
 1

Implementation of motivational tactics in
tutoring systems

TERESA DEL SOLDATO

Istituto Tecnologie Didattiche - CNR
Via De Marini, 6 - Torre di Francia - Genoa 16149 - Italy

BENEDICT DU BOULAY

School of Cognitive and Computing Sciences
University of Sussex - Falmer - Brighton BN1 9QH - UK

The explicit teaching knowledge implemented in the current generation of
Intelligent Tutoring Systems (ITSs) concerns mostly domain-based aspects of
instructional processes, overlooking motivational aspects. This paper describes an
instructional planner able to make decisions (about the next task to do, whether to
provide hints, etc.) in order to achieve two goals: traversing the domain 
domain-based planning  and maintaining the learner’s optimal motivational
state  motivational planning. The traditional ITS architecture is extended to
include the activities of motivational state modelling and motivational planning.
For example, in motivational state modelling further learners’ characteristics are
diagnosed, e.g. effort and confidence. Sometimes the advice offered by a
motivational planner disagrees with a domain-based plan, while in other cases
both plans complement each other. A method of negotiation between the
motivational plan and the domain-based plan is provided in order to arrive at a
decision for action by the tutor.

Introduction
The explicit teaching knowledge implemented in the current generation of Intelligent

Tutoring Systems (ITSs) concerns mostly domain-based aspects of the instructional process,

overlooking its motivational aspects. However, teachers often interweave motivational

tactics with their domain-based decisions, aiming to build conditions that stimulate the wish

to learn1. Even in systems where attention is paid to motivational issues, the theory which

drives the decision making is essentially implicitly embodied in the system in contrast to the

explicit representation of the domain. For instance, the coach WEST (Burton & Brown,

1982) follows pedagogical principles such as “Do not tutor on two consecutive moves, no

matter what”, in order to prevent excess interventions that could affect the learner’s interest,

independence or feeling of control2. However, WEST does not include in its student model

an explicit model of the learner’s degree of independence or feeling of control. Theories of

instructional motivation elaborate the influence of issues like confidence, challenge, control

and curiosity in learning processes (Keller, 1983; Malone & Lepper, 1987) and suggest

instructional tactics to keep the student in an optimal learning state and provide more

appealing and effective interactions. The implementation of such motivational tactics in

1According to (Lepper, Aspinwall, Mumme, & Chabay, 1990), expert teachers include
among their goals “first, to sustain and enhance their students’ motivation and interest in
learning, ... and second, to maintain their pupils’ feelings of self-esteem and self-efficacy,
even in face of difficult or impossible problems.”(p. 219).
2The goal of such a principle is explicitly described in (Burton & Brown, 1982) as to
“prevent [the coach WEST] from being oppressive” (p. 91).

 2

tutoring systems requires the insertion of a motivational state modeller and a motivational

planner into the system’s teaching expertise (del Soldato, 1992a, 1992b).

In this paper we present a motivational planner based on the motivational tactics defined by

Malone and Lepper (1987) and by Keller (1983), implemented as production rules that

manipulate domain-independent teaching primitives, such as problem, help, assessment,

answer, etc. The system described here is an initial step towards building a motivationally

competent tutor as suggested in (Lepper, Woolverton, Mumme, & Gurtner, 1993).

This paper is in four main parts. First we discuss motivation-based tactics and contrast them

with instruction based solely on the student's assumed state of knowledge. Next we describe

a particular realisation of these tactics in a system called MORE. This system was designed

as a test-bed for the feasibility of implementing specific motivational tactics. As such it

separates both instructional planning and student modelling into two parts, one based on

motivational issues and the other based on domain knowledge issues. Output from these two

systems is reconciled by a third system. The third part of the paper discusses a limited

formative evaluation of the tutor teaching Prolog debugging. Finally, future directions are

discussed including plans for a more extensive evaluation.

Motivational tactics
Whereas the motivational tactics presented in (Malone & Lepper, 1987) and (Keller, 1983)

apply to generic instructional contexts, the realisation of such tactics presented here is

directed to the implementation of motivational issues in typical ITSs and therefore

characteristics of current systems, such as e.g. limitations of interface devices and structures

of domain representations, are taken into account. Implementing motivational techniques

demands shaping the system, including domain representation and student model, in several

respects. In particular, the system must:

1. detect the student’s motivational state;

2. react with the purpose of motivating distracted, less confident or discontented students,

or sustaining the disposition of already motivated students.

The detection of a student’s motivational state is obviously very much constrained by

interface limitations. For example, Lepper et al. (1993) suggest that experienced teachers

make use of “the student’s facial expressions, body language, intonation, and other

paralinguistic cues” in their understanding of the learner’s motivational state. However,

student effort, rather than performance, is a reasonably reliable indication of intrinsic

motivation (Keller, 1983). Learners who display a high level of effort (detected through their

activities, suggestions, responses) deserve praise even when their performance may be non-

optimal. There is a wide literature on the relation between extrinsic rewards (such as praise)

and intrinsic motivation. Eisenberger's (1992) work suggests rewarding effort is effective

over the long-term and an extensive meta-analysis of the literature by Cameron and Pierce

(1994) suggests that (contrary to received wisdom) extrinsic rewards such as praise do not

decrease intrinsic motivation.

 3

A parallel way to obtain information about the learner is through questions regularly applied

during the interaction, eliciting both students’ self-evaluation and their appreciation of the

system’s behaviour. The system should also exploit the pattern of standard reactions as, for

example, when students ask for help before attempting to solve a problem (possibly

indicating low confidence), or on the contrary, the total absence of help requests during the

entire interaction (possibly indicating extremely high confidence).

The notion of a system’s reaction  triggering particular motivational tactics  suggests

that a comprehensive instructional plan should consist of a “traditional” instructional plan

combined with a motivational plan. Wasson (1990) proposed the division of instructional

planning into two streams: content planning (“which topic to teach next”), followed by

delivery planning (“how to teach the next topic”). At first sight the motivational plan seems

to be completely embedded in the delivery plan. However, motivational tactics do not

always simply complete the traditional content planning: sometimes they compete with it as

well. A typical example of such a conflict is the necessity for less confident students to build

their confidence by accumulating experience of success, in which case the system could

provide problems likely to be correctly answered  based on topics that the student already

knows.

While the detection of a learner's motivational profile shapes the student model, the system’s

reaction (e.g. suggesting an easier problem, asking a puzzling question or providing a

surprising result) depends crucially on the resources found in the domain representation.

Detection of motivational state
The tutor obtains information about the students by analysing their actions. In principle there

are four different sources to analyse:

1. Questionnaires applied at the beginning of the first interaction, defining the learner’s

evaluation of her general level of self-confidence, affinity with challenging situations and

motivation to study that particular domain. Arshad (1990) used this method to model the

learners confidence state. Although useful to gather relevant information, pre-interaction

questionnaires are static, and the learner’s motivational state is likely to change during

the interaction.

2. Communication with the student during the interaction. This is a more dynamic method,

and it is possible to bypass the lack of natural language interface by limiting learner input

to a set of standard expressions, accessed by menus and including possible answers to the

tutor’s suggestions (e.g. “OK”, or “too difficult”, or “easy!”), requests for help (e.g.

“hint please”, or “give up”), etc. Particular answers are typical of either less or more

confident students (for example, “no, too difficult” for a less confident learner), so they

are labelled as low/high confidence answers. Although on the one hand the

communication with the learner is limited, on the other hand the possible answers offer

less ambiguous interpretations of confidence states.

3. Students’ requests for help and perseverance to complete the task. For example, a learner

who rejects any help from the tutor is independent and probably very confident, whereas

 4

students who request help even before attempting to perform a task are likely to be less

confident. Similarly, students who often give up tasks do not seem to display high

confidence in their skills, providing that the task is not excessively difficult, in which

case the students would indicate, by giving up, that they are aware of their own skill

limitations. It is clear that both the frequency of help requests and degree of

perseverance with tasks are open to a variety of interpretations.

4. Learners’ self-evaluation of their motivational state (e.g. confidence, boredom) during

the interaction. The best way to obtain this information is to provide a continuous input

channel that can be spontaneously updated by the student. Unlike the other three sources

of information, this one depends on features of the interface (scroll-bars, icons etc.) and

should be independent of prompts provided by the tutor.

The generation of the learner’s motivational model, through the channels mentioned above,

is described in more detail in the following sections.

Effort
Keller (1983) states that “effort is a direct indicator of motivation” (p. 391). Although it is

not absolutely clear whether effort is a reliable measure of the learner’s motivation, one

assumes that motivated learners put more effort on the task they are performing:

“Motivation is concerned, of course, with an individual’s willingness to persist and
contribute effort to the task in which he or she is engaged. (Shuell, 1992, p.32)”

Therefore the motivational aspects of a student model should focus on effort rather than

performance. On the other hand, effort (or persistence) is measured through performance,

via the learner’s actions such as attempts to solve a problem, help requests, etc. In order to

establish a clear distinction between the concepts of effort and performance, this work

considers performance as the result of the process of solving a task (e.g. right or wrong

answer) whereas effort refers to how this result was achieved (e.g. requiring much or little

observable work). Note that we are referring to the external signs of effort such as the

number of attempts to solve a problem and not making any assumption about cognitive

processing.

