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ABSTRACT

Referring Expression Grounding (REG) aims at localizing a particu-
lar object in an image according to a language expression. Recent
REG methods have achieved promising performance, but most of
them are constrained to limited object categories due to the scale
of current REG datasets. In this paper, we explore REG in a new
scenario, where the REG model can ground novel objects out of
REG training data. With this motivation, we propose a Concept-
Context Disentangled network (CCD) which transfers concepts
from auxiliary classification data with new categories meanwhile
inherits context from REG data to ground new objects. Specially,
we design a subject encoder to learn a cross-modal common seman-
tic space, which can bridge the semantic and domain gap between
auxiliary classification data and REG data. This common space guar-
antees CCD can transfer and recognize novel categories. Further,
we learn the correspondence between image proposal and refer-
ring expression upon location and relationship. Benefiting from the
disentangled structure, the context is relatively independent of the
subject, so it can be better inherited from the REG training data.
Finally, a language attention is learned to adaptively assign differ-
ent importance to subject and context for grounding target objects.
Experiments on four REG datasets show our method outperforms
the compared approach on the new-category test datasets.
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1 INTRODUCTION

Figure 1: Some training and test examples in transferrable

referring expression grounding (REG) for new categories. In

testing data, the categories (e.g. cake, horse, orange) are out

of REG training data while the dominant contexts (e.g. left,

biggest, beside) exist in the REG training data.

Referring Expression Grounding (REG), also known as referring
expression comprehension, is to ground a target object in an image
according to linguistic expression. As a classical visual-language
task, REG are attracting much attention in recent years [21–23, 32].
It is a fundamental problem for many visual-language applications,
such as VQA [13, 29], interactive QA [5], and visual navigation
[10, 14], etc.

However, most methods are constrained to limited categories
due to the scale of current REG datasets [15, 23]. This constraint
severely hinders the application of REG in the real world. Moreover,
labeling proposals and referring expressions of new categories for
REG is very expensive. Thus we introduce the transferrable REG,
which aims at grounding the new objects out of the REG training
data. In the training data of our settings, we have the grounding
region of referring expression for very limited categories. In the
testing data, the referring expressions are about new categories, but
their dominant contexts appear in the training data. Some examples
of training and testing data are shown in Fig. 1.

There are two main challenges in transferrable REG dealing with
new categories. The first one is to recognize new objects. This needs
to construct the correspondence between their visual appearances
and categories, but such correspondence cannot be acquired in REG
training data. We notice that the visual appearances of thousands
of categories are learned in the image classification task [3, 17].



Unfortunately, they cannot be directly used in REG due to the
domain gap. In this paper, we aim to transfer this correspondence
in classification data to endow the REG model with the ability of
recognizing new categories.

The second challenge is to perceive category-independent context.
REG needs to understand context to distinguish the referent from
other objects, usually of the same category. Traditional REG meth-
ods [11, 12, 24, 30, 31, 33, 34] model the category-dependent context
of the referent by exploiting the relationship between the referent
and its related objects under supervision. In transferrable REG for
new categories, we need to learn the category-independent context
(i.e., “on the right of”) that does not rely on the representation of
the target object. Because of lacking the ground truth for grounding
new objects in the training data, the context can only be learned
from existing REG training data. In our work, we attempt to model
category-independent context to assist grounding a referred new
object.

To address the above problems, we design the Concept-Context
Disentangled network (CCD) which enables concept transfer from
auxiliary classification data (images from new categories) and con-

text inheritance from REG data to ground new objects. CCD is a
modular network including subject representation and context mod-
eling, which can disentangle the category-independent context for
grounding.

For the subject representation, we introduce a subject encoder
to learn the cross-modal common semantic space, which can bridge
the semantic and domain gap between the auxiliary classification
data and REG data to recognize new objects. To bridge the domain
gap, we encode the categories of auxiliary data and the referring
expressions from REG data into the same language space with Glove
[25], and encode the images from both datasets into the same visual
space with pre-trained Faster R-CNN. To bridge the semantic gap,
we use the subject encoder to learn the correspondence between
the visual and language space.

