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a b s t r a c t

Video-based Face Recognition (VFR) can be converted into the problem of measuring the similarity of
two image sets, where the examples from a video clip construct one image set. In this paper, we consider
face images from each clip as an ensemble and formulate VFR into the Joint Sparse Representation (JSR)
problem. In JSR, to adaptively learn the sparse representation of a probe clip, we simultaneously consider
the class-level and atom-level sparsity, where the former structurizes the enrolled clips using the
structured sparse regularizer (i.e., L2;1-norm) and the latter seeks for a few related examples using the
sparse regularizer (i.e., L1�norm). Besides, we also consider to pre-train a compacted dictionary to
accelerate the algorithm, and impose the non-negativity constraint on the recovered coefficients to
encourage positive correlations of the representation. The classification is ruled in favor of the class that
has the lowest accumulated reconstruction error. We conduct extensive experiments on three real-world
databases: Honda, MoBo and YouTube Celebrities (YTC). The results demonstrate that our method is
more competitive than those state-of-the-art VFR methods.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In traditional face recognition task, face images are identified
from only a few samples per subject under controlled environ-
ments. Many current algorithms have achieved pretty good per-
formance. However, with the popularization of video cameras such
as surveillance cameras and cell phone cameras, we can easily
capture large-scale face video clips in the wild, in which face
images usually accompany with dramatic appearance changes in
lighting, pose, expression, blur, etc. Therefore, the efficient classi-
fication of face video clips remains challenging and meaningful in
practical applications.

The popular methods are the explosive development of Image
Set based Classification (ISC) techniques [1–10]. Generally speaking,
these approaches consist of two key steps: representing image set
and defining between-set similarity. As image set representation is
concerned, popular methods include Gaussian models [1,2], sub-
spaces [3,7,8], nonlinear manifolds [4,11,9], etc. Gaussian model
based methods can reasonably extend to unseen data with well-
estimated parameters. However, if the data distribution does not
follow the Gaussian assumption, the estimated model will not
properly fit with the real distribution of image set. Instead, the
non-parametric methods revive in more recent years. They usually

represent one image set as a linear subspace [3,7,8] or a nonlinear
manifold [4,11,9]. Compared with Gaussian based methods, these
non-parametric methods have demonstrated many favorable prop-
erties (e.g., no assumption on data distribution) with more excellent
performance in VFR.

The second concern is how to define between-set distance.
Generally, different distance metrics are used for different set
representation methods. For Gaussian model, Kullback–Leibler
Divergence [2] may be used to define between-set similarity. For
subspace model, principal angles between two subspaces are often
used as the distance metric. The classic works include Mutual
Subspace Method (MSM) [12], Orthogonal Subspace Method
(OSM) and their variants [3,13]. To develop more robust distance
of two subspaces, specifically, some recent studies attempt to
constrain the space of synthetic face images. For example, Cevikalp
et al. [7] constrained the subspace spanned from face images of a
clip into a convex hull, and then calculate the nearest distance of
two convex hulls as the between-set similarity. Hu et al. [8] further
extended it and proposed Sparse Approximated Nearest Point
(SANP) to make the nearest points between two convex hulls lie
on some facets by using the sparse regularizer. In addition, by
assuming that face images of a clip lie on a nonlinear manifold,
Wang et al. [4] extended Subspace–Subspace Distance (SSD) to
Manifold–Manifold Distance (MMD), where a nonlinear manifold
is partitioned into several local linear subspaces and then MMD
is defined as pair-wise SSDs. However, MMD implicitly suffers a
computational bias due to the uncertainty of subspace partitions
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[9]. To this end, Cui et.al [9] attempted to align all image sets to a
pre-specified reference set and then measured the corresponding
subspaces, which inevitably leads to the dependence on the choice
of the reference set for the classification accuracy.

More recently, the sparse representation based methods [14–16]
are developed to address the task of face recognition. Especially, the
Sparse Representation-based Classification (SRC) [14] method spar-
sely represents a probe face image with a dictionary constructed
from all gallery examples and then classifies it into the subject with
the smallest reconstruction error. If the examples from the same
subject construct its own subspace, i.e., the intersection of subspaces
spanned from any two subjects is null, the non-zero coefficients of
the reconstructed example can ideally focus on the gallery examples
from the same subject. Following this assumption, SRC has shown
favorable properties in face recognition, especially when face images
are partially occluded.

