
Aperiodic OS Tasks Scheduling for Hard-Real-Time

Reconfigurable Uniprocessor Systems

Tarek Amari3, Hamza Gharsellaoui1, Mohamed Khalgui1,2, Samir Ben Ahmed1,3

1Laboratory of Computing for the Industrial Systems (LISI), INSAT Institute, Tunisia
2ITIA Institute - CNR Research Council, Italy

3FST Faculty - University of Tunis El Manar, Tunisia

abstract The scheduling of tasks is an essential
requirement in most real-time and embedded systems,
but invariably leads to unwanted CPU overheads.
This paper presents real-time scheduling techniques
for reducing the response time of aperiodic tasks
scheduled with real-time periodic tasks on uniproces-
sor systems. Two problems are addressed in this pa-
per: (i) the scheduling of aperiodic when they arrive in
order to obtain a feasible system , and (ii) the schedul-
ing of periodic and aperiodic tasks to minimize their
response time. In order to improve the responsiveness
to both types of problems, efficient hybrid approach
is proposed based on the combination of the Polling
Server (PS) and the Background Server (BS). The ef-
fectiveness and the performance of the designed ap-
proach is evaluated through simulation studies.

1 INTRODUCTION

Real-time systems are used to control physical pro-
cesses that range in complexity from automobile igni-
tion systems to controllers for flight systems and nu-
clear power plants. In these systems, the correctness
of system functions depends upon not only the results
of computation but also on the times at which results
are produced. A real-time task is generally placed into
one of four categories based upon its arrival pattern
and its deadline. If meeting a given task’s deadline
is critical to the system’s operation, then the task’s
deadline is considered to be hard. If it is desirable
to meet a task’s deadline but occasionally missing the
deadline can be tolerated, then the deadline is consid-
ered to be soft. Tasks with regular arrival times are
called periodic tasks. A common use of periodic tasks
is to process sensor data and update the current state
of the real-time system on a regular basis. Periodic
tasks, typically used in control and signal-processing
applications, have hard deadlines. Tasks with irregu-
lar arrival times are aperiodic tasks. Aperiodic tasks
are used to handle the processing requirements of ran-
dom events such as operator requests. An aperiodic

task typically has a soft deadline. Aperiodic tasks that
have hard deadlines are called sporadic tasks. We as-
sume that each task has a known worst-case execution
time. In summary, we have Hard and soft deadline pe-
riodic tasks. A periodic task has a regular interarrival
time equal to its period and a deadline that coincides
with the end of its current period. Periodic tasks usu-
ally have hard deadlines, but in some applications the
deadlines can be soft. Soft deadline aperiodic tasks.
An aperiodic task is a stream of jobs arriving at irregu-
lar intervals. Soft deadline aperiodic tasks typically re-
quire a fast average response time. Sporadic tasks. A
sporadic task is an aperiodic task with a hard deadline
and a minimum interarrival time (Mok 1983). Note
that without a minimum interarrival time restriction,
it is impossible to guarantee that a sporadic task’s
deadline would always be met. To meet the timing
constraints of the system, a scheduler must coordi-
nate the use of all system resources using a set of well-
understood real-time scheduling algorithms that meet
the following objectives: Guarantee that tasks with
hard timing constraints will always meet their dead-
lines. Attain a high degree of schedulable utilization
for hard deadline tasks (periodic and sporadic tasks).
Schedulable utilization is the degree of resource uti-
lization at or below which all hard deadlines can be
guaranteed. The schedulable utilization attainable by
an algorithm is a measure of the algorithm’s utility:
the higher the schedulable utilization, the more appli-
cable the algorithm is for a range of real-time systems.
Provide fast average response times for tasks with soft
deadlines (aperiodic tasks). Ensure scheduling stabil-
ity under transient overload. In some applications,
such as radar tracking, an overload situation can de-
velop in which the computation requirements of the
system exceed the schedulable resource utilization. A
scheduler is said to be stable if during overload it can
guarantee the deadlines of critical tasks even though
it is impossible to meet all task deadlines. The qual-
ity of a scheduling algorithm for real-time systems is
judged by how well the algorithm meets these objec-



