Comparing running time of segmentation methods.

and the controller must avoid reaching them. It is observed
that the MAE slightly increases with the increase in the
generated way-point velocities. However, the increase in
velocities did not result in any collision. The length of the
trajectory for each velocity is 54.60, 50.60, 49.41, 49.68,
49.79 m respectively. We see that the higher velocity results
in slightly lower length of the path, however the MAE
increases too. Nonetheless, this article is not focused on
finding optimal path, and further investigation is required.
Finally, the MAE of velocity profile of the MAV are 0.04,
0.03, 0.02, 0.12, 0.25 m/sec for way-points of [0.3, 0.5, 0.8,
1.0, 1.2] m/sec velocities respectively. It is observed that
the MAE is increased by increasing way-points velocities.
However, it should be highlighted that in order to guarantee
avoiding collision in confined environment, reaching higher
speeds is not always a feasible solution.

Figure 5 shows the minimum distance to the 3D point
cloud during navigation without uncertainty in localization
based on the proposed method with different velocities and
the potential field method. It should be highlighted that the
distance between confined areas of the environment is less
than 2 m, thus the constraints of ds = 1 m is slightly violated
with 0.1 m. However, this does not have impact on overall
performance and in all velocities we avoid collisions.

3) Navigation under Localization Uncertainties in Con-
fined Environment: A confined environment with no en-
try/exit is chosen to evaluate the performance when uncer-

tainties are induced in the position and velocity measure-
ments in the x and y axis, while the reference way-point
sets to [0, 0, 1, 0, 0, 0]>. The noise in the measurements is
induced after the take-off, when the MAV reaches the desired
way-point. The focus of these simulations is to highlight
the performance of the framework when the localization is
noisy, which adaptively changes the weights in the position
and the velocity based on the noise levels. Two scenarios
are considered one with and one without adaptive weights
for NMPC, while in both cases the collision avoidance
constraints are active. Figure 6 depicts the trajectory of the
MAV in each scenario. This Figure shows that the MAV for
the majority of the simulation run hovers close to the desired
location when the adaptive weights are enabled, compared
to the other case where it oscillates more. Figure 7 shows
the value of ground truth and measurements with noise for
position in x axis as an example, while the changes in the
weights for tracking of x is depicted too. It is observed that
NMPC with adaptive weights has less oscillation, and NMPC
without adaptive weights fails and collides to the walls.
Moreover, Figure 8 shows the distance of each controller
during the simulation, as it can be seen the adaptive weights
of NMPC improve the collision avoidance performance.

VI. LIMITATIONS AND FUTURE IMPROVEMENTS

The proposed efficient planar segmentation method shows
satisfactory performance in simulation results. However,
false connections in the similarity graph constructed from
sparse representations may lead to imprecise assignments,
which is problematic for extracting planes from 3D point
clouds. Additionally, the proposed method is mainly used for
plane segmentation, and other shapes such as cylinders are
not considered. Although the proposed approach is suitable
for many robotic applications such as Simultaneous Local-
ization and Mapping (SLAM) and wall following, there is a
need for more general object extraction techniques for local
collision avoidance of MAV with NMPC. Another future
research direction is to analyze the effect of noisy point
clouds on the accuracy of our plane segmentation method.

VII. CONCLUSION

This article proposes a framework for autonomous nav-
igation of MAVs in various environments with position



Fig. 4: The trajectory of the MAV with different velocities during navigation in the corridor environment, while the way-points
are shown by cross marker.
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Fig. 6: The trajectory of the MAV during navigation in
the confined environment, while the way-points sets to
[0, 0, 1, 0, 0, 0]> and uncertainty in the localization is added.

uncertainties. The framework consists of two main modules,
where the first one is plane segmentation from a local 3D
point cloud based on a highly efficient sparse subspace
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Fig. 7: The real value and noisy measurement for position
in x axis and adaptive weight of x tracking in the controller,
the results are down sampled for better visualization.
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Fig. 8: The minimum distance during navigation with local-
ization uncertainties to the points in 3D point cloud.

clustering technique. The second module is NMPC with



collision avoidance based on plane equations and adaptive
weights for tracking position, velocity or none based on
localization uncertainties. The overall framework is evaluated
in the Gazebo environment and the obtained results show the
efficiency of the proposed methods to provide a collision-
free navigation. It is shown that considering the localization
uncertainties in controller results in robust maneuver, while
without having adaptive weights, crushing of the MAV or
larger drifts from desired trajectory are unavoidable.
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