However, SRC treats every examples in gallery set equally and
does not consider the structure of gallery data especially the class
label. Intuitively, all examples from the same subject should
be treated as an ensemble instead of multiple isolated images,
which implies that the dictionary (i.e., gallery set in SRC) may be
characterized with the structure of group. For this, Elastic Net [17]
and Group Lasso [18–20] are proposed to improve SRC. Specifically,
Elhamifar et al. [20] casted the classification task as a structured
sparse recovery problem, where the images from the same subject
in gallery set form a group, and the sparsity is imposed on these
groups, i.e., the class-level or group-level sparsity. However, these
methods only address the representation of a singe probe example
and do not consider within-class appearance variations of an
image set.

In addition, SRC is only designed to encode a single probe
image. In a video clip, however, there are multiple frame images of
the same subject, i.e., multiple views of a subject. Note that here
each clip only contains images of the same subject. Obviously, in a
clip there exist strong correlations across different frames because
a clip may be regarded as an approximately continuous stream.
Therefore, when representing a clip, instead of frame-wise regres-
sion, the joint representation of all frames should be more mean-
ingful for resisting the noises and increasing the representation
stability. Generally, this problem of jointly estimating models
from multiple related images is referred to “multi-view learning”
[21,22] in the machine learning literatures. Yuan et al. [21]
proposed Multi-Task Joint Sparse Representation (MTJSR), which
aims to recover a test sample with multiple features from as few

training subjects as possible and simultaneously enforces sparse
coefficients on common atoms. However, MTJSR assumes that
each sample has the same type of features, which naturally leads
to the counterparts between multiple features. In the task of VFR,
given any two clips, it is very intractable to obtain the counterparts
between two clips (i.e., images with the same poses, expressions,
etc.). Thus it is impossible to encode one image with the same type
of examples (or atoms) across different clips.

In this paper, inspired by recent progresses on sparse learning
[14,18,21,23], we formulate VFR into a Joint Sparse Representation
(JSR) problem (as shown in Fig. 1). In JSR, two sparse constraints
are considered. The first sparse constraint is put on class-level by
using L2;1 mixed-norm, which assumes that a probe image set (or a
clip) can be represented by a few gallery image sets (or gallery
clips). The second sparse constraint enforces the sparsity on
within-class images by using L1-norm, with the aim to choose a
few related views. Intuitively, different subjects lead to class-level
sparsity, while appearance variations cause atom-level sparsity
among images of all persons. In addition, in order to make the
model more robust, two improvements are further provided: one
is to learn a compact dictionary to reduce time cost, and the other
is to impose nonnegative constraints on the representation. To
solve this model of JSR, the Accelerated Proximal Gradient (APG)
[24] optimization strategy is employed with fast convergence rate
guaranteed. We conduct extensive experiments on three video
databases: Honda [25], MoBo [26] and YouTube Celebrities(YTC)
[27]. The results demonstrate that the proposed method is more
competitive than the state-of-the-art methods for video-based
face recognition.

The remainder of this paper is organized as follows. In Section
2.2, we present the proposed joint sparse representation model.
The optimization details along with the final classification rule
are stated in Sections 2.3 and 2.4. The applications of our method
to face recognition are reported in Section 3. Finally, we reach a
conclusion in Section 4.

2. Joint sparse representation

In this section, we first introduce the basic idea of joint sparse
representation, then give the mathematical formulation in detail,
and finally provide the optimization and the classification rule.

Fig. 1. Illustration of our idea. Given a test image set (or a video clip), the group-level (or class-level) sparse recovery is used to search the most relevant subjects from gallery
image sets (or gallery clips), while the atom-level sparse regression is imposed on each image of the test set to find the similar appearance images. Further, such two sparse
constrains are jointly imposed on an image set (or a clip) rather than an isolated image, which suppresses noises and leads to more robust representations. Behind that an
intuitive explanation is that different subjects lead to the class-level sparsity, while appearance variations cause the atom-level sparsity among images of each person. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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2.1. Basic idea

The basic idea is illustrated in Fig. 1. As shown in this figure,
given the test image set (or the probe clip) and the gallery image
sets (or the gallery clips), we consider two key priors for image set
representation: integrity and sparsity.

All face images from a video clip should be regarded as an
ensemble in the sparse representation. That is, each clip is
conducted as an ensemble at one time, instead of isolated images.
Such a joint spare representation on all images of a clip can
efficiently suppress the noises in them and further make the probe
clip more stable recovery.