tives. This article develops advanced hybrid approach
to schedule aperiodic tasks. For soft deadline aperi-
odic tasks, the goal is to provide fast average response
times. For hard deadlines aperiodic tasks (sporadic
tasks), the goal is to guarantee that their deadlines
will always be met. The new hybrid approach pre-
sented here meet both of these goals and are still able
to guarantee the deadlines of hard deadline periodic
tasks. Each periodic task τi is characterized according
to [2], by an initial offset Si (a release time), a worst-
case execution time Ci, a relative deadline Di and a
period Ti. Each aperiodic task τi is characterized by
a worst-case execution time Ci and a relative deadline
Di. A task is synchronous if its release time is equal
to 0. Otherwise, it’s asynchronous. We assume in this
work that all the tasks are independent, periodic and
aperiodic. A tool named RT-Reconfiguration is devel-
oped in our research laboratory at INSAT university
to support this new proposed approach. The organi-
zation of this original paper is as follows. The next
section formalizes some known concepts in the real-
time scheduling theory, section III presents the state
of the art. In section IV, we define a new theoretical
approach. In section V, our proposed approach is im-
plemented, simulated and analyzed. Finally, section
VI presents a summary and conclusions of this paper.

2 SYSTEM MODEL

We present the following well-known concepts in the
theory of aperiodic real-time scheduling [2]:

• An aperiodic task τi (Ci;Di) is an infinite col-
lection of jobs that have their request times
constrained by a Worst Case Execution Time
(WCET) Ci and a relative deadline Di,

• Deadline: The time when a task must be finished
executing.

• Worst Case Execution Time (WCET): The
longest possible execution time for a task on a
particular type of system.

• Response time: The time it takes a task to fin-
ish execution. Measured from release time to
execution completes, including preemptions.

• Preemptive scheduling: an executing task may
be interrupted at any instant in time and have
its execution resumed later.

• Release/ready time: The time a task is ready to
run and just waits for the scheduler to activate
it.

• A busy period is defined as a time interval [a, b)
such that there is no idle time in [a, b) (the pro-

cessor is fully busy) and such that both a and b
are idle times,

• U =
∑n

i=1
Ci

Ti
is the processor utilization fac-

tor. In the case of synchronous and asyn-
chronous, independent and periodic tasks. U =∑n

i=1
Ci

min(Ti,Di)
≤ 1 is a sufficient condition but

not necessary for the EDF-based scheduling of
real time tasks.

• A hard real-time task is never allowed to miss a
deadline because that can lead to complete fail-
ure of the system. A hard real-time task can be
safety-critical and this means that if a deadline
is missed it can lead to catastrophically conse-
quences which can harm persons or the environ-
ment.

• A soft real-time task is a task when a deadline is
allowed to be missed, while there is no complete
failure of the system it can lead to decreased
performance.

• Polling Server is a periodic task whose purpose
is to service aperiodic requests with a period TS ,
a computation time CS (capacity) and scheduled
in the same way as periodic tasks.

• Background Server schedules aperiodic tasks
in background (when no periodic task is run-
ning) and schedule of periodic tasks is not
changed.

3 STATE OF THE ART

A real-time system often has both periodic and ape-
riodic tasks. Lehoczky, Sha, and Strosnider (1987) in
[3] developed the Deferrable Server algorithm, which
is compatible with the rate monotonic scheduling al-
gorithm and provides a greatly improved average re-
sponse time for soft deadline aperiodic tasks over
polling or background service algorithms while still
guaranteeing the deadlines of periodic tasks. The
scheduling problem for aperiodic tasks is very dif-
ferent from the scheduling problem for periodic tasks.
Scheduling algorithms for aperiodic tasks must be able
to guarantee the deadlines for hard deadline aperiodic
tasks and provide good average response times for soft
deadline aperiodic tasks even though the occurrences
of the aperiodic requests are nondeterministic. For
a detailed analysis of aperiodic servers see [4] and
[5]. The aperiodic scheduling algorithm must also ac-
complish these goals without compromising the hard
deadlines of the periodic tasks. For the aperiodic
scheduling, authors presented Slack stealing [8] and
aperiodic servers, such as the sporadic server [6] and
the deferrable server [7], allow aperiodic tasks to be



handled within a periodic task framework. Our ap-
proach try by allowing periodic tasks to be handled
with an aperiodic ones by an hybrid approach in the
same framework. To the author’s knowledge, no result
is available in the state of the art for scheduling both
periodic and aperiodic tasks, except that we propose
in our original work where an approach to deal with
complex timing constraints and with minimizing the
response time is proposed.

