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Abstract. As a result of the recent explosion of sensor-equipped mobile phone 

market, the phenomenal growth of Internet and social network users, and the 

large deployment of sensor network in public facilities, private buildings and 

outdoor environments, the “digital footprints” left by people while interacting 

with cyber-physical spaces are accumulating with an unprecedented breadth, 

depth and scale. The technology trend towards pervasive sensing and large-

scale social and community computing is making “social and community 

intelligence (SCI)”, a new research area take shape, that aims at mining the 

“digital footprints” to reveal the patterns of individual, group and societal 

behaviours. It is believed that the SCI technology has the potential to 

revolutionize the field of context-aware computing. The aim of this position 

paper is to identify this emerging research area, present the research 

background and some references to the relevant research fields, define the 

general system framework, predict some potential application areas, and 

propose some initial thoughts about the future research issues and challenges in 

social and community intelligence. 

Keywords: social and community intelligence; digital footprints; pervasive 
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1   Introduction 

With the technological advances in sensing, computing, storage, communication and 

Internet, a lot of research areas have emerged such as sensor network, pervasive 

computing, Internet of Things, social network, to name just a few. From those 

emerging areas, there is a clear trend to augment the physical devices/objects with 

sensing, computing and communication capabilities, connect them together to form a 

network, and make use of the collective effect of networked things. As a result of the 

recent explosion of sensor-equipped mobile phone market, the phenomenal growth of 

Internet and social network users, and the large deployment of sensor network in 

public facilities, private buildings and outdoor environments, the digital traces left by 

people while interacting with cyber-physical spaces are accumulating at an 

unprecedented breadth, depth and scale, and we call all those traces left by people the 

“digital footprints”. By 2009, four billions of mobile devices [1] were carried and 



used by people in the world everyday, which are recording individuals’ digital traces 

using various built-in sensors and generating huge amount of “digital footprints” [2]. 

According to the 'World GPS Market Forecast to 2013’, a 2010 market research 

report by RNCOS (http://www.rncos.com/), millions of cars and taxis are being 

equipped with GPS each year and the mobile location technologies market is expected 

to grow at a CAGR (Compound Annual Growth Rate) of about 20% to cross US$ 70 

Billion by 2013, being another data source about the facets of individual, family and 

city. In addition, Internet services like e-mails, instant messaging, etc. and social 

networks like Facebook, MySpace, Twitter and LinkedIn record information about 

people’s relationship and preferences; indoor and outdoor sensor network data 

provide more insights about people’s environmental context. 

Leveraging the capacity to collect and analyze the “digital footprints” at 

community scale, a new research field called “social and community intelligence 

(SCI)” is emerging that aims at revealing the patterns of individual, group and 

societal behaviours. The scale and heterogeneity of the multimodal, mixed data 

sources present us an opportunity to compile the digital footprints into a 

comprehensive picture of individual’s daily life facets, radically change the way we 

build computational models of human behaviour, and enable completely innovative 

services in areas like human health, public safety, city resource management, 

environment monitoring, and transportation management.   

Different from other closely related research areas such as sensor-based activity 

recognition, the unique characteristics of this new SCI research area can be embodied 

in the following aspects: 

 

1. Infrastructure: The scale of the SCI system goes beyond single smart space 

and reaches the level of a community. Real-life, real-time data sensing and 

inference is a key system feature. An infrastructure is required to integrate 

large-scale and heterogeneous devices, software, and spaces, and provide 

systematic support for rapid application development, deployment, and 

evaluation. 

2. Data: The data sources are multi-modal and heterogeneous. The social and 

community intelligence can be inferred from three main data sources: the 

mobile/wearable sensor data about the individual and moving space, the 

infrastructure-bound sensor data about the environment, and the social data 

about the individual’s preference and relationship with others from social 

network and Internet interaction services. While each data source can 

independently shows one facet of the user’s daily life, the combination of the 

three data sources can reveal unforeseen social behaviours. 

3. Technology: The core technologies for SCI are data mining, machine learning 

and AI. And the objective of data processing and inference goes from 

recognizing the individual’s physical activity and environmental context to 

extracting higher-level community and social behaviours (from talking to 

meeting; from driving slowly to traffic jam, there exist semantic gaps between 

individual activities and social/community behaviours). 