To find more meaningful representation, the sparse priors can be
employed. In class-level, face images of a subject are usually similar
to those of a few of subjects, which cause the concentration of
reconstruction energy (or coefficients) on a very few related sub-
jects for a given probe clip, as shown in Fig. 1. We may formulate
this observation into the structured sparse norm, an extension of
L2;1 mixed-norm. In atom-level, based on human vision mechanism
of sparsity selection [28], we may sparsely recover each image in the
probe clip. An intuitive explanation is that, since real-world face
images usually contain complex appearance variations, a given
image should exist in a small subspace spanned by those images
with the similar appearance. For instance, a face image with yaw 151
pose may be recovered from those images with nearby poses in a
larger possibility. For this, we may use the L1 norm to penalize the
reconstruction coefficients.

2.2. Problem formulation

Suppose we have the gallery data X¼ ½X1;X2;…;XM �ARd�N ,
where XiARd�Ni is the column-stacked feature matrix of all Ni

images of the i-th subject, d is the feature dimensionality,
N¼∑M

1 Ni, and M is the total number of subjects (or classes) in
the gallery data. Note that all images of the same subject might
come from multiple clips. As a video clip usually contains a lot of
redundant information, we may compress each feature set Xi into
a more compact subdictionary DiARd�li by performing the clus-
tering algorithm on Xi, where li is the size of the i-th subdictionary,
and i¼1,…,M. Therefore, we can obtain the compact dictionary
D¼ ½D1;D2;…;DM �ARd�l to represent the whole gallery data,
where l¼∑M

i ¼ 1li.
Given a probe clip with n different observations from a subject,

YARd�n, we can recover the probe clip from the gallery dictionary
D as follows:

Y¼ ∑
M

i ¼ 1
DiW

iþE¼DWþE; ð1Þ

where WiARli�n is the reconstructed coefficient matrix associated
with the i-th subdictionary, E is the residual term, and the matrix
W¼ ½W1;W2;⋯;WM � is stacked block-wisely in height. Thus, the
VFR problem can be formulated to solve the following joint sparse
representation model by incorporating two sparse regularization
terms as analyzed above:

min
W

FðWÞ ¼ f ðWÞþλ1ζðWÞþλ2ϕðWÞ; ð2Þ

WZ0 ðoptionalÞ; ð3Þ
where

f ðWÞ ¼ 1
2
JY�DWJ2F ; ð4Þ

ζðWÞ ¼ ∑
M

i ¼ 1
JWi J1 ¼ JWJ1; ð5Þ

ϕðWÞ ¼ ∑
M

i ¼ 1
JWi JF : ð6Þ

In the above model, f is the loss function of reconstruction error
by Frobenius norm, ζ is the L1 sparse function of the recovery
coefficients W with JWJ1 ¼∑ijjWijj, i.e., sum all the absolute
values of each item in the representation matrix. The structured
sparse function ϕin Eq. (6) puts L2 norm on those coefficients of
each corresponded class and then sum the coefficients of all
classes (i.e., L1 norm). That is, ϕ only conduct the sparsity on
group-level, where one subdictionary may be regarded as one
group. To simplify the notation, we still use L2;1�norm to mark the
structure sparse function ϕ, where the standard L2;1 norm imposes
L2-norm on each column/row and L1-norm on all rows/columns.
Besides, the nonnegative constraint may be optional to limit the
subspace spanned by face images from the probe clip and further
improve the performance.

2.3. Efficient solution

In the above model, since the function f is a smooth and convex
function, and two sparse regularization terms are convex, thus we
can employ the popular APG method [24,29], which uses “opti-
mal” first order gradient to solve the objective value with the
convergent rate Oð1=t2Þ. First, we can define the generalized
gradient update step of Eq. (2) as follows:

QLðW;WtÞ ¼ f ðWtÞþ 〈W�Wt ;∇f ðWtÞ〉
þ L
2
JW�Wt J2F þλ1ζðWÞþλ2ϕðWÞ; ð7Þ

where 〈A;B〉¼ traceðATBÞ denotes the matrix inner product. Given
the solution Wt , thus we may iteratively update W according to
the above Eq. (7). We can further simplify it into the following
equation:

QLðW;WtÞ ¼ L
2
JW�AJ2F þCþλ1ζðWÞþλ2ϕðWÞ; ð8Þ

A¼Wt�
1
L
∇f ðWtÞ; ð9Þ

C ¼ f ðWtÞ�
1
2L

J∇f ðWtÞJ2F : ð10Þ

Algorithm 1. Joint sparse representation.