Confidence
The detection of the learner’s level of confidence relies mostly on the students’ beliefs on

their efficacy to perform the instructional task. Schunk (1989) correlates low and high

confidence to persisting with or avoiding the task:

“People who hold a low sense of efficacy for accomplishing a task may avoid it,
whereas those who believe they are more capable should participate more eagerly.

...individuals who hold a high sense of efficacy ought to work harder and persist
longer than those who doubt their capabilities. (Schunk, 1989, p. 14)”

According to the quotes above, less confident learners are likely to

1. avoid tasks perceived as difficult, or

2. give up a task before attempting to perform it.

 5

The first point can be detected by the tutor if the student is presented with options of answers

that explicitly mention the difficulty of the task (e.g. “No, thanks, it is too difficult”, “I

prefer an easier problem”). A student’s lack of persistence in solving a problem can be

defined in terms of help requests and the number of steps in the problem solving process,

though we recognise that lack of persistence with the task may have both motivational and

domain-based causes.

Another point discussed by Schunk (1989) relates to variations of the degree of confidence

as a function of a task’s outcome: accomplishing the task raises the learner’s expectancies of

future successes, whereas failures affect one’s sense of self-efficacy and decreases the level

of confidence.

Independence
Keller (1983) refers to motivation itself as a matter of choices (of tasks and goals to achieve

or avoid) based on the concept of locus of control thoroughly discussed in theories of

general motivation, especially in the Attribution theory (Weiner, 1992). More specifically,

personal control over the learning process should be perceived by the learner as actual

control over his/her own success in accomplishing desired goals.

In this sense, the student “independence model” relates to the perceived feeling of needing

or not needing the tutor’s help to accomplish the instructional task. For instance, when the

tutor frequently intervenes in the interaction providing hints, the learner’s sense of

independence decreases, whereas students succeeding in a task on their own have their

feelings of independence increased. Therefore the student’s independence model is primarily

affected by the frequency of tutor interventions during the interaction. Low independence

corresponds to situations in which the tutor has intervened in excess, either for its own

initiative of providing hints or responding to the learner’s requests for help. In contrast, the

independence model increases when the students are allowed to explore the problem on their

own, i.e. when the tutor skips intervening or when the student rejects the tutor’s help.

Domain-based vs. motivational-based planning
Typical domain-based planners select actions according to whether the learner knows a topic

or has mastered a skill. The methodology here is twofold: detecting the current state of the

learner’s knowledge and skill (student modelling) and reacting appropriately in order to

increase this knowledge and skill (teaching expertise). To take account of motivational

factors, the twin activities of “detecting the state” and “reacting appropriately” are extended

by adding a motivational state and motivational planning to the traditional ITS architecture.

Sometimes the advice offered by a motivational planner disagrees with a domain-based plan,

while in other cases both plans complement each other. In a similar way Lepper et al. (1993)

consider these two cases, as well as a third situation: when the motivational and the domain-

based strategies are independent of each other. Here we discuss motivational planning and

compare its behaviour to the decisions taken by typical domain-based planners. The

 6

recommendations as to how the system should behave are based on the work of Malone,

Lepper and Keller already cited.

Student succeeds in performing the task
Let us consider, first, a situation in which the student succeeds in solving a problem. A

typical domain-based planner would acknowledge the right answer and suggest (or directly

provide) a harder problem, thus making sure the student is traversing the domain in a

progressive manner. Such behaviour is well exemplified by Peachey and McCalla’s (1986)

instructional planner: when the learner masters an instructional goal, the planner focuses

next on goals that require the topic just mastered as pre-requisite, traversing the domain in

the direction of a specific ultimate goal. Some domain-based planners elaborate the

performance feedback according to the instructional context. The Meno-tutor (Woolf, 1984),

for example, acknowledges the student’s answer in three distinct modes: explicit, implicit

and emphatic (adding details about the domain topic in question).

In this case, knowing or not knowing the topic, or exhibiting or not exhibiting the relevant

skill, is the only issue in the student model that drives the selection of suitable actions, so the

diagnosis methods basically aim at defining whether the student knows the topic. Such a

methodology characterises more detailed domain-based instructional planners. For example,

Wasson (1990) implemented a planner based on a domain network representation which

links topics through a variety of relations as well as “pre-requisite”, and actions like review,

focus, and re-achieve are selected to be executed. Such decisions, however, are based only

on the assumption of student knowing (or not) topics. In some systems (e.g. see Anderson &

Reiser, 1985), the student model has been improved by expanding the knowing-or-not

binary state to a more graduated mastery scale, but still it is the learner’s knowledge which

drives instructional decisions.

Motivational planning takes into account other variables in the student model and widens the

tutor’s space of possible reactions. Even if we just consider binary states of effort

(little/large) and confidence (low/OK)3 results in four different situations, each one requiring

a suitable set of actions from the tutor4. In one of the situations the motivational planner

generates the same action as the domain-based planner (which corresponds to effort = large

and confidence = OK). Table 1 presents the four cases and the corresponding actions

specified by the motivational planner.

Insert Table 1 here

When the student’s confidence is diagnosed as being low, the major goal for the planner is to

help the learner regain a reasonable level of confidence, and one of the tactics for improving

3We have considered only “low” and “ok” here because that is our main focus of interest.
Clearly “over” confidence also needs to be considered in a more developed system.
4Just as for knowledge states, the binary states of effort and confidence could be expanded in
a more graduated scale.

 7

confidence is to increase the student’s experience of success. The tutor should then select a

task likely to be solved successfully again (e.g. a similar task to the one the student has just

accomplished). This is a clear example of disagreement between the domain-based and the

motivational planner, since simply traversing the domain to the next harder topic has been

deliberately avoided.

On the other hand, if providing the right answer requires little apparent effort from the

student (even an insecure one) the tutor should move to harder tasks. In this case the tutor

should make the difficulty-level promotion very clear, both by praising the successes

obtained so far and warning about the new difficulties which are likely to be encountered at

the harder level. The student is prepared then to cope with new failures without feeling too

de-motivated. Let us now consider the case of a task that does not require very much

apparent effort from a normally confident learner. For a typical domain-based planner such a

situation would be ideal, whereas from a motivational perspective the task could be

perceived as being irrelevant or “boring”, or in other words, de-motivating. The tutor should

then increase the degree of challenge provided by the interaction, by adjusting the difficulty

level to a harder one where the student would not always (easily) perform the task, and more

effort would have to be spent to achieve success.

Student fails to perform the task
In the case of the student giving a wrong answer, the domain-based planner would

acknowledge the error and suggest a problem of the same difficulty, or an alternative path to

traverse that region of the domain.

The domain-based planner overlooks two issues:

1. Even if the student was not able to formulate a right answer, she may have spent a good

deal of effort trying to perform the task.

2. If the learner is not spending much effort on the task (therefore not succeeding) the tutor

should help to make the task more interesting and appealing.

The decisions described in Table 2 show possible ways to help an unsuccessful learner to

restore her confidence (if she is a less confident student) or to increase her interest in the

task.

Insert Table 2 here

It has already been noted that experience of success should increase the learner’s confidence,

but what can the tutor do if there is no success at all? The simplest action in this case is to

overlook the failure (skipping the dreadful “wrong answer” statement, or avoiding

displaying the right solution the student was not able to produce), motivate the learner to

keep trying and provide hints to make success easier. In fact, Lepper et al. (1990) show that

this tactic is applied by expert and efficient tutors:

“Instead of providing explicit corrective feedback, these tutors rely on a much more
subtle and indirect strategy. They offer students hints — questions or remarks that

 8

indirectly imply the inaccuracy of their poor response, suggest the direction in which
they might proceed, or highlight the section of the problem that appears to be causing
them difficulty.” (p. 229)

In other words, the tutor implicitly encourages the student to keep working on the same task.

Such a tactic should not be carried out indefinitely: the tutor could consider a “maximum

failure limit” and move on to another task if a particular problem is excessively effort

consuming. In the case where the student has already tried hard to perform the task, the

effort should be explicitly acknowledged (for both cases of low confidence and of normal

confidence).

If the planner is not concentrating its actions on restoring the student’s confidence, other

actions may be selected. Often a wrong answer provides a good clue about an inconsistency

in the learner’s comprehension of the topic. Provoking an incongruous or paradoxical event

is one of the tactics to stimulate cognitive curiosity (Keller, 1983; Malone & Lepper, 1987).

Depending on the nature of the answer and the learner’s mistake, the tutor may be able to

use the wrong answer to generate a “clash” between what the student believes and what the

domain model states 5. The ability to generate an incongruous or paradoxical event will

depend on the sophistication of the domain representation.

Student gives up performing the task
Producing right or wrong answers are not the only ways of having a task done. The student

may sometimes give up and request a new task, abandoning an incomplete problem.

Insert Table 3 here

For the less confident learners (see Table 3), this situation is very similar to failing when

performing a task, only that in this case the students are more aware of their lack of

motivation or their lack of knowledge/skills, since they have in fact abandoned this

particular task. Again the tutor could ignore the failure (for a certain number of times) and

provide hints to help perform the task correctly. If the student has presented a generally good

performance, previous successes should be mentioned, making the learner aware of her

capabilities.