4. Application: It aims to enable innovative services in society level like 

community healthcare, public safety, city resource management and 

transportation management. 



 

Now let’s use a simple use case in a university campus to illustrate the concrete 

ideas about social and community intelligence: 

 

University campus is a typical high-density populated community (as shown in Fig. 

1). Students often face the problem of finding partners doing sports in a certain free 

time slot, searching if there are free spaces available for exercises or study, etc. When 

a pandemic like H1N1 occurs, how to quickly identify who has been contacted by a 

suspect person, when and where the contact takes place is an important issue to avoid 

further spread of the disease. There are also queries like when will the next bus 

reaches the Bus Stop near Library, how many people are waiting in the bus stop, etc. 

In real-world environments, it is often difficult to answer these questions merely 

based on today’s technologies. However, all those community services in university 

campus can be enabled by analyzing the pervasive data streams collected from 

personal mobile phone sensors, GPS from buses, WiFi or Bluetooth access points 

inside the building, social relationship from the web, etc. In the case of pandemic, for 

example, the distance and contact time with the suspect, the logical places for the 

meeting (e.g., office, bus), the relationship with the suspect (e.g., family, friend, 

colleague, unknown) are all important contexts affecting the probability of disease 

spread. 

 

 

Fig. 1. Campus-scale community sensing and intelligence 

The rest of this position paper is organized as follows. Section 2 presents the 

research background of social and community intelligence, followed by a general 

framework for SCI systems in Section 3. Then several potential applications of SCI 

and some initial thoughts about the open research issues in SCI are elaborated in 



Section 4 and 5, respectively. Finally, we conclude this paper by proposing some 

promising research directions. 

2   Research Background 

Research on social and community intelligence is at its early stage. However, as the 

result of convergence of several research disciplines such as sensor network, 

ubiquitous computing, mobile computing, machine learning, data mining, and social 

science, SCI has its deep roots in three recent fast-growing research fields according 

to the origin of data sources: 1) mobile/wearable sensor-based activity recognition, 2) 

context inference in smart spaces, and 3) social network analysis. While each of the 

three abovementioned research fields is an active, multi-disciplinary area itself with 

rich research challenges/applications, the “convergence” of these three fields is 

expected to be influenced by the advances of each one, and would present new 

challenges and opportunities as a result of “network effects”. In the rest of this section, 

each of these three areas will be briefly introduced with some references. 

2.1   Mobile/Wearable Sensor-Based Activity Recognition 

The mobile/wearable sensor-based activity recognition research leverages the 

prevalence of wearable sensors and mobile sensors embedded into the mobile devices 

that are accompanying the users most of time, it aims at collecting the sensing data in 

the real life and predicting the daily activities of users at real-time. RFID (radio 

frequency identification), GPS (global position system), accelerometer are among the 

most popular sensors embedded in the mobile devices. Sensor-based activity 

recognition can be roughly divided into two categories based on where the sensors are 

deployed: human body or object. Wearable sensors attached to a human body can 

generate various signals when the user performs activities, which is effective to detect 

human physical movements, such as walking, running, scrubbing, and exercising. 

Object-based activity recognition is based on real-world observations that activities 

are characterised by the objects that are manipulated during their operation. Activities 

involving complex physical motions and complex interactions with the environment, 

e.g., grooming, cooking, phoning, toileting, washing hands, and so forth, can be 

recognised through this approach.  

The key idea behind the sensor-based activity recognition is to build or learn a 

mathematical model of activity based on a series of observations which are 

represented by the sensor readings, then by feeding the real-time sensor readings to 

the model, the human activities are predicted. Take a well known work of RFID-

based activity recognition for example [3]. Consider a household where each object 

(e.g., cups, spoons, and toothbrushes) is tagged with an RFID, if the subject wears a 

watch-like RFID reader on her wrist and performs her daily activities, then each 

object she touched during her performance can be tracked in real-time. By recording 

the sequence of the touched objects, machine learning and inference methods can then 

be applied to learn a model for recognizing daily activities ranging from simple ones 

like brushing teeth to critical ones like taking medication and cooking a meal (safety-



related), etc. Most of the early work on sensor-based activity recognition was 

motivated by applications in elderly care [4], healthcare [5]. Some of them have also 

been applied to habitat monitoring with sensor networks [6], and tracking human 

interaction in offices [7]. 