Input: Dictionary D¼ ½D1;…;DM � of M subjects in the gallery
data, a probe clip (or image set) Y, balance parameters λ1
and λ2, and group indices.

Output: Regression coefficients W.
1: Initialization: L40;η41;W0ARd�n;Z0 ¼W0; p¼ 1; t ¼ 1.
2: repeat
3: Calculate A;C using Eqs. (9) and (10).
4: if the nonnegative constraint then
5: update A by Aþ .
6: end if
7: Calculate the sparse matrix B by Eq. (14).
8: Project W to B by Eq. (15).
9: if FðWÞ4QLðW;ZtÞ then
10: extend the step L¼ ηL, and go to step 3.
11: end if
12: Update variables: Ztþ1 ¼W; ptþ1 ¼ 2=ðtþ3Þ;

Wtþ1 ¼ Ztþ1�ð1�pt Þptþ 1
pt

ðZtþ1�ZtÞ.
13: t ¼ tþ1.
14: until the convergence criterion is reached.
15: return W.
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Next we focus on how to solve the generalized gradient mapping
step (8), where A and C are known if Wt is fixed. Therefore, we only
need to solve the following minimization problem:

min
W

QLðW;WtÞ ¼ L
2
JW�AJ2F þλ1ζðWÞþλ2ϕðWÞ; ð11Þ

where the nonnegative constraint on W may be added into this
model, i.e., WZ0. To address the nonnegative constraint, we can
directly decompose A into two nonnegative matrices Aþ and A� so
that A¼ Aþ �A� . Then the optimal solution of Eq. (11) with the
nonnegative constraint WZ0 may be obtained by simply replacing
A with Aþ , i.e., minimizing the following model:

min
W

QLðW;WtÞ ¼
L
2
JW�Aþ J2F þλ1ζðWÞþλ2ϕðWÞ: ð12Þ

After a similar derivation with Theorem 1 in [30], the above
optimization problem (11) or (12) is equal to the following optimi-
zation model:

min
W

QLðW;WtÞ ¼
L
2
JW�BJ2F þλ2ϕðWÞ; ð13Þ

B¼ sgnðAÞ � maxðjAj�λ1;0Þ: ð14Þ

Note, when WZ0, A in Eq. (14) should be replaced with Aþ from
the above analysis. Now we convert the joint sparse model into the
regression model (13) only with the L2;1 mixed-norm penalty item,
i.e., the notable structure sparse model. Following [31], we can
obtain the solution of the model (13) as follows:

Wi ¼
0 if λ2ZLJBi JF
LJBi J F�λ2
LJBi JF

Bi if λ2oLJBi JF

8>><
>>:

; ð15Þ

where the submatrix Bi of B corresponds to the i-th subdictionary.
The whole process of solving W is summarized in Algorithm 1.

In each iteration, the computational time mainly contains the
computation of the gradient of the loss function and the solution
of the minimization problem (11) or (12). The computation of
gradient depends on the computation of inner product. Given n
face images from a probe clip, the time complexity of gradient
calculation is O(ldn) while the computation of W in Eq. (15) takes
about O(ln). If a proper step L is chosen with the search of tL times,
the time complexity from step (4) to step (11) is OðldntLÞ in one
iteration. Suppose the algorithm terminates after tW iterations, the
total time complexity is OðldntLtW Þ. Fortunately, Nesterov [24]
proves that APG is able to reach the convergent rate of Oð1=t2Þ,
which makes the algorithm iterate a few times to reach a feasible
solution.

2.4. Classification rule

Our basic idea is to use the reconstruction error as the decision
rule. Given a probe clip with n frames, denoted as Y¼ ½y1; y2;
⋯; yn�, we accumulate the reconstruction errors of all n frames on
the i-th subdictionary as the similarity between the probe clip and
the i-th class, and then assign the class label with minimal
reconstruction error to the label of this probe clip. Formally, the
decision label can be defined as

in ¼ arg min
i

SðY;DiÞ; ð16Þ

where

SðY;DiÞ ¼ ∑
n

k ¼ 1
eik; ð17Þ

eik ¼ Jyk�DiW
i
k J

2; ð18Þ
where i indicates the i-th class, k means the k-th frame, and eik is
the reconstruction error of the k-th frame on the i-th class.

3. Experiments

We conduct extensive experiments on three real-world video
face datasets, in which face images contain complex appearance
variations in poses, expressions, illuminations, etc. Below we
first introduce three datasets and the experimental setup, and
then evaluate our method by comparing several state-of-the-art
methods.