From more confident students a bit more effort could be required (if the effort spent on the

task was low), especially if later the tutor praises the resulting effort linking it to good

performance. Note that in this case rather than providing hints at once, the tutor negotiates

the help delivery with the student. When interacting with reasonably confident learners the

tutor should not be intrusive but should share decisions with the student. Another situation

concerning the tutor’s “intrusion” in the interaction is discussed in the following example.

5Such an “entrapment” tactic is used by systems which perform Socratic dialogues (see e.g.
Clancey, 1982).

 9

Student requests help
The situations cited so far concerned the effect of confidence and effort in motivational

planning, referring to tactics for stimulating challenge, curiosity and confidence. Another

important issue in motivation is the degree of control the student is able (or allowed) to exert

in the interaction.

Tutors usually provide hints and clues when the student requests help. Lepper and Chabay

raise the question of whether help should be always available to the student:

“Should the tutor always intervene when the student requests help, or should some
evidence of effort and independent work be demanded first?” (Lepper & Chabay,
1988, p. 248)

The approach adopted in this work is that independence should be encouraged, specially if

the tutor has already intervened too much, and therefore decreased the student’s feeling of

control and independence over the interaction. Avoiding further interventions, at least for a

while, is the most basic action to take in order to restore the learner’s sense of independence.

We suggest that help should be skipped in two situations:

1. if the student is requesting help in excess, or

2. if the student is lost and help should be delivered, but at the same time the tutor assumes

that it has already intervened in excess6.

However, if the confidence model is low, help should be provided in order to facilitate the

learner succeeding on the task. The priority of confidence over independence assumed here

is due to the fact that a less confident student is eager to be helped, and less likely to feel

annoyed by excessive interventions from the tutor. Examples of a motivational tutor’s

behaviour when the learner requests help are presented in Table 4. One can note the

distinction between providing specific help (to less confident students) and providing

generic help. Specific hints present more details about the problem and help the student in a

more direct way, whereas generic help is “less intrusive”. Delivering help of different

degrees of generality is a tactic also considered by Lepper at al. (1993)7: “Increase or

decrease the specificity of hints provided to the student as a function of the student’s

difficulty at a particular point” (p. 83). A similar strategy called “contingent teaching” has

been shown to be effective in teaching children (Wood, Bruner & Ross, 1976).

Insert Table 4 here

The discrepancies between domain-based planning and motivational planning revealed here

suggest that the inclusion of motivational tactics in a tutor’s instructional planning

mechanisms alter in a significant way the behaviour of the tutor.

6One can note that the second situation was included in the pedagogical principles of the
coach WEST (see Burton & Brown, 1982), as discussed previously in this paper.
7Lepper at al. relate such a tactic to the goal of increasing (or decreasing) the challenge of a
task, whereas here the specificity of hints concern the degree of confidence presented by the
student. Nevertheless, strategies for enhancing challenge and confidence are closed related
in (Lepper et al., 1993).

 10

Implementation of motivational tactics
The motivational tactics described above were implemented through the application of

production rules to a database consisting of information about the state of the interaction, the

student’s progress in mastering the domain and the motivational state of the student. The set

of production rules detects the student’s motivational state and reacts in order to maintain

the student’s motivation, producing a “MOtivational REactive plan”. The system is named

MORE.

Constructing the database required the definition of a set of instructional primitives to

represent objects and actions in a teaching interaction. Such instructional primitives are

dynamically manipulated by the instructional planner and student modeller.

This section describes:

1. the set of instructional primitives adopted;

2. the rules which represent the student modellers, concerning both progress across the

domain and motivational state;

3. the instructional planner, which is split into three different modules: the domain-based

planner, the motivational planner and the negotiation rules between the planners.

The instructional primitives, the student modellers and the instructional planners are

domain-independent, although it is assumed that the domain can be organised in a particular

problem-solving pattern. Examples of the system performance when applied to a concrete

domain (Prolog-debugging) are provided in this paper.

Instructional primitives
A language describing instructional primitives was defined in order to build a database

containing information about the interaction and the student. This language is not intended

to cover all aspects of instructional interactions: its goal is to establish the necessary

primitives to represent the learner’s motivational state and the motivational tactics. The set

of instructional primitives described here is versatile enough to be included into more

complex sets of instructional objects.

However the general style of interaction can be regarded as largely traditional in ITS terms.

Some extension of these primitives would be needed if the system were to adopt a more

"discovery" or "negotiated" learning style of interaction

Objects (e.g. problem, help, answer) often require properties, or attributes, such as type or

content. Besides, many objects change “state” during the interaction: help, for instance, may

be requested or not-needed. The instructional objects used in this work, along with their

respective properties (possible types, contents and states) are described here and presented in

Table 5.

Insert Table 5 here

 11

Problem
Problems are tasks that the student should perform (learn, master, solve), and basically

correspond to domain topics. As in a typical network representation of domain, problems are

linked through relations such as pre-requisite or similarity. Several motivational tactics place

special emphasis on the next task to be performed by the student, such as e.g. suggesting a

similar task to increase the learner’s experience of success, therefore one of the properties of

a problem is its relation to the previous task performed by the student. Basically, tasks have

to be ordered by difficulty level, so that a problem can be harder or easier than the previous

problem, or present the same degree of difficulty (same-diff). Similar problems should also

present the same degree of difficulty, as well as require similar reasoning to be successfully

performed.

Problems usually require a certain number of steps or attempts to be successfully solved (see

next section). While the learner is dealing with steps towards a final answer or solution, the

problem state is set as solving. When the student produces a final answer, whether the task is

considered successfully performed or not generates the states succeeded or failed. This is a

rather simplistic classification, since complex domains include problems with many different

degrees in which a solution may be considered “correct”. However, the emphasis of this

work does not rely on the aspects of instruction related to the subject domain, although

potentially it can include more detailed domain-centred approaches. The learner may also

give up working on the task, or reject a task suggested by the tutor. All possible states and

types for the object problem are presented in Table 5.

Step
The steps required to perform a task or solve a problem may depend on:

1. characteristics of the domain,

2. features of that kind of task,

3. characteristics of that particular task.

Therefore some steps in the problem solving process can be defined in advance, but the

complete list of possible steps to solve a particular task is set only at the moment the student

agrees to perform the task. MORE keeps a record of all the steps performed by the learner,

detecting whether a particular step is redundantly repeated.

Help
Help refers to hints and clues offered and provided by the tutor. Hints can be either

requested by the student (state requested), suggested by the tutor when the system suspects

the student needs help (state suggesting), or actually provided when the system assumes the

student surely needs support (state providing). Besides, the offer of help may be rejected by

the student (state rejected), or the tutor may decide that even if help is needed, it would be

more appropriate to avoid intervening in the interaction (state skipping). Otherwise, the state

not-needed is applied. Hints vary in their degree of generality, here referred to as “detail”,

 12

and content. More detailed and helpful hints are constructed from combinations of simpler

hints.

The content of the hint provided by the tutor refers to the present step (when the student

requests help to complete a step), to the next step (in cases such as when the learner is lost,

performing the same step instead of progressing towards the solution) or to a “surprise

result”, which aims to present a contradiction to stimulate the student’s curiosity. Previous

steps or problems may also be re-presented to the student, highlighting similarities between

solutions already achieved and the present step.

The states of an object (in this case, the states of the object help), refer to the situation of the

object at every moment of the interaction. However, sometimes it is necessary to establish a

decision about an eventual state further in the interaction. When the student rejects a help

offer by the tutor, a second offer immediately following the first hint suggestion should be

avoided even if the conditions of the interaction indicate that help is needed, in order to

respect the learner’s decision and independence. For this reason the property skip-next was

created, which holds information about whether the following help offer should be avoided.

Possible states, contents and degrees of detail are presented in Table 5.

Answer
Although not every action performed by the learner directly relates to a question proposed

by the tutor, MORE refers to any action expected from the student as an answer. Positive

and negative answers refer to the learner’s replies to suggestions posed by the tutor. The

student may agree (positive answer) or disagree (negative answer) with a suggestion,

reflecting different degrees of confidence as stated in the section on Confidence. Statements

made by the student are checked by the system and classified as right or wrong answers.

Answers which are not replies to suggestions or statements are considered steps of the

problem solving process. MORE checks the step and classifies it according to the set of all

possible steps for that particular task.

Answers, or actions performed by the student, are expected at certain moments during the

interaction. On such occasions, the answer state is set as get and the system does nothing

until the learner reacts (help may be requested at any time, though). As soon as the student

reacts, the answer is analysed by the student modeller (state check). The state checked is set

when the answer has been analysed and the system is planning its next action. Answers

consist of states, contents and types presented in Table 5.

Assessment
Assessment is feedback provided by the tutor on whether the student’s answer is right or

wrong. In many systems positive assessment delivery may include or be replaced by a

praising element such as “Very good”. In this work assessment and praise are explicitly

distinct. Possible states and contents of assessment are listed in Table 5.

 13

Comment
Several instructional (motivational) actions such as praising, encouraging and challenging,

are performed through comments provided by the tutor. The set of possible comment states is

very narrow: either a comment is provided (state providing) or not needed. It is the scope of

possible comment contents that bears the rich variety of this object, as shown in Table 5.