Another line of research in sensor-based activity recognition is location-based 

activity recognition as a result of wide deployment GPS sensors. The earliest work in 

this line intended to detect the trip plan derivation based on GPS traces [8]. In the 

following years, a large body of work was reported, including significant location 

identification [9], transportation mode recognition and route prediction [10].  

Recently with more and more mobile phones equipped with sensors, a few 

researchers initiated the research in individual/group behavior mining with mobile 

sensing data. For instance, MetroSense [2], a people-centric paradigm for urban 

sensing, explores sensor-embedded mobile phones to support personal and public 

sensing. By taking advantage of the data collected by mobile phones, Reality Mining 

project initiated at MIT intends to observe and characterize the social behaviour of 

individual users and organizations [11]. Another interesting study based on the 

monitoring of 100,000 mobile phone users, conducted by Northeastern Univ. in US, 

discovered that human trajectory has a high degree of spatial-temporal regularity, and 

humans follow simple reproducible patterns regardless of the diversity of travel 

history of individuals [12]. 

2.2   Context Inference in Smart Spaces 

Earlier work on context inference mainly relies on static sensing infrastructure that is 

already deployed in smart spaces. One early project funded by the EPSRC in the UK 

was concerned with measuring crowd motion and density using cameras to detect 

potentially dangerous situations [13]. The Active Bats system uses ultrasonic sensors 

and the triangulation location-sensing technique to locate indoor objects [14]. 

Semantic Space builds an ontology-based infrastructure for extracting and querying 

contexts from smart spaces [15]. Yu et al. explore a set of static cameras and wearable 

sensors to mine semantic information like user attitudes in a smart meeting 

environment [16]. Sensor Andrew [17], a campus-wide static sensor network, is 

designed to host a wide range of applications including campus utility monitoring, 

social networking, and campus security surveillance. 

2.3   Social Network Analysis 

Humans are social by nature. People constantly participate in social activities to 

interact with others and form various communities. Social activities such as making 

new friends, forming an interest group to exchange ideas, sharing knowledge with 

others are constantly taking place in human society. The analysis of the social 

community interactions has been studied by social scientists and physicists for couple 

of decades [18]. An excellent introduction to the concepts and the mathematical tools 

for analyzing social networks can be referred to [19]. Early efforts on social network 

analysis are most based on the relational data obtained by survey. 



During the last two decades, we have observed an explosive growth of Internet 

applications such as chatting, shopping, experience sharing, photo and video sharing, 

etc., which are now described as social software. These applications, along with the 

traditional e-mail, instant messaging, have changed the way that most of us used to 

communicate with each other and form social communities. Corresponding to this 

trend, a large body of work on social network analysis and knowledge discovery 

springs up, including Email communication networks [20], scientific collaboration 

and co-authorship network [21], etc.. 

More recently, as the internet stepped into the era of the Web 2.0, which advocates 

that users interact with each other as contributors to the web sites’ content, 

researchers turned more attention to the online social utilities, such as Facebook, 

Twitter, and Blogs. For example, ArterMiner [22] seeks to harvest personal profile 

information from a user’s homepage. Amit Sheth’s research group has done much 

work on summarization of event info like space, time and theme from social web 

resources for building public services [23]. Twitter, a popular micro-blogging site, has 

been reported to support real-time mining of natural disasters such as earthquakes [24] 

and the moods of citizens [25]. 

3   A General Architecture 

A general architecture for social and community intelligence system is shown in Fig. 

2, which consists of five layers: pervasive sensing layer, data anonymization layer, 

hybrid learning layer, semantic inference layer, and application layer. 