For the context modeling, we learn themapping score between vi-
sual context feature and attentive language context feature upon lo-
cation and relationshipwith other objects. The category-independent
context can be inherited to perceive the context of new objects. Fi-
nally, a language attention is learned to adaptively assign different
importance to subject and context. Jointly with the recognition of
new objects, our CCD can perceive category-independent context
to ground referred new object, especially when multiple objects of
the same category situate together.

At the training stage, we introduce a multi-task learning mecha-
nism in CCD which jointly trains the classification and REG models
in an end-to-end manner. We evaluate our network under two sce-
narios, i.e., intra-dataset and inter-dataset, on four REG datasets:
RefCOCO, RefCOCO+, RefCOCOg, and RefClef. Extensive experi-
ments show that our method can outperform strong competitors
on the new-category test set.

The contribution of this paper are summarized as follows:

(1) We introduce the transferrable referring expression ground-
ing dealing with grouding new categories. It is more practical
and more challenging in recognizing new objects and per-
ceiving category-independent context.

(2) We propose a concept-context disentangled network to trans-
fer new concept and inherit category-independent context
for the transferrable REG for new categories.

(3) We evaluate our CCD on four datasets under two kinds
of scenarios: intra-dataset and inter-dataset. Experimental
results show CCD can get better performance in grounding
new objects.

2 RELATEDWORK

2.1 Referring Expression Grounding

To distinguish a particular object in an image, a referring expression
should be unambiguous. Thus the expression usually consists of
target category and context (e.g., attributes, location, and relation
of the object [23]). How to make the best use of these cues becomes
the key challenge for referring expression grounding.

Yu et al. [33] utilized visual comparison to other objects within
an image to improve the performance. Nagaraja et al. [24] learned
context through multiple instance learning to understand referring
expressions. Hu et al. [12] presented a modular network identifying
entities and relationships to analyze referential expressions. Liu
et al. [20] found attribute learning significantly improved the per-
formance of referring expression generation and comprehension.
Zhang et al. [34] proposed a variational Bayesian method to model
complex context in referring expression grounding. Yu et al. [32]
designed a modular attention network to dynamically learn the
scores upon three modules: subject, location and relationship. Yang
et al. [30] introduced a language-guided visual relation graph to
compute multi-modal semantic contexts. The above studies show
the importance of context for REG. However, they modeled the
category-dependent context of the referent by exploiting relation-
ship between the referent and its related objects under supervision.
In our settings, for lacking the ground truth on novel objects, we
attempt to perceive the category independent context from REG
training data to ground novel objects.

2.2 Novel Objects in Visual-Language Task

The novel object problem, i.e., categories not contained in the train-
ing data, has attracted much attention in recent years [26]. Many
related works on visual and language tasks arise these days, such as
object retrieval, image caption, language grounding, which enhance
the generalization of model working in practical applications.

Guadarrama et al. [7] combined category and instance represen-
tation to handle the problem of open-vocabulary object retrieval.
Anderson et al. [2] used constrained beam search to force the in-
clusion of open-vocabulary words in image caption. Agrawal et al.
[1] presented the first large-scale benchmark to promote the open-
vocabulary image caption. Li et al. [18] expanded the vocabulary
via pointing mechanism for image caption. Hinami and Satoh [9]
proposed Query-Adaptive R-CNN to address the open-vocabulary
object retrieval and localization. Most related to our work, Sadhu
et al. [28] grounded the novel, “unseen" nouns using a single-stage
model which combined the detector network and grounding system.
Their work focused on grounding the queries in which category
is discriminative enough. In comparison, our work focuses on un-
derstanding the contexts and distinguishing the novel objects from



other same-category objects, which is also the key challenge of
REG task.