According to Schunk (1989) praising the learners’ effort as opposed to their performance

produces different reactions in the students’ motivational state and should be delivered on

particular occasions. For example, praising effort should be avoided if there is a reason to

praise performance. Therefore the content of praising comments eventually delivered by

MORE consists of either effort (content praise-effort) or performance (content praise-perf).

Content trying-harder refers to comments that encourage the learner to continue working

when the task is abandoned, suggesting that more effort is necessary to complete the task.

Other comments provided by the tutor may consist of reminding the student that success in a

similar task has been previously achieved (content previous-successes), or encourage the

learners to work on their own when help has been excessively requested and delivered

(content encourage-indep).

Discussing Table 1, we mentioned the necessity of having the less confident students aware

of their level promotions (i.e. when the task gets harder), reducing possible de-motivation

caused by new difficulties immediately after a certain degree of success had been achieved.

In this sense, comments of content level-promotion inform the student that the next tasks

will get more difficult because the current topic or skill being studied has already been

mastered. On the other hand, increasing the level of difficulty of the task may be necessary

in order to challenge more confident students. Remarks provided by the tutor to make the

challenge more explicit are labelled as comments of content challenge.

Student modelling
In typical ITSs, the student’s performance is analysed in order to build a model of what the

student knows. In MORE such a task is twofold: not only is the learner’s knowledge

important, but also the learner’s motivation is relevant. The two are, of course, deeply

intertwined and there is general issue as to how far they can and should be considered

separately. In MORE we have kept the two areas separate largely for pragmatic reasons. In

fact Lepper et al. (1993) make such a separation a “central tenet” for the model they are

building of skilled teacher performance. In our system two sets of rules are used to generate

a model for the student’s performance and a model for the student’s motivational state. The

following describes the generation of both models, and it is important to notice that since

they are independent modules the generation of the learner’s performance model could be

replaced by another (more detailed) modelling method.

Performance modelling
Since performance modelling is not the major focus of this work, the student’s competence

in mastering a skill is basically classified as successful or unsuccessful according to the rate

 14

between tasks tried and tasks completed successfully (see Table 6, rules P1 and P2). In this

work the threshold between successful and unsuccessful performance has been set to the rate

(successfully completed tasks)/(total tasks) at 0.5, but such a limit can be adjusted to

different values. The performance modelling mechanism can be easily upgraded without

affecting the basic architecture of MORE.

A second feature in the performance model of the student refers to the path traversed by the

learner to solve the problem. In the event of the student repeating the same step for a pre-

determined number of times (which is set as the step-repetition-limit), the solution path is

modelled as lost (rule P3), therefore the student needs help (but whether help will be

suggested or provided is decided by the instructional planner). Rule P4 restores the value OK

for path, when the student’s focus moves from the repeated step to a different step. The step-

repetition-limit is set for every task according to its degree of difficulty.

Insert Table 6 here

A similar but more elaborate mechanism to detect deviations from an optimal learning path

is adopted in the Meno-tutor (Woolf, 1984). There the learner’s state of “confusion” is

measured “as a function of the number of questions asked, the number of incorrect responses

given, and the extent to which the student’s frontier of knowledge has been explored” (p.80).

The Meno-tutor implementation also includes a wrong-answer-threshold (similar to the step-

repetition-limit), defined as “the number of permitted wrong answers” (p. 67).

Confidence modelling
Confidence is represented as a value (conf-value) in a linear scale, and the limits for the

lowest and the highest possible confidence values are set before the interaction with the

student takes place. The confidence value is incremented and decremented in large or small

(normal) steps. The values for these steps (named conf-inc, conf-dec, large-conf-inc, large-

conf-dec), are previously set like the confidence limits. As a trial value, the confidence limits

were set as 10 and 0, the conf-inc as 1 and the large-conf-inc as 2 (and the values for conf-

dec and large-conf-dec were set as -1 and -2 respectively), so that the student’s confidence

model at any moment during the interaction corresponds to any integer value within the

range 0-10. A threshold value (conf-threshold) is defined to distinguish between low and

high confidence. For instance, if the conf-threshold value is set to the value 4 then conf-

value 5 corresponds to a normal degree of confidence, and conf-value 3 is considered low

confidence. The limits for the confidence scale and the low confidence threshold value may

be altered if more precision is required.

The student’s confidence model (the numerical value associated to conf-value) is

dynamically adjusted during the interaction according to the rules described in Table 7. In

practice, the student’s confidence will be classified as “high/normal” or “low” (above and

below the conf-threshold value, respectively). More elaborated models could also explore

the distinction between normal and high confidence, or even consider a continuous scale to

 15

represent confidence in deeper detail. However, for the purposes of this work, the main issue

was the identification of lower states of motivation.

Insert Table 7 here

Rules C1 and C2 refer to the answer expression, as explained in the description of answer

types (see previous section). Rule C3 reflects the case of a student asking for help from the

tutor before even trying to perform the task. The last four rules concern the result of the task.

If the task is accomplished, the student’s confidence in future successes rises, whereas if the

student failed in performing the task, the expectancy of a following success decreases.

Refining this model, successes obtained completely independent of help from the tutor are

likely to increase the learner’s confidence in a more dramatic way than successes obtained

after being helped. On the other hand, a failure despite the hints provided by the tutor saps

the learner’s confidence more than if the student fails but without having had help.

Effort modelling
Table 8 presents a model for classifying students’ effort as a function of their persistence to

solve the problem and requests for help to perform the task. It is assumed that persistence to

solve the problem can be measured through the number of attempts to get a solution, or steps

performed, so that many steps reflects a greater degree of effort from the learner. The

quantification of few/many attempts is defined by the domain expert, according to each

problem’s level of difficulty. A value is set as a threshold between few and many steps (few-

steps-lim), so any quantity of attempts higher than that limit is considered many steps,

otherwise the student has only performed few steps. Besides the number of steps performed,

a student who requests hints from the tutor or accepts help offered by the tutor spends less

effort than learners who try to perform the task on their own. The result of the task

performance is another relevant factor, and giving up the task obviously denotes less

persistence than working until the problem is solved8.

Insert Table 8 here

Independence modelling
The independence model (see Table 9) is similar to the confidence model in many respects.

Independence is represented as a numerical value (indep-value), and limits are set for the

highest and lowest indep-value, as well as incremental and decremental steps (indep-inc/dec,

large-indep-inc/dec) and an independence threshold (indep-threshold). The aim of the

independence model is to evaluate whether the tutor is intervening to excess. In this sense,

each time the tutor interrupts the interaction, e.g. offering help or providing it directly, the

indep-value is decremented (rules I1, I2 and I3). One assumes that not only the “quantity” of

8If the student fails solving the problem, the effort model is evaluated as for the given-up
case.

 16

interventions affects the learner feelings of independence, but also the “quality” of such

interventions is relevant. Offering a detailed hint, which directs the learner to the task’s

solution, implies that the learner needs help to succeed, whereas a vague hint about the

learner having solved a similar problem in a previous task may affect the student’s feeling of

independence in a less evident way. To accommodate such distinction in the model, specific

hints decrement the indep-value by a larger amount (rule I3). On the other hand, when the

student rejects help, the indep-value is obviously incremented (rule I4). The indep-value is

also incremented when the tutor skips offering help, even if the student is not following an

optimal solution path (rule I5). The student is not aware of the tutor refraining from

intervening, otherwise the learner’s independence would be affected anyway (there is no

point in the tutor advertising that it should intervene but will not in fact interrupt the

interaction, since that would be an interruption anyway). So in this case, the indep-value is

incremented on account of the balance between the tutor’s interventions and the student’s

freedom to explore the solution path, in favour of the latter.

Insert Table 9 here

Instructional planning
The necessity to divide the student model into two independent parts (the performance and

the motivational aspects of the student’s state) was discussed earlier in this paper. In an

analogous way, the instructional planner comprises two modules, one referring to the

progress across the domain (domain-based planner) and the other referring to increasing or

maintaining the student’s motivation to learn. Whereas domain-based planning only

concerns the performance model, the motivational planner is driven by both the motivational

state and the performance state, especially when it concerns the refinement of motivational

top-level tactics. For instance, if the learner is not confident, the motivational planner sets

the goal increase confidence. Nevertheless, the tactics appropriate to increase the student’s

confidence after a task failure are different to those required in the case where the learner

succeeded the task. We use the term “planning” here fairly loosely as planning is largely

reactive rather than anticipatory.

Domain-based planner
The ultimate goal of a domain-based planner is to have the student master a particular set of

topics, or skills, in the domain. Usually topics are largely ordered through pre-requisite links,

and the planner reasons about sequences of topics to be learned, navigating towards a goal

topic. MORE includes a simple domain-based planner which aims to “advance” across the

domain every time a topic or skill is mastered by the learner (see Table 10).

Insert Table 10 here

 17

When the student succeeds the tutor suggests a harder topic (or next in a pre-requisite

progression), otherwise the tutor provides an alternative path towards the topic goal, by

suggesting a problem of the same level of difficulty (same-diff). If the student requests help,

the tutor provides a hint about the topic and if the student is lost the tutor intervenes with a

hint about the next step. Although the domain-based planner does not “offer” help, rather

providing it directly, the motivational planner described in the next section may suggest

help.