Layer 1: The large-scale pervasive sensing layer involves the three major 

information sources: mobile and wearable devices, static sensing infrastructure, social 

web and Internet services. The three sources have different attributes and strengths: 

 Mobile devices and wearable sensors are always user-centric, thus great at 

sensing individual activities, interpersonal interactions, and significant locations. 

 Static infrastructure, on the other hand, enables the detection of indoor user 

activities, group activities, and space context. 

 Social Web is a major source to extract user profile info, significant relationship 

among users in a group activity. Extracted real-time event information (e.g., 

from Twitter) is also useful to recognize the ongoing group activity. 

Due to the diverse features, aggregation and fusion of data from those three 

different sources provides unique opportunities to community intelligence extraction.  

Layer 2: As privacy is a major concern for both private and organizational data 

sharing, our proposed framework incorporates an anonymization layer before the data 

releasing and processing. All the data released must be sufficiently anonymized, and 

different anonymization algorithms can be applied for privacy protection. 

Layer 3: The hybrid learning layer applies diverse machine learning and data 

mining techniques to converting the low-level single-modality sensing data into high-

level features or micro-context, the focus is to mine the frequent data patterns to 

derive the individual’s behavior and single space context, before extracting the 

complete social and community intelligence. 



Level 4: The semantic inference layer is needed when different features or micro-

context need to be aggregated using logic-based inferences, it is complementary with 

statistical learning approach and often very effective to process the explicit rules 

describing the logical relationship between layer 3 outputs and expected SCI, based 

on expert’s domain knowledge. 

Layer 5: The application layer includes a variety of potential services that can be 

enabled by the availability of SCI. An application might be installed directly on the 

mobile device, or run on remote servers (such as a Web application) but communicate 

with the mobile device via wireless gateways. 

 

 

Fig. 2. A general architecture for community intelligence 

4   Major Application Areas 

SCI applications are mainly driven by the needs to (1) develop better social software 

to facilitate interaction and communication among groups of people; (2) predict the 

real-time change of real world to benefit human life. Here we can foresee at least the 

following six main SCI application areas: 

4.1   Social Network Services 

By logging various aspects of physical interactions among users (e.g., co-location, 

conversations) and mining user behavior patterns (e.g., place of interests), SCI 



nurtures the development of many social network services, such as friend 

recommendation and interpersonal interaction enhancement. 

(1) Friend recommendation. By monitoring one’s activities with mobile phones, 

including text messages, phone calls, and encounters, the FriendSensing application 

can recommend people to its users [26]. The Serendipity system calculates a 

similarity score by extracting the commonalities between two proximate users’ 

profiles and behavioral data, and alerts the user that someone nearby might interest 

him/her [27]. 

(2) Interpersonal interaction enhancement. The CenseMe project exploits off-the-

shelf smart phones to automatically infer people’s presence (e.g., walking on the 

street, dancing at a party with friends) and then shares this presence through social 

network portals such as Facebook [28]. Koji et al. uses specially designed work 

badges to study the relationship between productivity and interpersonal interactions in 

a workplace. The badges contain infrared sensors, microphones, accelerometers, and 

location sensors to record the location and duration of conversations among workers, 

their physical distance apart, encounters, upper body motions, and so on [29]. 

4.2   Urban Sensing and City Resource Management 

With wireless sensor platforms in the hands of masses, we can leverage community 

sensing to address urban-scale problems, such as city resource monitoring, traffic 

planning, and better use of public utilities. 

Nericell is a system that can monitor road (e.g., potholed roads) and traffic 

conditions (e.g., chaotic traffic) using accelerometer, microphone, and GPS sensors in 

mobile phones [30]. MIT’s Real Time Rome project (http://senseable.mit.edu/ 

realtimerome) uses aggregated data from cell phones, buses and taxis in Rome to 

better understand urban dynamics in real-time. The Biketastic project 

(http://biketastic.com) improves bike commuting in Los Angeles by combining local 

conditions with biker-contributed data (using mobile phones). It enables area bikers to 

plan routes with the least probability of traffic accidents and the best air quality. 

Zheng et al. extract interesting locations and travel sequences from multiple user’s 

GPS trajectories, and enable travel recommendations for new visitors of a city [31]. 