3.1. The databases

We use three public datasets: Honda/UCSD [25], CMU MoBo
[26] and YouTube Celebrities (YTC) [27], from which some exam-
ples are shown in Fig. 2.

Honda/UCSD [25] was collected for video-based face recogni-
tion. In this paper, we use its first subset, which contains 59 videos
of 20 subjects and each subject has at least 2 videos. The length of
video clips varies from 12 to 645 frames. Different poses and
expressions usually appear across different clips of each subject.
We apply a cascaded face detector [32] to detect face from each
video clip, and then resize all face images to gray-scale images
with 20�20 pixels as used in [9]. To eliminate the lighting effects,
histogram equalization is employed in the pre-processing step.

MoBo [26] was originally created for human pose identification.
There are 96 sequences of 24 different subjects walking on a
treadmill. Each subject contains 4 clips, about 300 frames per clip.
We detect face images with the same way as we do in Honda, and
resize them into 30�30 pixels.

Fig. 2. Examples from three video face databases: Honda [25] (the first row), MoBo [26] (the second row), and YouTube Celebrities [27] (the last two rows).
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YouTube Celebrities [27] was collected for face tracking and
recognition in real-world applications. The dataset contains 1910
video clips of 47 celebrities (actors, actresses, politicians, etc.).
Each clip contains hundreds of frames, which are mostly low
resolution and recorded at high compression rates. Compared with
Honda and MoBo, this database is much more challenging due
to dramatic appearance variations. We crop face images as the
above MoBo.

On all of three datasets, we conduct five random experiments,
i.e., five randomly selected training and testing combinations, and
then report the average rate as well as the standard deviation. For
Honda and MoBo, one clip of each subject is chosen for training
and the rest clips for testing. For YTC, each person has 41 clips on
average across 3 sessions. We randomly choose 3 clips, one clip
per session, for training and 6 clips per subject for testing.

3.2. The comparison methods

We compare our proposed method with several image set based
methods proposed in recent years. They include Mutual Subspace
Method (MSM) [12], Discriminant Canonical Correlation Analysis
(DCC) [3], Manifold-to-Manifold Distance (MMD) [4], Manifold
Discriminant Analysis (MDA) [5], and Sparse Approximated Nearest
Points (SANP) [8]. Recent literatures [3,4,8] have shown that image
set based methods generally outperform exemplar based methods,
so here we do not provide the comparison with those exemplar
based methods. Besides, we also compare with the baseline SRC [14]
by using all training data as the dictionary.

For MSM, we adopt the technique in accordance with [3]. The
source codes of MMD, MDA and SANP are downloaded from the
original author websites, and the referred parameters are respec-
tively followed by their papers [4,5,8]. For SRC [14], we follow their
protocols with the dictionary constructed from all gallery samples,
which thus lead to a huge dictionary due to hundreds of frames
per clip. For this, we use the Orthogonal Matching Pursuit (OMP)
algorithm [33,34] to accelerate the solution of SRC in our
experiments.

In our method, we use PCA to reduce original feature to d¼80
dimensions on three databases in order to speed up the algorithm.
The i-th subdictionary size liði¼ 1;2;…;MÞ corresponding to the i-th
subject is set to 20, 20, 60 for Honda, MoBo and YTC respectively.

3.3. Parameter tuning

The key parameters in our method are the balance parameters
λ1 and λ2. We search the two parameters on MoBo and the results
are reported in Table 1. As shown in this table, JSR first improves
and then degrades the performance with the increase of one
parameter value by fixing the other parameter. When the larger
parameter values (e.g., λ2 ¼ 6 or λ1 ¼ 0:8) are imposed on their
corresponding regularization items, the learnt coefficient matrix
might contain most zero items, which naturally makes the
discriminability of this model weaken. In contrast, if the penalties
become too light, i.e., small values on λ1, λ2, the learnt model

might be lack of discriminability because the reconstruction error
is overly emphasized with less selectivity. In the following experi-
ments, we choose λ1 ¼ 0:01 and λ2 ¼ 0:1 as default parameters in
our method.

In fact, our method generalizes those classic sparse representa-
tion methods. As the special cases of our method, we can easily
have the following observations:

� Least square regression (LSR): λ1 ¼ 0 and λ2 ¼ 0.
� Sparse regression (SR): λ2 ¼ 0. From Table 1(b), we choose
λ1 ¼ 0:01 and λ2 ¼ 0 as the default values.

� Group sparse regression (GSR): λ1 ¼ 0. From Table 1(a), we
choose λ1 ¼ 0 and λ2 ¼ 0:1 as the default values.