Motivational planner
The motivational planner embedded in MORE determines tactics to increase or maintain the

student’s motivation to work. The decision about which tactics to apply depends both on the

state of the interaction, such as problem state, confidence value, etc., and on the top-level

tactics already present (or necessarily absent) in the motivational plan. For example, the

tactic increase experience of success is a specific tactic for the top-level tactic increase

confidence. If the planner sets the tactic increase confidence to be executed and the student

performs a task successfully, then the tactic increase experience of success can be included

in the plan, specifying the way the tutor should try to increase the learner’s confidence. The

motivational planner comprises 20 production rules, presented in Table 11.

Insert Table 11 here

confidence, effort and control
Some rules are straightforward: when the student model values for confidence, effort or

independence (control) decrease below the respective thresholds, the tutor should apply

tactics aiming to increase such motivational aspects. Increasing the learner’s confidence and

independence at the same time is a contradictory strategy because less confident students

need to succeed in order to raise their confidence, and this may require a great deal of tutor

intervention delivering hints that could facilitate the student’s success. Excess of

intervention, on the other hand, should be avoided when learners need reassurance of their

feelings of independence. One should note that in this motivational planner, raising the

student’s confidence (tactic increase confidence) was given priority over raising student’s

independence (tactic increase control), assuming that a less confident student is not really

annoyed by excessive help and attention from the tutor. Once the student’s confidence is

restored, the tutor is then able to apply tactics to increase the student’s independence.

Assuming that there is a direct correspondence between high effort and general motivation, a

further rule aims to maintain the learner’s state of motivation when a great deal of effort has

been spent on the instructional task. The four rules discussed so far rely exclusively on the

motivational student model. Two further rules, on the contrary, concern solely aspects of the

interaction history. The point of both rules is that once the learner has explicitly refused to

be helped by the tutor, or insisted on abandoning the task, the tutor should respect such

decisions. The giv-up-lim parameter, or “giving up limit”, defines a value for the number of

 18

times the tutor can insist on helping the students when they explicitly abandon the task.

Analogous to all the other parameters in the system, the value for giv-up-lim is set for every

interaction, and the trial value suggested here is 2: if the learner gives up performing the task

for the second time the tutor respects the learner’s decision. Therefore this rule still bears a

certain degree of malleability, since giv-up-lim may be set to a high value.

Eight rules are devoted to the motivational tactics set out in Tables 1,2,3 and 4.

independence
The remaining rules concern raising or maintaining the learner’s feelings of independence

(see Table 4). One rule forces the tutor to skip interrupting the student even when help is

needed, avoiding excessive intervention. Other rules, on the other hand, reflect the need of

encouraging the tutor-dependent student to work without help even if the learner is asking

for clues. One should remember that skipping help interventions raises the student

independence model, so eventually the top-level tactic increase control will be removed and

the promised help delivered, if still needed or requested.

The final rule does not radically restrain the tutor from intervening, but concerns the sharing

of responsibility over the help delivery. In other words, when the tactic share control is

applied the tutor should not intervene directly, but only offer to help instead. This rule

presents three negative conditions. First, the offer does not apply when there is need to

increase the learner’s confidence. Second, stimulating curiosity benefits from a degree of

surprise, which could be affected if a previous indication of intervention is given. Finally, it

would be redundant to offer to help soon after the student has explicitly requested help. One

should notice that the domain-based planner included in this work embeds an implicit

instance of the tactic share control concerning the delivery of tasks to be performed by the

student, since problems are always suggested rather than imposed. If a less negotiating

domain-based planner is adapted to MORE, it would be necessary to include in the

motivational planner a rule similar to the final rule, in order to share the control over the

tasks to be performed and widen the learner’s scope for relevant choices and responsibility.

Negotiation planner
MORE includes two independent planners in its instructional planning process, one

generating domain-based actions and the other generating motivational tactics. Sometimes

the actions and tactics are complementary, as in cases such as the action provide help and

tactic facilitate success. However, it may happen that the two planners disagree, and a

mechanism to negotiate between traversing the domain or increasing the student’s

motivation has to be applied. A third set of rules has been designed to amalgamate the tactics

suggested by the motivational planner with the actions suggested by the domain-based

planner in order to produce a combined action. Since MORE is designed to investigate

motivational states, the decisions taken by the motivational planner overrule the domain-

based planner. However, because the planners are independent, the system can be set so that

the motivational planner is by-passed and the decisions are wholly taken by the domain-

 19

based planner only. The negotiation rules9 are listed in Table 12. These rules are illustrative

and could be changed, though they embody the motivational theories set out in Tables 1-4.

With six possible domain actions and sixteen distinct motivational tactics, there are in

principle many different two-way interactions to deal with. If the domain-based actions and

the motivational tactics were combined one-to-one, there would be 96 possible pairs to be

“negotiated”. However, the motivational plan may include more than one tactic, and the

conditions for firing actions and tactics may prevent some combinations from happening10,

therefore the complete set of potential interactions cannot be easily anticipated. Exploring

the interactions beyond those listed in Table 12 is the subject of further work. Examples of

instructional plans generated by the three planners described in these sections are presented

later in this paper.

Insert Table 12 here

As mentioned in the previous section, the negotiation planner is responsible for translating

the motivational tactics into instructional actions to be performed by the tutor, overriding

(deleting), altering or complementing the actions already provided by the domain-based

planner. There are cases in which the “disagreement” between the actions and tactics is not

extreme, so the deleted action is actually replaced by a similar action. For instance, if the

domain-based action determines that general help should be provided to the student, and the

tactic increase confidence is generated by the motivational planner, the negotiation planner

combines both decisions resulting in specific help being delivered. Therefore the domain-

based action would be only partially altered. If the motivational planner generates the tactic

avoid intervention instead, the help delivery is totally neglected by the negotiation planner

and the tutor skips intervening, which is a case of complete disagreement. In the case where

the tactics in the motivational plan do not interfere with the help delivery, and the

negotiation planner decides that a comment should be delivered together with the hint, then

the domain-based plan and the motivational plan complement each other.

Application to a concrete domain
The implementation of motivational tactics described in this paper made use of domain

independent elements (generic problem, help, answer, etc.). However, evaluating the

motivational planner requires its application to a concrete domain. A simple tutor for

teaching Prolog debugging was designed and implemented with the purpose of being a

“vehicle” for MORE11. In this sense, the tutor described here is simply an illustrative

example of how MORE interferes in the behaviour of a tutoring system, providing the means

9Strictly speaking there is no actual “negotiation”, simply the application of a set of rules.
10For example, if the student gives up the task, the domain-based planner will not suggest a
harder problem, so the motivational tactic encourage effort (rule M9, which is fired only if
the task has been given up) would never be in conflict with the action suggest-harder-prob.
11The tutor was implemented in Pop11 and Prolog, within the Poplog system. For a more
detailed description of the tutor discussed here, see (del Soldato, 1994).

 20

to evaluate the motivational planner potentialities. This prototype is not meant to “compete”

effectually (in domain terms) with purpose-built Prolog debugging tutors such as TADP

(Brna et al., 1993). A scheme of the tutor’s architecture, including the motivational modules

described in this paper, is shown in Figure 1.

The problems in the Prolog-debugging tutor consist of Prolog programs with bugs and the

task for the student is to find and correct the bugs12. In this implementation the set of

programs is limited to very simple programs, and each problem contains only one bug. The

solution for a problem in the domain space is the correct version of the respective program.

Examples of bugs are a variable starting with a lower-case letter, a mistyped functor, or a

wrong argument in a clause. Each of these bugs presents many distinct possible instances,

even when one considers the application of the bug to one single program.

The level of difficulty of the problem depends on the complexity of the program combined

with the degree of difficulty of the bug. In this work, the complexity of a Prolog program

was defined according to Gegg-Harrison’s schemata (Gegg-Harrison, 1989). The degree of

difficulty of bugs, on the other hand, is not as well determined as the complexity of

programs. For the purposes of the limited domain representation in this tutor, we assume that

a bug of a syntactic nature, such as lower-case variable, is “easier” to detect than a semantic

bug, such as a wrong argument in a clause. This assumption originates from the idea that

syntactic bugs may be noticed without the need of running the program. Besides degree of

difficulty, the other property for problems is similarity. Similar problems in the Prolog

debugging domain consist, for example, of buggy programs generated by the application of

the same bug to different programs of the same degree of difficulty.

Evaluating the tutor describe above is a complex task due to the difficulty of measuring the

system’s goal: having the learner motivated to learn. According to Winne (1993)

“Motivational issues were barely considered [in the field of learning environments] ... This

is because standards for judging these qualities of learner’s behavior are even less agreed

upon than are standards for domain knowledge in avionics, logical proofs, and the like” (p.

318). Preliminary formative evaluation studies were performed with subjects who

volunteered to interact with the Prolog-debugging tutor for about an hour each. The subjects

were asked to report their motivational state during the interactions (e.g. level of confidence)

and the interactions were recorded on video tape (both sound and screen image) through a

scan converter. A more detailed discussion about the data gathered in this experiment is

provided in (del Soldato, 1994).