4.3   Environment Monitoring 

The nomadic, participatory, and in-situ experience nature of community sensing 

provides new opportunities for environment monitoring and natural resource 

protection. 

(1) Nature preservation. With the help of human volunteers, the Great Backyard 

Bird Count project reports the cumulative counts of birdwatchers from across 

American in its website (http://www.birdsource.org/gbbc/). The MIT Owl project 

(http://web.mit.edu/newsoffice/2008/tracking-0822.html) is more interesting, which 

aims at leveraging the network of smart phones equipped with GPS, compasses, and 

directional microphones, to lessen human efforts in assessing owl populations. 



(2) Pollution measurement. With the aid of portable pollution sensing devices, 

there have also been several projects targeting environment pollution measurement. 

The BikeNet application measures several metrics to give a holistic picture of the 

cyclist experience, including the CO2 level along the path. It facilitates public sensing 

and sharing by letting multiple users merge their individual data, for example, to 

create pollution and noise maps of their city [32]. In the PEIR project, GPS-enabled 

phones are used to detect user transportation mode (e.g., driving, walking), which is 

then used to assess an individual’s environmental impact and exposure, like carbon 

footprints and exposure to air pollution [33].  

(3) Disaster Reporting. The real-time user contributed data is helpful for emergent 

or dangerous event detection and reporting. For example, Twitter has been reported to 

support rapid response to the social or natural disasters such as terrorism attack in 

Bombay [34] and earthquakes in Japan [24]. Comparing to traditional media, 

community sensing is more vigilant. 

4.4   Human Health 

SCI brings new opportunities for public health monitoring and personal well-being 

improvement.  

(1) Public health. SCI can facilitate the anticipation and tracking of disease 

outbreaks across populations. For example, Epidemics of seasonal influenza are a 

major public health concern, causing tens of thousands of deaths worldwide each year. 

Its impact can be reduced by early detection of the disease activity. The Google 

researchers have shown that by mining indirect signals from millions of 

geographically localized health-related search queries, one can estimate the level of 

influenza-like illnesses in regions of the United States with a reporting lag of just 1 

day [35]. It is faster than the estimates provided by government agencies, which 

publish regional data weekly based on virology and clinical statistics. 

(2) Human well-being. With community sensing, we can log personal physical 

activity trajectory, track the food intake, sense the mental status in real-time, and 

record the social activities we attend each day, which can be used to improve human 

well-being management. For example, the Neat-o-Games system detects human 

movements (e.g., walking, running) by using a wearable accelerometer, and uses the 

computed quantity of motion to control the avatar of the user in a virtual community 

race game [36]. Playful Bottle is a mobile social persuasion system to motivate 

healthy water intake [37]. Nutrition Monitor, a mobile application, can track user food 

consumption and trends over time, and warn the user against unhealthy food choices 

[38]. 

4.5   Sentiment Applications 

Sensing of user sentiments is important to context-aware computing, with which the 

applications can act accordingly. However, using physical sensors to directly sense 

personal sentiments is not an easy thing. Researchers have been exploring indirect 

ways to deal with this, one of which is to mine user-generated Web data. Some 



systems use a Web survey method. For example, Emotional City 

(http://www.emotionalcities.com/) and D-Tower (www.d-toren.nl) collect citizen 

moods through daily Web surveys, and display the emotions of the city through the 

change of light-colors of a building or a public sculpture. Others explore machine 

learning algorithms for sentiment mining. Bollen et al. proposes an extended Profile 

of Mood States (POMS) method to extract six dimensions of mood (e.g., tension, 

anger) from user posted tweets in Twitter [25]. 

4.6   Public Safety 

Public safety involves the prevention of and protection from events that could 

endanger the safety of the general public, these events can be crimes or disasters. 

Public video surveillance systems have assisted a lot to city-wide event sensing and 

safety maintenance [39]. Recently, the Boston police department has embraced user 

contributed sensor data to assist in crime prevention [34]. 

5   Research Issues 

We now turn our attention to key SCI research issues. To facilitate the development 

of SCI applications, one fundamental issue is gathering and management of 

heterogeneous data from different information sources. Other important issues are 

using machine learning algorithms to make sense of the “digital footprints” revealing 

the predefined patterns or unforeseen behaviors about individual, group and 

community, as well as the privacy concerns raised by sensing our daily lives. 

