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We address the problem of selecting an attribute and 
some of its values for branching during the top-down 
generation of decision trees. We study the class of im- 
purity measures, members of which are typically used 
in the literature for selecting attributes during deci- 
sion tree generation (e.g. entropy in ID3, GID3*, and 
CART Gini Index in CART). We argue that this class 
of measures is not particularly suitable for use in clas- 
sitication learning. We define a new class of measures, 
called C-SEP, that we argue is better suited for the pur- 
poses of class separation. A new measure from C-SEP 
is formulated and some of its desirable properties are 
shown. Finally, we demonstrate empirically that the 
new algorithm, O-BTree, that uses this measure indeed 
produces better decision trees than algorithms that use 
impurity measures. 

Empirical learning from examples is receiving considerable 
attention in terms of research and applications. Programs 
that learn from pre-classified examples aim at circumventing 
the knowledge acquisition bottleneck in the development of 
expert systems. The problem is due to the fact that human 
experts find it difficult to express their (intuitive) knowledge 
of a domain in terms of concise, correct situation-action 
rules. Empirical learning algorithms attempt to discover 
relations between situations expressed in terms of a set of 
attributes and actions encoded in terms of a fixed set of 
classes. By examining large sets of pre-classified data, it 
is hoped that a learning program may discover the proper 
conditions under which each action (class) is appropriate. 

Learning algorithms typically use heuristics to guide their 
search through the large space of possible relations between 
combinations of attribute values and classes. A powerful and 
popular such heuristic uses the notion of selecting attributes 
that minimize the information entropy of the classes 
in a This heuristic is used in the ID3 algorithm [ 131 
and its extensions, e.g. GID3 [2], GID3* [6], and C4 1141, 
in CART [l], in CN2 [3] and others; see [I I] and [6] for a 
general discussion of the attribute selection problem. 

We focus our attention on algorithms that learn classifiers 
in the form of decision trees. Decision tree based approaches 
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top-down decision tree generator pecially the GID3* 
algorithm, in real-world industrial ications in semicon- 
ductor manufacturing [IO] and in other domains such as 
astronomical data processing at Caltech [7]. 

In brief, a top-down, non-backtracking decision tree al- 
gorithm is given a data set of classified examples expressed 
in terms of a set of attributes. The attributes may be nom- 
inal (discrete, categorical) or continuous-valued (numeri- 
cal). The algorithm tirst discretizes the continuous-valued 
attributes by partitioning the range of each into at least two 
intervals. For each discrete (or discretized) attribute, the 
algorithm lirst formulates a logical test involving that at- 
tribute. The test partitions the data into several subsets. For 
example, in ID3 [ 131 and C4 1141, the value of the attribute 
is tested, and a branch is created for each value of the at- 
tribute. In GID3* [5, 61, only a subset of the values may 
be branched on, while the remaining values are grouped to- 
gether in one default branch. A selection criterion is then 
applied to select the attribute that induces the “best” parti- 
tion on the data. Once selected, a branch for each outcome 
of the test involving that attribute is created. This creates at 
least two child nodes to the parent node, and the algorithm 
is applied recursively to each child node. The algorithm 
refrains from further partitioning of a given node when all 
examples in it belong to one class, or when no more tests for 
partitioning it can be formulated. Thus a leaf node predicts 
a class (sometimes probabilistically). 

We claim that the single most important aspect that deter- 
mines the behavior of a top-down non-backtracking decision 
tree generation algorithm is the attribute (test) selection cri- 
terion used. The most widely used attribute selection criteria 
appear in the form of average impurity measures. This is a 
family of measures designed to capture aspects of partitions 
of examples relevant to good classification. Earlier compar- 
isons of selection measures compared measures within the 
class of impurity measures (see below) and concluded that 
the choice of selection measure from within that class makes 
little difference [l]. Later in this paper we show that a new 
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class of measures is needed. 