Here we present several examples of typical interactions with the Prolog-debugging tutor,

and discuss some questions raised from the preliminary evaluation study.

Student succeeds, with little effort but low confidence:
This case was discussed in Table 1 (where “S” stands for “student” and “T” for “tutor”).

The problem was “easy” to solve, so the focus of the interaction can shift towards the next

 21

level of difficulty, but because the student is not confident the system comments on the level

promotion.

Insert Table 19 here

Had the student been feeling more confident, the system would have highlighted the

increasing difficulty of the next task in a more challenging way (e.g. “The next problem will

be much harder!”). One subject, who was continuously challenged by the tutor, reported

being particularly stimulated by such comments (“It makes me feel more interested about

the next problem ... and I don’t need to check myself if the problem is too easy, the tutor

tells me”).

In the example provided in Table 13 one can notice how the confidence model is increased

by the right answer acknowledgement. During the evaluation study, one subject provided a

clear example of confidence raised by successes. When the next problem was presented, the

subject spotted the bug at once (it was a syntactic bug). Nevertheless, she decided to go

through with the exercise, exclaiming: “I think it is easy, but I want to do it. It makes me feel

good!”.

Another interesting question about confidence modelling was raised by reports from some

subjects about their confidence on what they were doing at that moment, as opposed to the

idea of global confidence on their abilities. For example, subjects expressed comments such

as, e.g., “I am not sure why I am doing this” while performing a particular step, showing low

confidence on a local situation, even if their global confidence about the eventual success in

performing the whole task was not (apparently) affected. In other words, there were

situations where a distinction was raised between global confidence (“I don’t know if I can

solve this problem”) and local confidence (“I don’t know if this query is a good one”). This

suggests that further research on confidence modelling could explore the distinction and

correlation between local and global confidence, and how this affects instructional planning

(e.g. should a “high global-confidence” student be offered help in a case of “low local-

confidence”?).

Student fails, effort large:
This case was discussed in Table 2. The tutor acknowledges the learner’s effort, even if the

performance’s result was not satisfactory (Table 14). One should note that in the case where

the confidence model is a value below the conf-threshold (which here is set as 4), the tutor

does not provide the performance assessment and offers help instead, insisting on the same

problem (Table 15).

Insert Table 14 here

Insert Table 15 here

12A more elaborate tutor would embody a theory of debugging and teach that theory through
the student’s experience of debugging programs.

 22

Student gives up, effort little:
If the student abandons the task after little effort, the tutor also insists on the same problem,

and offers (or directly provides) help, as discussed in Table 3. Here we show two examples

of such cases. The interaction reproduced in Table 16 presents the situation where a less

confident student gives up the task, although the overall performance has been good (many

tasks satisfactorily accomplished). The tutor can then evoke the previous successes to

encourage the learner’s persistence in solving the task.

Insert Table 16 here

In interactions with more confident students, as presented in Table 17, the system

“demands” further effort in a more direct way, without the need for extra encouragement.

However, subjects were not really pleased with such comments, suggesting that the

expressions included in this implementation for the trying-harder type comments could be

replaced by more supportive expressions.

Insert Table 17 here

A similar situation occurred in the preliminary evaluation study, when a confident but

bored13 subject abandoned finding the bug after little effort. The tutor “ignored” the request

to abandon the task, providing a hint instead, which annoyed the subject who kept working,

mumbling that the tutor was not “letting him leave”. However, another subject in the same

situation was quite pleased to be offered a hint after having given up performing the task.

The disparity between these two reactions shows that students can abandon a task for

different reasons: the first subject gave up performing the task because he was annoyed with

the task, whereas the second subject wanted to complete the task but was not able to

progress further. Maybe a better option for the second subject would have been to request

help, so the tutor coped quite well with the situation by offering a hint. However, it is clear

that motivational planning should also consider the case of “bored students” giving up.

Student fails, confidence OK, effort little
If the student fails after little effort, the tutor also insists on the same problem and tries to

stimulate the learner’s curiosity, as discussed in Table 2. The actual behaviour of the tutor in

such a situation is showed in Table 18. In the case reproduced here the buggy program being

investigated by the learner was:

 member(X, [X | Tail]).

 member(X, [Head | Tail]) :- member(X, tail).

(Checking the head member of a list does not reveal the bug, whereas checking any element

in the tail of the list results in a buggy query).

13At the very start of the interaction he exclaimed in his first language the equivalent to the
English expression “How boring...”.

 23

Insert Table 18 here

Students request help, confidence low/OK:
Comparing the tutor’s reaction to help requests when the conf-value is above or below the

conf-threshold, one can note the different level of detail on the hints provided to the learner.

The less confident student is given a more direct hint (Table 19) whereas the confident

learner is given a more general hint (Table 20). In the former case the problem is the buggy

problem

 last (Item , [Item]).

 last (Item , [First | Rest]) :- last (First , Rest).

(where the bug is in the second clause) and in the confident learner case the buggy program

is

 last (Item , [Rest]).

 last (Item , [First | Rest]) :- last (Item , Rest).

The independence model is not considered in the “low confidence” case, as priority is given

to restoring the learner’s confidence. For the confident student, the requested hint is

provided since the indep-value is above the indep-threshold. (In the next paragraph we

discuss the situation where the indep-value is below the threshold). Generic hints were

particularly appreciated by one of the subjects (“...it gives you some direction, but still lets

you work”).

Insert Table 19 here

Insert Table 20 here

Student requests help, independence low:
If the learner has already requested hints too many times, or the tutor has excessively

intervened on its own (if the conf-value was low), resulting in a low value for the

independence model, the student’s help request will not be satisfied at this moment and

postponed to a later help request or situation in which the student is lost (Table 21). This

situation was discussed in Table 4.

Insert Table 21 here

It is interesting to note that subjects were in general quite annoyed when the tutor would

“refuse” to provide help. Although the tactic of skipping help concerns the students’

independence, what seemed to disturb the subjects was the machine’s independence. One

subject made a particular remark: “I want to feel I am in control of the machine, and if I ask

for help I want the machine to give me help”. When reminded that human teachers happen to

encourage students’ independence the subject answered: “But a human teacher knows when

 24

to skip help. I interact with the human teacher but I want to be in control of the machine”14.

Further evaluation should investigate if individuals with minimal experience with computers

feel less prompted to control the tutor, as this was not possible to determine in this

experiment using the strongly computer-related domain of Prolog-debugging. Because the

relationship between a student and a human teacher is necessarily of a different quality to

that between a student and a “machine teacher”, this raises the issue of whether tactics which

work well in a human-human interaction will always translate into the human-machine

context. Lepper et al. (1993) call this the “plausibility problem”.

Conclusion
This paper presented:

1. a comparison between the behaviour of a typical domain-based instructional plan and a

hypothetical “motivational planner”, which reacts according to a set of motivational

tactics originated from theories of instructional motivation;

2. the elaboration of techniques to detect the learner’s state of confidence and independence

and the degree of effort spent in every task (the motivational modeller);

3. the elaboration, as a set of production rules, of the reactive motivational tactics

previously discussed (the motivational planner);

4. the elaboration of a set of instructional primitives (prob, help, answer, etc.), representing

the instructional interaction through objects and properties which are manipulated by the

motivational modeller and the motivational planner;

5. the elaboration of rules to negotiate between the motivational plan and the domain-based

plan (the negotiation planner).

Although the tactics selected to be included in the motivational planner were extracted from

the Instructional Science literature, many features involved in the actual implementation had

to be elaborated based on the characteristics and limitations of current ITSs. For example,

the techniques to model the student’s motivational state were largely constrained by the

limitations of typical interface devices.

The actual performance of the motivational planner is shaped (and limited) by the set of

instructional objects presented here and the efficiency of the motivational modeller.

Moreover, the whole behaviour of the system relies on the priorities defined in the

negotiation planner and the precision of the performance modeller, since the application of

motivational tactics depends both on the motivational state and the performance state.

The formalisation of the system in terms of explicit and variable parameters (such as the

thresholds for confidence and independence state, for instance) allows a degree of

manipulation of the motivational features, which can override the priorities set in the

motivational and negotiation planner. Coping with other limitations of the resulting system

would require, however, the inclusion of extra features in the set of instructional objects. For

instance, this work focuses on aspects of motivational tactics concerning problem-solving-

14It is important to mention here that the subjects in the evaluation study, and this subject in

 25

based domains. A richer domain representation, including e.g. a wider variety of links

between topics, would provide space for further elaboration of motivational tactics such as,

for example, curiosity-related tactics based on the delivery of incomplete information in

order to stimulate the learner seeking the “missing” topics. A more powerful interface would

allow exploration of issues such as teacher intonation in conveying emphasis in help,

assessment and questions (Lepper et al., 1993).

Other areas needing investigation include modelling the distinction between a student's

global degree of self-confidence and their specific confidence with respect to the current

fragment of the domain. It may well be sensible to exploit fuzzy logic techniques rather than

the simple numerical scales and thresholds used so far. At present the interaction style of

MORE is in the “traditional” ITS mould. Further work needs to be done to see how easily

one might adapt the current approach to styles of interaction of a more dialectic or

exploratory nature.