3 METHOD

REG aims to ground a particular object described by the linguistic
query in an image where multiple objects of the same category
situated together. This problem can be formulated as follows. Given
an image I , a linguistic query q, and a set of region proposals {ri }Ni=1,
we aim at selecting the best-matched region r∗ according to the
query.

In our introduced transferrable REG, we aim at grounding the
novel objects out of REG training data. To address this problem, we
design a Concept-Context Disentangled network (CCD) which can
transfer concept as well as inherit context in the REG model. We
adopt the modular design of MAttNet [32] and make some changes
as the backbone.

3.1 Overall Network Structure

The overall network structure of our proposed CCD is shown in Fig.
2. The model is disentangled into two modules: subject representa-
tion and context modeling. In the subject representation, we use
a multi-task learning mechanism by jointly training classification
and REG tasks. We learn a cross-modal common semantic space
to bridge the domain and semantic gap between the classification
and REG datasets. Specifically, we encode the images from the two
datasets into the same visual space with pre-trained Faster R-CNN
and encode the categories from classification data and the refer-
ring expressions from REG data into the same language space with
Glove. With these operations, we respectively bridge the visual and
language domain gap between the two datasets. Then, we design
a subject encoder to learn the mapping between the visual space
and the language space to bridge the semantic gap of two modali-
ties. The cross-modal common semantic space enables our CCD to
transfer the concepts from classification data to the REG model.

In the context modeling, we learn the correspondence between
context visual features and attentive context language features.
Benefiting from the concept-context disentangled structure, the
CCD can perceive category-independent context. So we can inherit
the learned context from REG training data when coming across
novel objects. Finally, a language attention is learned to adaptively
apply different importance to the two modules. It also denotes the
ratio between the transferred concept and inherited context.

3.2 Concept Transfer

In this subsection, we introduce the concept transfer from classi-
fication data to REG data in subject representation. The detailed
structure is shown in Fig. 3.

3.2.1 Language Feature Encoding. To bridge the language domain
gap, we can encode the categories from classification data and
referring expressions from REG data into the same language space.
For categories in classification data, we directly encode them into
word embeding ct with Glove [25]. Golve is a kind of global vector
for word representation. It has been widely used in visual and
language tasks to improve the understanding for language. If the
category has multiple words {wn }Nn=1, we use the average of word

embedings as the final representation.

ct = Mean (wn )
N
n=1 (1)

For referring expressions of REG data, we first encode each word
in query q = {wt }Tt=1 into word embedding et with Glove. Then the
word embedding et is fed into an MLP (multi-layer perceptions) and
a bi-directional LSTM. We concatenate the hidden vectors in both
directions as the final representation ht = [

−→
h t ,
←−
h t ]. Based on the

representation ht , we calculate attention score for each word in the
query with attention mechanism, and this helps learn better subject
representations. The final language representation for subject is
calculated as follows:

qs =
∑

t

softmaxt (fc (ht )) et . (2)

3.2.2 Subject Encoder. First, to bridge the visual domain gap, we
encode the images from classification data and REG data into the
same visual space. Pre-trained Faster R-CNN [27] based on ResNet
[8] is used as the backbone network to extract the visual features
for the images from both the classification and REG datasets. Sec-
ond, to bridge the semantic gap, we design the subject encoder
to construct the correspondence between the language space and
visual space. To get better visual representation for the subject, the
above extracted features are first fed into the fully-connected layer
with ReLU.

r̃ si = ReLU
(
f c
(
r si
))

(3)

r si denotes the visual features of a proposal. Then two branches
are introduced to learn the attributes and transfer novel concepts
respectively.