IA S be a set of training examples with each example e E S 
belonging to one of the classes in C = (Cl, C2, . . . , Ck). 
The class vector of S is a h-vector (cl, ~2, . . . , Q), where 
each @i is the number of examples in S that have class 
Ci E C: Q = I(e E Slchw(e) = Ci)l. Note that the CRASS 

vector is a vector from the space Nk, where N denotes the 
set of natural numbers. The class probability vector of S is 
the corresponding vector in [0, ilk: 

A set of examples is said to be pure if all its examples belong 
to one class. Hence, if the class probability vector of a set of 
examples has a component with value 1, the set is pure. An 
extreme case of impurity occurs when all components of the 
class vector are equal. To quantify the notion of impurity, 
a family of functions known as impurity measures [l] is 
defined. We use 4 to denote a function that assigns a merit 
value to a class probability vector. 
Definition 1: Let S be a set of training examples having a 
class probability vector PC. A function 4 : [O,llk ---) 31 
such that q5(PC) 2 0 is an impurity measure if it satisfies 
the following conditions: 

1. #(PC) is minimum if 3i s.t. component PCi = 1. 
2. #(PC) is maximum if Vi, 1 5 i 5 H, PCi = +. 
3. #(PC) is symmetric with respect to components of PC. 
4. #(PC) is smooth (differentiable everywhere) in its range. 

Conditions I and 2 of the definition are intended to fix the 
well-understood extreme cases. Condition 3 insures that the 
measure is not biased towards any of the classes. The fourth 
condition sometimes appears as a requirement that 4 be 
convex downwards with respect to any of the components 
of PC. Usually this makes the analysis easier as well as 
providing desirable computational properties. 

However, we need to evaluate the impurity of a partition 
induced by an attribute on a set of examples. Let PC(S) be 
the class probability vector of S and let A be a discrete (or 
discretized) attribute defined over the set S. Assuming that 
A partitions S into the sets Sl , . . . , ST, the impurity of the 
partition is defined as the weighted average impurity of its 
component blocks: 

(P(S,A) = 

Finally, the merit assigned to attribute A due to its partition 
of S is proportional to the reduction in impurity after the 
partition. Hence, 

A@@‘, A) = #(PC(S)) - ip(S, A). 

It has been widely accepted that functions within this 
family are interchangeable for use in selecting attributes to 
branch on, and that they result in similar trees [I, 121. This 

Figure 1: Two Possible Binary Partitions (3 classes). 

is not surprising since they all agree on the minima, maxima 
and smoothness. For example, if we assign 

k 

#(PC(S)) = &t(S) = - PCi lOg( PCi) 
i=l 

then @(S, A) would be the entropy of the partition E(A, S) 
and A@(S, A) would correspond to the information gain 
Gcrin(A, S) as defined in [ 1, 131. Another impurity mea- 
sure, used in [l] and claimed to result in trees similar to 
those resulting from information entropy minimization al- 
gorithms, is the Gini index. To obtain the Gini index we set 
4 to be 

#(PC(S)) = PCi ’ PCj. 
i#j 

In this paper, we shall treat entropy as representative of the 
class of impurity measures. We shall examine the behaviour 
of entropy over the space of possible partitions and identify 
certain regions where entropy prefers partitions that do not 
conform with our intuitive expectation of how a “good” 
selection criterion should behave. Consider a set S of 110 
examples of three classes ( C 1, C2, C3 ) whose class vector 
is shown in Figure 1. Assume that the attribute-value pairs 
(A, CZ~) and (A, a~) induce the two binary partitionson S, ?rl 
and 7r2, shown in the figure. Note that partition ~2 separates 
the classes CI and C2 from the class C3. However, the 
information gain measure prefers partition ‘~1 (gain = Sl) 
over ?r2 (g&n = .43). 