It was mentioned previously in this paper that several systems include an implicit theory of

motivation. In particular we mentioned WEST’s pedagogical tactic of preventing two

interventions in sequence (apparently WEST assumes that the learner’s independence

decreases after the first intervention). MORE, on the other hand, deals with the excess of

interventions by having an explicit independence model, which dynamically decreases after

any intervention from the tutor. In other words, WEST avoids two interventions in sequence

because it could affect the learner’s feeling of independence, whereas MORE represents the

learner’s independence through an explicit model and prevents excessive interventions when

the independence value in the model is considered low. In most cases, MORE’s behaviour

will result in avoiding a sequence of two interventions. There are cases, though, when the

learner’s independence model is so low that even the tutor’s first intervention should be

skipped, or cases when the learner’s feeling of independence is very stable and two

interventions do not compromise an excess of control from the tutor. The explicit

independence model represented in MORE allows the motivational planner to reason about

the learner’s feeling of control, instead of reducing to a single and automated behaviour the

tutor’s effort to encourage the learner’s control.

The explicit distinction between the motivational and the domain-based planners provides an

opportunity to insert the motivational planner in current systems, although it is necessary to

investigate in the future whether the domain-based and the motivational tactics should

actually be represented in separated modules, or if merging both planners into a unique

integrated planner would result in a more efficient system. Even in the current version of

MORE there are potentially many two-way interactions between potential domain actions

and potential motivational tactics, of which we have covered 15. Exploring the remaining

interactions will need to be undertaken. But it is clear that as the complexity of the domain

and motivational representations increase there is going to be a large increase in such

particular, were mostly Ph.D. students used to work with (and control) computers.

 26

interactions. This suggests that a more unified approach between the two may well have

some merit.

The evaluation described in this paper is very limited, so the main question still to be

answered is “Does it work?”, or in other words, “Is there some quantifiable payoff in adding

an explicit motivational aspect to instructional planning?”, irrespective as to whether this is

realised via a wholly separate module as here or by a more integrated approach. This

question is quite complex, as is evaluation in general (Winne, 1993). One issue concerns the

adequacy of the motivational tactics themselves. Here we are dependent on the kind of work

of educational psychologists that we have cited. Given that the existing empirical (and

theoretical) work is based on human-human educational interactions, there is the tricky issue

as to whether these findings apply to human-machine interactions. What may be an

acceptable technique as delivered by a human teacher may be regarded as patronising or

tendentious when offered by a machine. A third issue concerns the particular realisation of

the tactics in a given intelligent teaching system  perhaps the tactics are fine in principle

but implemented in a clumsy and unappealing manner.

An interesting piece of future work would be to attach (an improved version of) MORE's

motivational planner to an existing, well tested and effective ITS which covered some

appreciable curriculum (requiring several days work to cover) and which had already been

evaluated according to stringent criteria (see e.g. Shute, 1990). If the curriculum were

extensive enough one could conduct a within-subjects study whereby the motivational

planner was switched in or out for different parts of, and for different amounts of, the

curriculum for each subject. Three hypotheses to test include:

1. There would be improved final performance scores across the confidence range

compared to the system without motivational planning. The degree of gain would be

related to the amount of the curriculum taught in a motivating way.

2. Overall attitudes to learning in general would be improved, the degree of improvement

being related to the amount of the curriculum taught in a motivating way. In addition

drop-out rates would be lower for the more motivating tutor. One would also expect

subjects to report that the learning experience was more enjoyable where the tutor had

attempted to be more motivating.

3. Specific parts of the curriculum taught with the motivational planner switched-in would

be explored more completely and persistently than other parts. Ethical issues aside, one

might see a converse effect if inappropriate tactics were deliberately applied to certain

parts of the curriculum (i.e. treating the self-confident as not so and vice-versa).

References

Arshad, F. (1990). The Design of Knowledge-based Advisors for Learning. Ph.D. thesis, School of

Education, University of Leeds, UK.

 27

Brna, P., Hernandez, E. R., & Pain, H. (1993). Learning Prolog debugging skills. In Proceedings of
PEG’93 (pp. 561-568). Edinburgh: Scotland, UK.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer coaching for informal learning
activities. In D. H. Sleeman & J. S. Brown. (Eds.), Intelligent Tutoring Systems (pp. 79-98).
London: Academic Press.

Cameron, J., & Pierce, W. D. (1994). Reinforcement, reward, and intrinsic motivation: A meta-
analysis. Review of Educational Research, 64, 363-423.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue. In D. H. Sleeman & J. S.
Brown (Eds.), Intelligent Tutoring Systems (pp. 201-225). London, Academic Press.

del Soldato, T. (1992a). Motivational planning. In P. Brusilovsky & V. Stefanuk (Eds.), Proceedings of
East-West Conference on Emerging Computer Technologies in Education (pp. 293-298).
International Centre for Scientific and Technological Information, Moscow, Russia.

del Soldato, T. (1992b). Detecting and Reacting to the learner’s motivational state. In C. Frasson, G.
Gauthier & G. I. McCalla (Eds.), Intelligent Tutoring Systems: Proceedings of ITS’92 -
Montréal, June 1992 (pp. 567-574). New York: Springer-Verlag.

del Soldato, T. (1994). Motivation in Tutoring Systems. Tech. Rep. CSRP 303, School of Cognitive and
Computing Sciences, University of Sussex, UK.

Eisenberger, R. (1992). Learned industriousness. Psychological Review, 99, 248-267.
Gegg-Harrison (1989). Basic Prolog Schemata. Tech. report, Department of Computer Science, Duke

University, Durham, NC 27706, USA,
Keller, J. M. (1983). Motivational design of instruction. In C. M. Reigeluth (Ed.), Instructional-Design

Theories and Models: An Overview of their Current Status (pp. 386-434). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Lepper, M. R., Aspinwall, L. G., Mumme, D. L., & Chabay, R. W. (1990). Self-perception and social-
perception processes in tutoring: Subtle social control strategies of expert tutors. In J. M. Olson
& M. P. Zanna (Eds.), Self-Inference Processes: The Ontario Symposium, Vol. 6 (pp. 217-237).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Lepper, M. R., & Chabay, R. W. (1988). Socializing the intelligent tutor: Bringing empathy to
computer tutors. In H. Mandl & A. Lesgold (Eds.), Learning Issues for Intelligent Tutoring
Systems (pp. 242-257). New York: Springer-Verlag.

Lepper, M. R., Woolverton, M., Mumme, D., & Gurtner, J. (1993). Motivational techniques of expert
human tutors: Lessons for the design of computer-based tutors. In S. P. Lajoie & S. J. Derry
(Eds.), Computers as cognitive tools. Hillsdale, NJ: Lawrence Erlbaum Associates.

Malone, T. (1980). What makes things fun to learn? A study of intrinsically motivating computer
games. Tech. rep. CIS-7 (SSL-80-11), Xerox Palo Alto Research Center, Palo Alto, CA 94304,
USA.

Malone, T., & Lepper, M. R. (1987). Making Learning Fun. In R. Snow & M. Farr. (Eds.), Aptitude,
Learning and Instruction: Conative and Affective Process Analyses (pp. 223-253). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Peachey, D. & McCalla, G. (1986). Using planning techniques in intelligent tutoring systems.
International Journal of Man-machine Studies, 24, 77-98.

Schunk, D. H. (1989). Self-efficacy and cognitive skill learning. In C. Ames & R. Ames (Eds.),
Research on Motivation in Education: Goals and Cognitions, Vol. 3 (pp. ???). London:
Academic Press.

Shuell, T. J. (1992). Designing instructional computing systems for meaningful learning. In P. H.
Winne & M. Jones (Eds.), Adaptive learning environments. New York: Springer-Verlag.

Shute, V. (1990). Rose garden promises of intelligent tutoring systems: blossom or thorn? Paper
presented at the Space Operations, Applications and Research (SOAR) Symposium.

Wasson (Brecht), B. (1990). Determining the Focus of Instruction: Content Planning for Intelligent
Tutoring Systems. Ph.D. thesis, Department of Computational Science, University of
Saskatchewan, Canada.

Weiner, B. (1992). Human motivation. Sage Publications Inc.
Winne, P. (1993). A landscape of issues in evaluating adaptive learning systems. Journal of Artificial

Intelligence in Education, 4, 309-332.

 28

Wood, D., Bruner, J.S. & Ross, G. (1976). The role of tutoring in problem-solving. Journal of Child
Psychologyand Psychiatry, 17, 89-100.

Woolf, B. (1984). Context-dependent Planning in a Machine Tutor. Ph.D. thesis (COINS Tech. Rep.
No. 84-21), Department of Computer and Information Science, University of Massachusetts,
USA.