This attribute classification branch is to better preserve the at-
tribute information in the visual features of the subject. Only the
REG data go through this branch. The attribute label is extracted
through an external language parser [15] according to [32]. We use
the binary cross-entropy loss for the multi-label attribute classifica-
tion:

Lossatt = fBCE
(
yatti , f c

(
r si
))
, (4)

where yatti is the attribute label.
The category classification branch is to transfer novel categories

from classification data to our model. Both classification data and
REG data go through this branch. r̃ si is fed into an MLP followed
by a fully-connected layer.

r si = f c
(
MLP

(
r̃si

))
(5)

Finally, subject matching functions as the loss to construct the
cross-modal correspondence between language and visual space.
This guarantees that the concept can be transferred from classifica-
tion data to REG model. In detail, we use Mean Squared Error (MSE)
criterion to minimize the distance between the visual features and
category embeddings.

Losscat = MSE(ct , r si ), (6)

where ct is the category embedding.
For the REG data, we calculate the cosine distance between the

language representation qs and visual representation r si as the
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Figure 2: The network structure of our CCD. In the training stage, we jointly train classification andREG. The input data source

is from two datasets, i.e., REG data and auxiliary classification data with unseen categories. In the subject representation, we

bridge the semantic and domain gap between the two datasets to transfer concepts from classification data to REG data. In the

context modeling, we perceive the category-independent context to better inherit context from REG training data to ground

novel objects. The language attention is learned to adaptively apply different importance to the two modules.

Figure 3: The detailed pipeline of subject representation.

The bottom left branch shows the language feature encod-

ing for auxiliary classification data. “dog” is the category

of this referring expression. We also feed novel categories

such as “cat" to the classification branch. The top left branch

presents the language feature encoding for referring expres-

sions of REG data. The right longer branch is the visual fea-

ture encoding for images from both datasets. The shorter

one represents the attribute classification.

matching score between proposals and referring expressions upon
subject.

Scores = COS(qs, rsi ), (7)

3.3 Context Inheritance

The context information is crucial for REG to distinguish the target
object from other same-category objects. Because of lacking the
ground truth for grounding novel objects in the training data, here
we learn to perceive category-independent context for novel objects.
Our CCD is a concept-context disentangled structure, which can
learn the category-independent context. The context modelingmod-
els two kinds of information, namely the location and relationship
with other objects of the target object.

3.3.1 Language Feature Encoding. Similar as the subject feature
encoding (Sec. 3.2.1), the language encoding for the context is as
follows.

qx =
∑

t

softmaxt (fc (ht )) et x ∈ (l , r ) (8)

3.3.2 Context Encoder. The visual feature encoding for context
models the location and relationship features. Location feature
r li consists of absolute position and relative locations with other
objects of the same category in the image. Relationship feature r ri
represents the relationship between the target proposal with its
surrounding objects. We choose one with the maximum response to
the query from 5 surrounding proposals as the relationship feature.



The location and relationship features are fed into a fully-connected
layer to rescale to same dimension.

r̃xi = fc
(
rxi
)

x ∈ (l , r ) (9)

Then, we calculate the semantic similarity between the language
and visual features as the matching score for context. The features
are first fed into a two layer perceptron with batchnormalization
layer.

rxi = BN
(
W2ϕReLU

(
W1[r̃xi ]

))
, x ∈ (l , r )

qx = BN (W2ϕReLU (W1[qx ])) , x ∈ (l , r )
(10)

Finally, we calculate the cosine distance between the language
representation and visual representation as the location and rela-
tionship matching scores, which represents the correspondence
between proposals and referring expressions.

Scorex = COS(qx , rxi ), x ∈ (l , r ) (11)

3.4 End-to-End Joint Training and Inference

The overall matching score is the linear combination of the subject
and context score. A language attention is introduced to learn their
weights based on the referring expression features.

wx = softmaxw (fc ([h0,hT ])) , x ∈ (s, l , r )

St =
∑

x

wx Scorex, x ∈ (s, l , r ) (12)

For novel objects at inference, the weights measure the importance
of subject and context.

A combined hinge loss is calculated to evaluate the grounding
result as follows.