4 APERIODIC TASK SCHEDUL-
ING

The scheduling problem for aperiodic tasks is very dif-
ferent from that for periodic tasks. Scheduling algo-
rithms for aperiodic tasks must be able to guarantee
the deadlines for hard deadline aperiodic tasks and
provide good average response times for soft dead-
line aperiodic tasks even though the occurrence of the
aperiodic requests are nondeterminstic. The aperiodic
scheduling algorithm must also accomplish these goals
without compromising the hard deadlines of the peri-
odic tasks.

4.1 Contribution

One hybrid approach composed of the combination
of two common approaches for servicing aperiodic re-
quests are background processing and polling tasks.
Background servicing of aperiodic requests occurs
whenever the processor is idle (i.e., not executing any
periodic tasks and no periodic tasks pending). If the
load of the periodic task set is high, then utilization
left for background service is low, and background ser-
vice opportunities are relatively infrequent. Polling
consists of creating a periodic task for servicing aperi-
odic requests. At regular intervals, the polling task is
started and services any pending aperiodic requests.
However, if no aperiodic requests are pending, the
polling task suspends itself until its next period and
the time originally allocated for aperiodic service is not
preserved for aperiodic execution but is instead used
by periodic tasks. Note that if an aperiodic request
occurs just after the polling task has suspended, then
the aperiodic request must wait until the beginning of
the next polling task period or until background pro-
cessing resumes before being serviced. Even though
polling tasks and background processing can provide
time for servicing aperiodic requests, they have the
drawback that the average wait and response times
for these algorithms can be long, especially for back-
ground processing. Figure 2 illustrates the operation
of background and polling aperiodic service using the
periodic task set presented in the table of the same

picture (Figure 1).

4.2 Motivating Example

Let us suppose a real-time embedded system Sys1 to
be initially implemented by 2 characterized tasks as
shown in figure 1. These tasks are feasible because the
processor utilization factor U = 0.7 ≤ 1. These tasks
should meet all required deadlines defined in user re-
quirements and we have Feasibility(CurrentSys1(t))
≡ True.

Figure 1: The simulation with only Polling
Server

We suppose that a reconfiguration scenario is applied
at t1 and t2 time units with the arrival of 2 new
aperiodic tasks e1 at t1 = 7 and e2 at t2 = 11 time
units. Therefore the system is feasible by applying the
polling server to schedule the system but the response
time is equal to 17 and 33 for both e1 and e2 respec-
tively. Now by applying our new hybrid approach, the
response time of the second arrival aperiodic task is
decreased from 33 to 25 time units as we observe in
figure 2.

Figure 2: The simulation with Polling Server
and Background server



4.3 Formalization

By considering real-time operating system (OS) tasks
scheduling, let n = n1 + n2 be the number of
a mixed workload of periodic and aperiodic tasks
in CurrentΓ(t). The reconfiguration of the system
CurrentΓ(t) means the modification of its implemen-
tation that will be as follows at t time units:

CurrentΓ(t) = ξnew ∪ ξold

Where ξold is a subset of n1 old periodic tasks which
are periodic and not affected by the reconfiguration
scenario (e.g. they implement the system before the
time t), and ξnew is a subset of n2 new aperiodic tasks
in the system. We assume that an updated task is
considered as a new one at t time units. By consider-
ing a feasible System Sys before the application of the
reconfiguration scenario, each task of ξold is feasible,
e.g. the execution of each instance is finished before
the corresponding deadline

5 EXPERIMENTAL ANALY-
SIS AND DISCUSSION

In this section, in order to check the suggested con-
figurations of tasks allowing the system’s feasibility
and the response time minimization, we simulate the
agent’s behavior on several test sets in order to rate
the performance of the polling server and the back-
ground server in our hybrid scenario.

