
Schema Acquisition: Implications for the
Instructional Design of Examples

Siti Soraya ABDUL RAHMAN and Benedict DU BOULAY
 IDEAS Lab, Department of Informatics, School of Science and Technology

University of Sussex, UK
{s.abdul-rahman, b.du-boulay}@sussex.ac.uk

Keywords. Analogical reasoning, schema acquisition, example-based learning

Students often use analogical reasoning to solve programming problems. The use of
examples is one of three types of analogical reasoning in problem solving [1]. Research
has shown that examples play an important role in learning and problem solving [2, 3]
and are crucial to the acquisition of initial cognitive skills [4]. Schema acquisition is
one of the underlying processes in acquiring such skills in learning programming [5].

The concept of example-based learning has received a significant amount of
interest from researchers in the programming education domain and they have
developed systems to support such learning [i.e. 6-11]. Nevertheless, evidence from
worked-example research points out some limitations of example-based learning.
Although several of the systems have attempted to address these limitations, various
questions remain open. For instance, it is not clear whether these systems, (apart from
[7,10]) have been sufficiently evaluated against student learning outcomes including
transfer, and more importantly, the relationship between individual learning style and
learning outcome or cognitive load effects resulting from using the system needs
elucidation. Note that [12] have identified the relationship between working memory
capacity and learning styles. Indeed, several empirical findings within programming
education literature have pointed out that reflective students perform better than active
students in programming performance. Another issue worth exploring is why examples
are so seldom used by students [8] and often neglected in programming instruction [5]
given the fact that these are an effective way to learn a complex cognitive skill such as
problem solving [13]. As a final point, only a limited amount of research on
instructional design involving worked-examples has been carried out in the area of
programming education [i.e. 7, 10, 11, 14].

In an attempt to improve the effectiveness of worked-examples, [4] suggest three
moderating factors. These include intra-example features, inter-example features, and
individual differences in example processing [3, 15]. In addition to this work focusing
on the instructional principles of worked-examples, recent research is also focusing on
techniques to optimise cognitive load for learning from worked-examples, [see 13].

Taking all these aspects into account, the purpose of this research is to bridge the
gaps identified above by extending previous research on example-based learning
systems with regard to the instructional design of the examples themselves. This can be
done by taking into consideration instructional principles from the worked-examples
research [4] and by drawing from assumptions laid down within the current

developments of Cognitive Load Theory (CLT). The aim of this research is to explore
the roles that worked-examples bring into play on novices’ analogical problem solving
in programming. In particular, the research into effective strategies for learning from
worked-examples seeks to promote schema acquisition and transfer. The research
investigates the differential effects on the different kinds of cognitive load and transfer
performance for three worked-example formats while taking into account student’s
learning style. Specifically, the research makes the following prediction with regard to
the comparison of combined format (the completion strategy [7, 11, 14] with the
introduction of structural example-based format [10]) that is designed to improve
schema acquisition and transfer with that of the structural example-based format and
the completion strategy format. That is, given the same amount of time on task with
similar instructional content, the combined format leads to better learning on both
active and reflective students than either structural example-based format or completion
strategy format. The answer to these questions will advance our knowledge about CLT
and will guide us in the practical implications for learning from worked-example in the
area of programming instruction. More importantly, it provides preliminary work
towards a macro-adaptive system for example-based learning.

References

[1] Reimann, P., Schult, T.J., Turning examples into cases: Acquiring knowledge structures for analogical
problem solving, Educational Psychologist 31 (1996), 123-132.

[2] Pirolli, P.L., Anderson, J.R., The Role of Learning from Examples in the Acquisition of Recursive
Programming Skills, Canadian Journal of Psychology 39 (1985), 240-272.

[3] Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P., Glaser, R., Self-explanations: How students
study and use examples in learning to solve problems, Cognitive Science: A Multidisciplinary Journal
13 (1989), 145 – 182.

[4] Atkinson, R.K., Derry S.J., Renkl, A., Wortham, D., Learning from examples: instructional principles
from the worked examples research, Review of Educational Research 70 (2000), 181-214.

[5] Van Merrienboer, J.J.G., Paas, F.G.W.C., Automation and Schema Acquisition in Learning
Elementary Computer Programming: Implications for the Design of Practice, Computers in Human
Behaviour 6 (1990), 273-289.

[6] Weber, G., Analogies in an Intelligent Programming Environment for Learning LISP, In: Lemut, E.,
du Boulay, B., Dettori, G. (eds.), Cognitive Models and Intelligent Environments for Learning
Programming. Springer-Verlag, Berlin (1993), 210-219.

[7] Chang, K-E., Chiao, B-C., Chen, S-W., Hsiao, R-S., A programming learning system for beginners –
A completion strategy approach, IEEE Transaction on Education 43 (2000), 211-220.

[8] Weber, G., Brusilovsky, P., ELM-ART: An Adaptive Versatile System for Web-based Instruction,
International Journal of Artificial Intelligence in Education 12 (2001), 351-384.

[9] Brusilovsky, P., WebEx: Learning from examples in a programming course, In Proceedings of the
World Conference on the WWW and Internet, Orlando, Florida (2001).

[10] Davidovic, A., Warren, J., Trichina, E., Learning benefits of structural example-based adaptive
tutoring systems, IEEE Transactions on Education 46 (2003), 241-251.

[11] Garner, S., An exploration of how a technology-facilitated part-complete solution method supports the
learning of computer programming, Issues in Informing Science and Information Technology 4 (2007),
491-501.

[12] Graf, S., Lin, T., Kinshuk, The relationship between learning styles and cognitive traits – Getting
additional information for improving student modelling, Computers in Human Behaviour 24 (2008),
122-137.

[13] Paas, F., Van Gog, T., Optimising worked example instruction: Different ways to increase germane
cognitive load, Learning and Instruction 16 (2006), 87-91.

[14] Van Merrienboer, J.J.G., Instructional strategies for teaching computer programming: Interactions
with the cognitive style reflection-impulsivity, Journal of Research on Computing in Education 23
(1990), 45-53.

[15] Renkl, A., Learning from worked-out examples: A study on individual differences, Cognitive Science
21 (1997), 1-29.