Lossr eд =
∑

i

[
λ1 max

(
0,Δ + Si jt − Siit

)

+λ2 max
(
0,Δ + S jit − Siit

)] (13)

S
i j
t and S jit denote the final matching score of negative pairs (ri ,qj )

and (r j ,qi ) respectively. Siit is the matching score for the positive
pair (ri ,qi ).

We use a multi-task learning mechanism to jointly train clas-
sification and REG tasks in an end-to-end manner. The network
learns the concept information from both classification and REG
data, and learns the context information from REG data. The cross-
modal common semantic space and the concept-context disentan-
gled structure guarantee the concept transfer and context inheri-
tance for novel objects in the inference. The final loss is the com-
bination of the attribute classification, category classification, and
REG hinge loss:

L = Lossatt + Losscat + Lossr eд . (14)

In the inference, we calculate the matching score between each
candidate proposal and the query. We select the proposal with the
maximum matching score as the best-matched region.

4 EXPERIMENTS

4.1 Datasets

We evaluate our method under two kinds of scenarios with novel
objects, i.e., intra-dataset and inter-dataset, on four datasets: Ref-
COCO, RefCOCO+, RefCOCOg and RefCLEF. In the intra-dataset
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Figure 4: The results of different split on RefCOCO+ dataset.

We randomly select different 60 categories as new-category

REG test set.

scenario, we randomly select 60 categories from RefCOCO, Ref-
COCO+, and RefCOCOg as their novel-object categories. In the
inter-dataset scenario, the categories in the REG training data come
from RefCOCO while the categories in the new-category test set
come from RefClef. For the selected novel objects, we discard their
referring expression and remain their corresponding categories as
classification dataset. We do not use classification datasets such as
ImageNet [3] because we do not have a corresponding REG test set
for these classification data.

RefCOCO [33]: It is also called UNC RefExp, which contains
142,209 queries for 50,000 objects with 80 categories in 19,994 im-
ages from MSCOCO [19]. We split the dataset into train, validation,
Test A, Test B, and Test N. Test A contains multiple people; Test B
contains multiple objects; Test N contains the novel objects.

RefCOCO+ [33]: It has 141,564 queries for 49,856 referents
with 80 categories in 19,992 images from MSCOCO [19]. Different
from RefCOCO, the queries in this dataset are disallowed to use
locations to describe the referents. This dataset is also split into
train, validation, Test A, Test B, and Test N respectively.

RefCOCOg [23]: It is also called Google Refexp. It has 95,010
queries for 49,822 objects with 80 categories in 25,799 images from
MSCOCO [19]. It has longer queries containing appearance and
location to describe the referents. The images are split into train,
validation, Test S and Test N. Test S contains the seen objects while
Test N contains the novel objects.

RefCLEF [15]: It is also called ReferIt. It contains 20,000 an-
notated images with 238 categories from IAPR TC-12 dataset [6]
and SAIAPR-12 dataset [4] . The dataset includes some ambiguous
queries, such as anywhere. It also has some mistakenly annotated
image regions. We split the images into the train and validation set.
The maximum length of all the queries is 19 words.

It is worth noting that each image from these four datasets con-
tains at least 2 objects of the same object category.

4.2 Training Settings

4.2.1 Implementation details. The network is trained throughAdam
[16] algorithmwith an initial learning rate of 4e-4, which is dropped



Table 1: Accuracy (IoU > 0.5) of REG on RefCOCO, RefCOCO+ and RefCOCOg dataset. The val, testA, testB or testS are seen-

category test sets and the testN is new-category test set.

Methods
RefCOCO RefCOCO+ RefCOCOg

val testA testB testN val testA testB testN val testS testN
MAttNet[32] 82.75 83.71 78.99 74.18 68.19 70.43 49.71 46.27 73.96 73.12 51.33

CCD 80.38 82.06 75.55 76.94 64.68 67.37 50.00 50.57 69.72 69.68 53.18

Table 2: Accuracy of classification on RefCOCO, RefCOCO+ and RefCOCOg dataset.