 29

 Table 1 - Motivational planner: T’s actions when S succeeds in solving problem

 confidence →
effort ↓ low OK
 (prevent disappointment) (stimulate challenge)

little comment: difficulty-level promotion comment: suggest challenge
 next prob: harder next prob: much harder
 (increase experience of success) (ideal situation)

large comment: link effort to success comment: performance feedback
 next prob: similar next prob: harder

Table 2 - Motivational planner: T’s actions when S fails in solving problem

 confidence →
effort ↓ low OK
 (facilitate success) (stimulate curiosity)

little provide: hint provide: surprising result
 insist (implicitly): on same prob insist (implicitly): on same prob
 (facilitate success) (normal situation)

large comment: praise effort comment: performance feedback
 provide: hint comment: praise effort

 insist (implicitly): on same prob next prob: same difficulty

Table 3 - Motivational planner: T’s actions when S gives up, after good general performance

 confidence →
effort ↓ low OK
 (remind success) (encourage effort)

little comment: previous successes comment: on lack of effort
 provide: hint suggest: help

 insist (implicitly): on same prob insist (explicitly): on same prob
 (facilitate success) (normal situation)

large comment: praise effort comment: praise effort
 provide: hint next prob: same difficulty

 insist (implicitly): on same prob

Table 4 - Motivational planner: T’s actions when S requests help

 confidence →
independence ↓ low OK
 (facilitate success) (increase independence)

low provide: specific help comment: encourage independence
 (skip providing help)
 (facilitate success) (normal situation)

OK provide: specific help provide: generic help

 30

Table 5 - Instructional objects and their properties

OBJECT OBJECT PROPERTIES
 state content type detail skip-next
help suggesting

providing
rejected
skipping
requested

present-step
next-step
previous-step
surprise-result

 general
specific

yes
no

problem suggesting
solving
rejected
succeeded
failed
given-up

 harder
easier
same-diff
similar

answer get
check
checked

positive
negative
right
wrong
step
give-up
help-request

low-conf
high-conf
neutral

assessment providing
not-needed

right
wrong

comment providing
not-needed

praise-perf
praise-effort
level-promotion
challenge
trying-harder
previous-successes
encourage-indep

Table 6 - Performance modelling

rule rate right/total tasks performance model
P1 above perf-threshold successful
P2 below perf-threshold unsuccessful

 rule last-step-repetitions path model
P3 above step-repetition-limit lost
P4 below step-repetition-limit OK

Table 7 - Confidence modelling

rule answer type answer content confidence model
C1 low-conf pos/neg decrement by conf-dec
C2 high-conf pos/neg increment by conf-inc

 rule steps answer content confidence model
C3 none help request decrement by conf-dec

 rule problem state with / without help confidence model
C4 succeeded without help increment by large-conf-inc
C5 succeeded with help increment by conf-inc
C6 failed without help decrement by conf-dec
C7 failed with help decrement by large-conf-dec

 31

Table 8 - Effort modelling

problem state steps with/without help effort model
given-up none  none
given-up few without help little
given-up few with help ↓

succeeded few with help ↓
succeeded few without help medium
given-up many with help ↓
given-up many without help large

succeeded many with help ↓
succeeded many without help maximum

Table 9 - Independence modelling

rule help state help detail independence model
I1 suggesting  decrement by indep-dec
I2 providing general decrement by indep-dec
I3 providing specific decrement by large-indep-dec
I4 rejected  increment by large-indep-inc

Table 10 - Domain-based planner rules

rule STUDENT MODEL / HISTORY ACTION

D1 problem-state = succeeded provide assessment, type right
suggest problem, type harder

D2 problem-state = failed provide assessment, type wrong
suggest problem, type same-diff

D3 problem-state = given-up suggest problem, type same-diff
D4 problem-state = rejected suggest problem, type same-diff
D5 help-state = requested provide help, content present-step
D6 help-state = rejected (help not-needed)
D7 path-state = lost provide help, content next-step

 32

Table 11 - Motivational planner rules

rule student model / history top-level tactics tactic
M1 conf-value < conf-threshold  increase confidence
M2 effort-value < medium  increase effort
M3 effort-value > medium  maintain effort
M4 help-state = rejected  respect control
M5 problem-state = given-up

above giv-up-lim
 respect control

M6 indep-value < indep-threshold not increase confidence increase control
M7 problem-state = succeeded increase confidence inc. experience success
M8 problem-state = failed increase confidence facilitate success
M9 problem-state = given-up increase effort

 not increase confidence
 not respect control

encourage effort

M10 problem-state = given-up increase confidence
 not respect control

facilitate success

M11 problem-state = succeeded increase effort stimulate challenge
M12  stimulate challenge

increase confidence
emphasise promotion

M13 problem-state = failed increase effort
not increase confidence

stimulate curiosity

M14 perf-value = successful facilitate success
increase effort

remind successes

M15 path-state = lost increase control avoid intervention
M16 help-state = requested increase control encourage indep
M17  encourage indep avoid intervention
M18 help-state = rejected

help-skip-next = no
respect control avoid next intervention

M19 help-state ≠ rejected
help-skip-next = yes

 avoid intervention

M20 help-state ≠ requested not increase confidence
not stimulate curiosity

share control

 33

Table 12 - Negotiation planner rules

 DOMAIN-BASED PLAN MOTIVATIONAL PLAN NEGOTIATION PLANNER
rule action tactic negotiated action
N1 suggest problem, type harder increase experience success

 not stimulate challenge
suggest problem, type similar

N2 suggest problem, type harder stimulate challenge
 not increase confidence

suggest problem, type much-harder

N3 suggest problem, type harder emphasise promotion suggest problem, type harder
provide comment level-promotion

N4 provide assessment, type wrong
suggest problem, type same-diff

facilitate success provide help, content next-step

N5 provide assessment, type wrong
suggest problem, type same-diff

stimulate curiosity provide help, content surprise-result

N6 provide assessment, type right maintain effort provide assessment, type right
provide comment praise-perf

N7 provide assessment, type wrong maintain effort provide assessment, type wrong
provide comment praise-effort

N8 suggest problem
 not provide assessment

facilitate success
 not respect control

provide help, content next-step

N9 suggest problem
not provide assessment

encourage effort provide comment trying-harder
suggest help, content next-step

N10  remind successes provide comment previous-successes
N11 provide help avoid intervention skip help
N12  encourage indep provide comment encourage-indep
N13 provide help, detail general increase confidence provide help, detail specific
N14 provide help share control suggest help
N15 (help not-needed) avoid next intervention skip next-help

Table 13: Level promotion

dialogue student model instructional plan
S — (promptly corrects the program) conf = 4 (low)

effort = little

S — There is no bug in the program. conf = 4
effort = little

provide assessment, type right
comment level-promotion
suggest prob, type harder

T — Right answer. This looks easy for
you now it’s time to move to harder
problems.
How about this program?
...suggests harder problem

conf = 5 (OK)
effort = little

 34

Table 14: Praising effort

dialogue student model instructional plan
S — (modifies and tests the program) conf = 5 (OK)

effort = large

S — There is no bug in the program.
(wrong answer)

conf = 5
effort = large

provide assessment, type wrong
comment praise-effort
suggest prob, type same-diff

T — Wrong... But it was a good effort!
How about
...suggests problem same-diff

conf = 4 (low)
effort = large

(wrong answer assessment: conf
value is decremented)

Table 15: Insisting on same problem

dialogue student model instructional plan
S — (modifies and tests the program) conf = 4 (low)

effort = large

S — There is no bug in the program.
(wrong answer)

conf = 4
effort = large

provide help, detail specific
comment praise-effort

T — Have a look at clause 1.
You have tried hard.
(insists on same problem)

conf = 4
effort = large

Table 16: Reminding successes

dialogue student model instructional plan
S — (works only a little)

I give up...
conf = 4 (low)
effort = little
perf = successful

provide help, detail specific
comment prev-successes

T — Have a look at clause 1.
You are doing fine
keep trying.

conf = 4
effort = little
perf = successful

Table 17: Encouraging effort

dialogue student model instructional plan
S — (works only a little)

I give up...
conf = 6 (OK)
effort = little

comment trying harder
suggest help, content next-step

T — Maybe you can try a bit harder.
May I help you?

conf = 4
effort = little

 35

Table 18: Stimulating the learner’s curiosity

dialogue student model instructional plan
S — ?- member(1 [1 2 3]). conf = 5 (OK)

effort = none

T — Solution for this query:
yes

conf = 5
effort = little

S — There is no bug in the
program.
(wrong answer)

conf = 5
effort = little

provide help, content surprise-result
(insists on same problem)

T — The solution for
?- member(b [a b c])
may surprise you...

conf = 5
effort = little

Table 19: Example of specific hint

dialogue student model instructional plan
S — Help please conf = 4 (low) provide help, detail specific
T — Hint: Have a look at clause 2 conf = 4

Table 20: Example of general hint

dialogue student model instructional plan
S — Help please conf = 6 (OK)

indep = 5 (OK)
provide help, detail general

T — Look at the original problem:
there is a wrong argument
somewhere

conf = 6
indep = 4 (low)

(help is provided: indep value
is decremented)

Table 21: Skipping help

dialogue student model instructional plan
S — Help please conf = 6 (OK)

indep = 4 (low)
skip help

T — I will help you later. conf = 6
indep = 6 (OK)

(indep value is incremented)

 36

Figure 1: the Prolog-tutor scheme

learner

interface

history

motivational
model

domain-based
model

motivational
modeller

domain-based
modeller

actionplanned action

domain
representation

negotiation
plan

domain-based
plan

motivational
plan

motivational
planner

domain-based
planner