5.1   Participatory or Opportunistic Sensing? 

The first issue to be considered in sensing is what roles people should play in 

community sensing. For example, should they be interrupted to control the status (e.g., 

accept, stop) of a sensing task? There are two possible ways for sensing: 

 Participatory sensing. It incorporates people into significant decision making 

process of the sensing system, deciding which application request to accept, 

what data to share, and to what extent privacy mechanisms should be allowed to 

impact data fidelity. That’s to say, it allows participants to retain control over 

their raw data. The Personal Data Valut system is based on this idea, which 

seeks to provide easy-to-use toolkits to support data control [1]. 

 Opportunistic sensing. It shifts the burden of users by automatically determining 

when devices can be used to meet application’s sensing requests. Instead of 

requiring human intervention to actively and consciously participate in the 

sensing, opportunistic sensing requests that a sensing device is automatically 

used whenever its state (location, user activity, and so on) matches an 

application’s application requirements. This approach is proposed in [28]. 

Obviously there exists a tradeoff between participatory sensing and opportunistic 

sensing. Participatory sensing places demands on user involvement, which restricts 



the pool of willing participants, while opportunistic sensing takes on more resources 

for decision-making. More work needs be done to balance users’ involvement and 

proper control while integrating proper protection mechanisms on data privacy (more 

discussions on privacy are given in Section 5.4).  

5.2   Managing Heterogeneous and Multi-modal Data Sources 

As in SCI system, the data producers can be very different in terms of modality (e.g., 

mobile phones, fixed cameras, Web services), their connectivity to the Internet (e.g., 

constant, intermittent, or affected by a firewall), their sharing willingness or privacy 

sensitivity, and resource capabilities for processing data locally. The information 

consumers are also heterogeneous in terms of running environments (applications that 

run locally or at community-level remotely), data needs (some might need only a 

high-level context information while others might need raw sensor data). The 

heterogeneity leads to several challenges on data management:  

(1) Multi-modal. Different type of sensors have different attributes and capabilities, 

they might have different accuracy in sensing the physical and virtual world. 

Integrating information from diverse data sources adds difficulty to SCI mining. Raw 

data from different sensor sources need to be transformed to the same metrics and 

represented by a shared vocabulary/ontology to facilitate the learning and inference 

process [15]. 

(2) Temporal and Continuous. The sensing data is recorded according to the time 

sequence, the system should consider multiple samples in the data stream while 

modeling the behaviors of individual and group, rather than consider each sensor 

reading in an isolated way. In addition, as the real world systems are all continuous,   

it’s important to build models catering for the discrete, sampled sensor state. 

  (3) Inconsistency. The same sensor may sense the same event under different 

conditions (for example, sensing one’s voice in a quiet office or noisy restaurant). 

However, for the same event, user context often leads to different inference results 

(good or poor). Due to environmental differences, a group of co-located sensors 

running the same classification algorithm and sensing the same event in time and 

space could compute different inference results, and thus leads to the issue of system 

inconsistency. Miluzzo et al. have proposed a collaborative approach to dealing with 

this inconsistency problem [40] and more solutions are needed.  

(4) Difficult to label all data. Asking human to label large amount of data set is 

often difficult since it is extremely time consuming to perform real-life experiments to 

collect data, it takes even more time to label all the data properly. Thus it is highly 

desirable to learn system models from relatively small amount of labeled data [41]. 

5.3   Extracting High-level SCI from Low-level Sensing Data [41] 

Social and community pattern mining considers the identification of a set of 

characteristics or behaviors associated with a social community based on the 

collection of intermediate-level individual activity/space context traces. Such social 

communities can be flexibly formed by those people in the same organization, at same 



places, with same behaviors, of same interests, etc., depending on different social 

application requirements [42]. By pooling individual user’s context traces together 

and mining the underlying social patterns, different social or group behaviors can be 

extracted [43]. The extracted social context can be a social event such as an open 

concert, can be a social pattern in daily activity, can be a relationship among a group 

of people, and can be socially significant locations.  