Methods
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test
CCD 79.98 82.76 75.69 77.34 80.28 73.04 79.18 78.60

by 10 after every 4,000 iterations. The training iterations are up to
12,000 with a batch size of 15 images. We can get better performance
if the number of training iterations is larger. Here we use 12,000 as
training iterations for time efficiency. Each image has an indefinite
number of annotated queries. The rectified linear unit (ReLU) is
used as the non-linear activation function. Batch normalization
operations are used in our framework. ResNet is our main feature
extractor for RoI visual features.

4.2.2 Metrics. The Intersection over Union (IoU) between the se-
lected region and the ground-truth are calculated to evaluate the
grounding performance. If the IoU score is greater than 0.5, the
predicted region is considered as the right grounding. To evaluate
the classification, we calculate the semantic distance between all
categories and our results. The semantic distance is in the form of
the euclidean metric. We use the closest category as the predicted
category.

4.3 Experiments on RefCOCO, RefCOCO+ and
RefCOCOg Datasets

4.3.1 Quantitative Results. Weverify ourmethod under intra-dataset
scenario on the RefCOCO, RefCOCO+ and RefCOCOg datasets. We
split the images of 80 classes in these datasets into two different
sets. One set includes images of 20 classes (including human), and
we further split the images into train, validation, and test sets to
evaluate the performance of the seen-category set. One set includes
the images of the other 60 classes, and this set is considered as
the new-category test set. We use the variant of MAttNet [32] as
our compared method. We delete the subject visual attention in
MAttNet to keep consistent with our approach.

Table 1 shows the comparison betweenMAttNet and our method
on RefCOCO, RefCOCO+ and RefCOCOg. In the seen-category
test set (val, testA, testB or testS), the performance of our method
slightly dropped. This may be because our method focuses more
on the concept (category information) in subject representation
and ignores the discriminative attribute information. In the new-
category set, our method can improve the accuracy by 2.76%, 4.30%
and 1.85% thanMAttNet on three datasets respectively. This benefits
from the learned cross-modal common semantic space in the subject
representation of CCD, which can bridge the domain and semantic
gap between classification data and REG data, and transfer the
novel concepts from classification data to recognize them.

To better evaluate the stability of our method, we randomly
choose 5 sets of data (each set has 60 classes) as a new-category test.
Our method outperforms MAttNet on all splits. Fig. 4 shows the
results of different splits on RefCOCO+ datasets. We can observe
that our CCD outperforms MAttNet with a margin of 2.16∼4.3%.
The results also prove the robustness of our method.

Table 2 shows the classification results of our CCD on the three
datasets. The split of the datasets for classification follows the
original setting without splitting the new-category test set. The
results show our CCD can get good performance on classification,
and this indicates that our model can recognize most transferred
concepts to improve the results of novel object grounding. Noting
that we do not have classification results for the compared method
as it lacks the classification branch.

4.3.2 Qualitative Results. We show qualitative results upon recog-
nizing novel objects and perceiving category-independent context
under the intra-dataset scenario on the three datasets. For each
dataset, the first row shows the results of MAttNet[32]. The second
row shows the results of our CCD.

Recognize novel objects. The left three columns of Fig. 5 show
the qualitative results about recognizing novel objects. Compared
with MAttNet, our CCD can better ground the novel objects in the
new-category cases. This proves our method has learned the corre-
spondence between novel category and its visual appearance, which
benefits from the learned cross-modal common semantic space in
CCD. This space helps to bridge the domain gap between two dif-
ferent datasets and transfer concepts from auxiliary classification
data.

Perceive category-independent context.The right three columns
of Fig. 5 show the comparison of qualitative results between MAt-
tNet and CCD about perceiving category-independent context un-
der scenarios where multiple objects of the same novel category
situated together. The qualitative results show our CCD can dis-
tinguish the target object from other same-category objects. This
indicates CCD can not only recognize novel objects but also suc-
cessfully inherit learned context from the limited REG training
data.