5.1 Simulation

We have conducted several test sets in order to rate the
performance of the polling server and the background
server in our hybrid scenario. We have set up a real-
time reconfiguration tool named RT-Reconfiguration
that allows us to randomly generate task sets, sched-
ule them according to the proposed hybrid method,
and displays the schedules for visual control. Our test
rows have been on each 1000 randomly generated task
sets, while the number of tasks is significantly higher.
We have scheduled task sets with the polling server
and the proposed hybrid method.

5.2 Discussion

In each of these examples, many aperiodic requests
occur at any moment of the time. The response time
performance of only polling service or only background
service for the aperiodic requests is poor. Since back-
ground service occurs when the resource is idle, with
the polling server, the response time performance for
the aperiodic requests is better than both single back-
ground service and single polling service for all re-
quests. For these examples, a polling server is cre-

ated with an execution time of 1 time unit and a pe-
riod of 5 time units. Also note that since any ape-
riodic request only needs half of the polling server’s
capacity, the remaining half is discarded because no
other aperiodic tasks are pending. Thus, these ex-
amples demonstrate how polling and background can
provide an improvement in aperiodic response time
performance over background service or polling one
and are always able to provide immediate service for
aperiodic requests. Finally, for both the polling server
and the background server in our hybrid scenario ap-
proach performs best and yield improved average re-
sponse times for aperiodic requests.

6 CONCLUSION AND FU-
TURE WORKS

In this paper, we propose a new theory for the mini-
mization of the response time of aperiodic real-time
tasks with the polling server and the background
server that can be applied to uniprocessor systems and
proved it correct. We showed that this theory is ca-
pable to reconfigure the whole system. Previous work
in this area has been described, several and best solu-
tion has been suggested. This hybrid solution is pri-
marily intended to reduce the processor demand and
the response time of each task set independent of the
number of tasks in a uniprocessor system. A tool is
developed and tested to support all these services. As
future work, we are planning to extend our study to
the case of distributed systems and, we plan also to ap-
ply this contribution to other complex reconfigurable
systems that we have chosen to not cover in this pa-
per.

References

[1] Dertouzos. M. L., (1974). Control robotics: The
procedural control of physical processes. Informa-
tion Processing.

[2] Layland J. and Liu C., (1973). Scheduling algo-
rithms for multi-programming in a hard-real-time
environment, in Journal of the ACM, 20(1):46-61.

[3] Lehoczky, J. P., L. Sha, and J. K. Stros-
nider. 1987. Enhanced Aperiodic Responsiveness
in Hard-Real-Time Environments. Proc. IEEE
Real-Time Systems Symposium, San Jose, CA,
pp. 261-270.

[4] Guillem B., (1998). Specification and Analysis
of Weakly Hard Real-Time Systems. PhD thesis,
Departament de Cincies Matematiques and In-
formatica. Universitat de les Illes Balears. Spain.
http://www.cs.york.ac.uk/-bernat.



[5] Burns A. and Guillem B., (1999). New results
on fixed priority aperiodic servers. In 20th IEEE
Real-Time Systems Symposium, RTSS, pages
6878, Phoenix. USA.

[6] Sprunt B., Sha L., and Lehoczky J, (1989). Ape-
riodic task scheduling for hard-real-time systems.
Real-Time Systems, 1(1):2760.

[7] Strosnider J. K., Lehoczky J. P., and Sha L.,

(1995). The deferrable server algorithm for en-
hanced aperiodic responsiveness in hard real-time
environments. IEEE Transactions on Computers,
44(1):7391.

[8] Thuel S. R. and Lehoczky J. P., (1994). Al-
gorithms for scheduling hard aperiodic tasks in
fixed-priority systems using slack stealing. In
Real-Time Systems Symposium, pages 2233, San
Juan, Puerto Rico.