The key of the SCI pattern mining is to identify user similarity in the 

aforementioned social patterns with the objectives of offering social aware services. 

Unsupervised learning techniques, such as clustering, latent semantic analysis, matrix 

factorization, can be applied to achieve social context mining based on the user 

behavioral similarities. The process includes mining and discovery of common social 

contexts such as personal characteristics, cuisine preferences, eagerness of social 

participation, and also discovery of undefined social patterns for interest matching and 

social choice ranking. 

In order to infer the social events based on the user context traces, the semantic gap 

between the low-level individual activities/spaces (e.g., walking/street, 

eating/restaurant, etc) and high-level social events (e.g., meeting, party, etc) should be 

bridged using some machine learning and inference techniques. As highlighted 

previously, the analysis of the latent relations between the basic human activities and 

semantic social events is the research focus of this module, with the goal of learning 

an ontology describing the relationship between the basic human activities and 

semantic social events. 

5.4   Privacy and Trust 

Sharing and revealing personal digital data could have a number of risks on user 

privacy. Compared with personal data (e.g., user profile, IDs), data gathered in 

community can reveal much more information about individual and organization’s 

behaviours. For example, your location might reveal your interests; the health data 

about an organization might suggest environmental problems for the staff. The impact 

is obvious: if personal data cannot be anonymized and under the control of data 

owners, people may be less likely to share their data [28]. 

Privacy protection involves many elements, including identity (who is asking for 

the data?), granularity (how much does the data reveal about people? does it reveal 

one’s identity?), and time (how long will the data be retained?) [1] There are two 

main research areas that deal with these needs: data anonymization [28, 43] and user 

control [1]. 

(1) Data anonymization techniques. The objective of data anonymization is not 

revealing the identity of users when they contribute their data. Several methods have 

been proposed. For instance, MetroSense uses k-anonymous method when users 

contribute location data to a server, where a user’s position is generalized to a region 

containing at least k users [28]. Another promising approach based on secure 

multiparty computation allows mining data from many different organizations without 

ever aggregating these data into a central data repository. Each organization performs 

part of the computation based on its privately held data, and uses cryptography to 

encode intermediate results that must be communicated to other organizations 



performing other parts of the computation [43]. Other privacy-preserving methods are 

also being explored, such as sharing only statistical summaries of the individual data 

sets, and inserting random perturbations into individual data records before sharing 

them [43]. 

(2) Enhancing user control and decision making. User control is very important in 

personal data sharing as it is about what one wants to reveal and to whom one allows 

the system to reveal. For example, you might want to track your heart rate each day, 

but there is no reason to share that information with anyone but your doctor. 

Researchers in this field are exploiting methods that enable users to manage their data 

by tailoring access-control and data-management tools [1].  

In addition to data privacy issue, trust of the data sources is another big thing. To 

mine social and community behaviors, we often need to import data from many 

anonymous participants. If there lacks the control to ensure the source is valid and 

information is accurate, this can lead to data trust issue. For example, Twitter data is 

sometimes unreliable due to the text’s unmediated and casual nature; mobile phone 

users may send incorrect or even faked data to the data centre. Therefore, trust 

maintenance and abnormal detection methods should be developed to determine the 

trustworthiness and quality of collected data. 

6   Conclusion 

Social and Community Intelligence (SCI) represents a new interdisciplinary research 

and application field. With the rapid accumulation of “digital footprints” at 

community scale, we believe that the research scope of SCI will expand and its 

applications to multiply in next years to come. As we have discussed, the prevalence 

and development of SCI still face challenges ranging from multi-modal data gathering, 

heterogeneous data representation and management, to complex intelligence inference 

and privacy issues, which are expected to nurture a series of new research 

opportunities for academic researchers, industrial technologists, and business 

strategists as well. Even though the existing practices on social and community 

intelligence mainly consider single type of information sources − static sensor 

infrastructure, mobile and wearable sensors, or Internet and social web − we expect to 

see the explosion of the research on aggregated power of the three information 

sources as well as innovative applications enabled by SCI. 
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