4.4 Experiments on RefCLEF Dataset

4.4.1 Quantitative Results. In this subsection, we evaluate our
method on RefCLEF dataset in inter-dataset scenario. We use the



Figure 5: The comparison of qualitative results between MAttNet [32] and CCD under intra-dataset scenario. The left three

columns show the results about recognizing novel objects. The right three columns are the visualization about perceiving the

category-independent context. The denotations of the bounding box colors are as follows. Solid red: ground truth; dashed blue:

predicted proposal. The referring expression is shown above corresponding images.

Table 3: Accuracy (IoU > 0.5) on RefCLEF dataset. The sets of

val, testA and testB in RefCOCO are seen-category test sets

and the val in RegCLEF is new-category test set.

Methods
RefCOCO RefCLEF

val testA testB val
MAttNet[32] 81.91 82.52 82.28 20.47

CCD 80.95 80.70 80.57 55.03

training data of 80 categories in RefCOCO dataset as REG training
data; the training data in RefClef as auxiliary classification data;
the validation data in RefClef as new-category test set.

Table 3 shows the comparison between MAttNet and our CCD.
The left three columns are the results of seen-category test sets
of RefCOCO. The accuracy of MAttNet and our CCD are beyond
80.00% and ours has a slight decrement. The right column shows the
results of new-category test data. We can observe that the accuracy
of CCD is much higher (+34.56%) than MAttNet. This results from
that CCD learns a cross-modal common semantic space to bridge
the domain gap between two different datasets and transfers novel
concepts from the classification data to the REG data, even when the
datasets follow different data distribution. Besides, we evaluate the
classification result (36.83%) on RefCLEF dataset. The performance
of REG is much better (+18.2%) than classification on val set. This



Figure 6: The comparison of qualitative results between MAttNet [32] and CCD on RefCLEF under inter-dataset scenario. We

specially show some results of the same image with different queries, indicating CCD can inherit the context learned from

other REG datasets.

means our CCD still works to ground novel objects even when CCD
cannot recognize the novel objects. This phenomenon indicates the
concept-context disentangled structure enables CCD to perceive
category-independent context.

4.4.2 Qualitative Results. Fig. 6 shows qualitative results upon
recognizing novel objects and perceiving category-independent
context under inter-dataset scenario on the RefCLEF dataset. The
left three columns show the ability of our network for recognizing
novel objects while the right three columns for perceiving category-
independent context. The promotion under inter-dataset scenario
is more obvious than under intra-dataset scenario. We show some
examples of the same image with different queries. The queries
have different context to ground different novel objects. Ourmethod
succeeds in distinguishing the category-independent context. The
results show CCD can inherit the context learned from RefCOCO
dataset to ground novel objects in RefCLEF dataset.

5 CONCLUSION

This paper focuses on the study of REG for novel objects. This
task brings two new challenges: recognizing novel objects and per-
ceiving category-independent context. To address this problem, we
design transferrable REG with concept transfer and context inher-
itance. Specifically, we introduce a concept-context disentangled
network (CCD) that enables concept transferring from auxiliary
classification data and context inheriting from REG data to ground

novel objects. As a modular network, CCD includes subject repre-
sentation and context modeling. In subject representation, we learn
the cross-modal common semantic space to bridge the semantic
and domain gap between auxiliary classification data and REG data
to recognize novel objects. In the context modeling, benefiting from
the disentangled structure, the context is relatively independent
of the subject. Thus we can learn the correspondence between
image proposal and referring expression upon location and rela-
tionship. Benefiting from the disentangled structure, the context is
relatively independent of the subject, so it can be better inherited
from the REG training data. Finally, a language attention is learned
to adaptively assign different importance to subject and context for
grounding the referred novel objects. We use a multi-task learning
mechanism to jointly training classification and REG tasks. Exper-
iments on four datasets under intra- and inter-dataset scenarios
show our method can better ground novel objects with concept
transfer and context inheritance, even when multiple objects of the
same category situated together.
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