3.4. Experimental results and analysis

In Table 2, we compare our method with those competitive
methods, and report their classification accuracies with standard
deviations. Overall, our proposed method can achieve better per-
formances in most cases. From this table, we reach the following
conclusions:

� The image set based methods show distinct performances
according to their properties. Among them, MSM, MMD and
SANP directly use image data in original space, which makes
them less appealing than the supervised methods, DCC and
MDA. Further, from the view of manifold, MMD and MDA are
superior to MSM and SANP because they partition a clip into
multiple local linear models. Compared with these classic
image set based methods, the regression (or reconstruction)
base models are more efficient, which might be attributed to
the use of reconstruction error.

� Joint sparse constraints improve the performance. Compared
with the baseline SRC, our proposed method can achieve better
performance. The reason lies in two folds: one is to use the
compact dictionary to reduce noises in gallery data, the other is
to jointly use two sparse priors in the regression model to
recover the probe clip more credibly. Generally, group sparse
regression (i.e., λ1 ¼ 0) and sparse regression (i.e., λ2 ¼ 0) are
superior to least square regression (i.e., λ1 ¼ 0 and λ2 ¼ 0),
which indicates that face recognition can benefit from the use
of sparsity and structuration. Moreover, combining the two
priors into the regression model (i.e. λ1a0 and λ2a0) can
further improve the performance. In addition, when only
considering positive responses, i.e., non-negative constraint
on coefficients, JSR can achieve the best performance, where
one possible explanation is that non-negativity eliminates
some uncorrelated components in the regression model.

Table 1
The performance of JSR with different λ1 and λ2 on MoBo. The performance trends
of JSR with λ1 ¼ 0 or λ2 ¼ 0 are respectively reported in (a) and (b).

(a) λ1 ¼ 0
λ2 0 0.001 0.01 0.1 1 2 4 6
Accuracy 0.931 0.931 0.931 0.937 0.937 0.950 0.916 0.878

(b) λ2 ¼ 0
λ1 0 0.001 0.01 0.1 0.2 0.4 0.6 0.8
Accuracy 0.931 0.937 0.946 0.934 0.938 0.916 0.916 0.788

Table 2
Identification rates on three databases (mean7standard deviation)

Method Honda MoBo YTC

lMSM [12] 0.92370.04 0.88670.03 0.61670.04
MMD [4] 0.96970.02 0.89770.01 0.63470.02
DCC [3] 0.98070.01 0.90370.05 0.67370.03
MDA [5] 0.98970.01 0.94770.01 0.67670.02
SANP [8] 0.95970.01 0.90070.02 0.63470.03
SRC [14] 0.96970.02 0.94170.03 0.70570.02

JSR
λ1 ¼ 0; λ2 ¼ 0 0.99470.01 0.93170.01 0.63370.02
λ1 ¼ 0; λ2a0 1.00070.00 0.93770.02 0.67370.02
λ1a0; λ2 ¼ 0 1.00070.00 0.94670.03 0.71270.02
λ1a0; λ2a0 1.00070.00 0.95670.02 0.72270.02
λ1a0; λ2a0; WZ0 1.00070.00 0.96570.01 0.73770.02
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� Among three databases, the performance on YTC is worst for all
methods, because the clips in YTC are captured under more
complex unconstrained environments. Even so, our method out-
performs the other classic VFR methods with an improvement of
more than 5 percent. Compared with the baseline SRC, our method
has also an improvement of about 3 percent. For Honda, since the
data has good separability, most methods win a very high accuracy.
Note that the result on MoBo is relatively lower than that reported
in [8], because LBP is used as the feature representation in
their work.

4. Conclusion

In this paper, we propose a Joint Sparse Representation method to
handle the video-based face recognition problem. JSR treats multiple
frames of a probe clip as an ensemble, and jointly recovers those face
images in the clip. In JSR, we introduce two sparse regularization
terms to make full use of the sparse and structure priors of data, which
makes learnt model better discriminative in the task of video-based
face recognition. Moreover, the pre-trained compact dictionary can
partly remove noises of the gallery data while speeding up the
optimization. We propose a fast and efficient gradient-based algorithm
to solve JSR. Experimental results on three public video face databases,
especially the most challenging YTC database, demonstrate that our
proposed method is more competitive than those state-of-the-art
methods for video-based face recognition. In the future work, we will
extend this method to a kernel version and try to apply it to other
tasks in computer vision.
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