Note that if partition ~2 is accepted, the subtree under 
this node has a lower bound of three leaves. On the other 
hand, the subtree under the node created for partition ~1 has 
a lower bound of six leaves. This does not necessarily imply 
that partition ‘~2 will generate a tree with a smaller number 
of leaves. IIowever, unlike information entropy, intuitive 
evaluation of the two partitions clearly prefers ?rz to ~1 
(assuming no further lookahead is allowed). If an attribute- 
value pair manages to isolate some Classes from the rest, 
then it is clearly relevant to classification. As a matter of 
fact, if it were possible to obtain the tree with the minimal 
number of leaves, i.e. exactly one leaf for each of the Ic 
classes, then each node test will isolate some classes from 
others. If an attribute-value pair were not really correlated 
with the classes it isolates, then the probability of it causing 
a total class separation partition is lower than that for an 
overlapping classes partition. If the goal is to generate a 
tree with a smaller number of leaves, then we should expect 
the selection measure to be especially sensitive to total class 
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separation. The case illustrated in Figure 1 gets worse when 
the number of classes grows (see [6] for further examples). 
The primary task of a classification learning algorithm is 
to separate differing classes from each other as much as 
possible, while separating as few examples of the same class 
as possible. If a partition is selected that does not separate 
differing classes apart, then the learning algorithm must find 
later partitions that do. Hence, by separating classes, the 
algorithm avoids postponing an action that sooner or later 
must be taken. The price for not ng it sooner is the 
likelihood of increasing the number of leaves in the tree. It 
is worthwhile noting that if the learning problem has exactly 
two classes, then the entropy heuristic no longer suffers from 
this problem, since class purity and class separation become 
the same. For this reason, in the binary class case, we believe 
that entropy is a good measure for classification. 

The above discussion clearly illustrates that the informa- 
tion entropy heuristic is not sensitive to class separation, if 
there are more than two classes in the problem. Since a 
partition is evaluated by averaging the impurity of its com- 
ponent blocks, the entropy measure can only detect class 
separation indirectly. We argue that a “proper” selection 
measure for classification should compare the class vectors 
of the partition blocks directly. Other evidence for the in- 
appropriateness of the entropy measure originates in our 
empirical experience with ID3, ID3-IV, GID3, and GID3*. 
ID3-IV uses the gain ratio rather than entropy as a selection 
measure (see [13].) GID3 and GID3* differ from ID3 and 
ID3-IV in that rather than branching on every value of the se- 
lected attribute, they branch on a few individual values while 
grouping the rest in one default branch. All these algorithms 
perform better than ID3. For example, we have very strong 
empirical evidence that GID3* consistently produces better 
trees than ID3 [5,6]. How does this reflect on the merit of 
the entropy measure as a selection criterion? Our answer 
to this question takes the form of an argument illustrating 
that for any node in the tree, ID3 always selects the partition 
having the minimum entropy among all possible partitions 
using the selected attribute. In particular, we shall show 
that the partition selected by GID3* is always one that has 
an equivalent or higher entropy than the partition selected 
by ID3. Hence, if following the minimum entropy heuristic 
is a good idea, then ID3 should in principle generate better 
decision trees. Yet the empirical evidence points strongly to 
the contrary. 

Given a data set at a node during decision tree generation, 
the partition ?ri selected by ID3 to partition the data at the 
node is a refinement of the partition selected by GID3* for 
the same node. This is obvious from the fact that GID3* 
branches on a subset of the individual values branched on by 
ID3. In addition, Given a data set at a node during decision 
tree generation, the partition ?rr selected by ID3 to partition 
the data at the node has the same or lower class informa- 
tion entropy than the corresponding partition ~2 selected by 
GID3* for the same node, as shown by: 

a 1 If the partition induced on a set S by attribute 
A is a refinement of the partition induced on S by attribute 
A’, then the class information entropy of the former is lower 

than that of the latter: E(A, S> 5 E(A’, S). 

See Lemma B.O. I in [63. of? cl 

Although ID3 always selects partitions having lower en- 
qhopies than those selected by GID3*, empirical experience 
clearly indicates that this consistently leads to worse deci- 
sion trees. The interpretation of this proposition is that al- 
though information entropy captures reasonable properties 
that make it useful for attribute selection, whatever it cap- 
tures is not geared towards generating good trees. Whence, a 
method that consistently does not minimize entropy (GID3*) 
leads to the discovery of better trees. Other evidence for the 
correctness of this claim is presented as part of our discus- 
sion of the binary tree hypothesis (to be stated later). 

A similar situation occurs with ID3-IV [ 131. Although the 
IV measure and the gain-ratio were introduced by Quinlan 
as an ad hoc solution to overcome the problems with very 
fine partitions (large number of values), ID3-IV seems to 
outperform ID3. This gives us another instance of an algo- 
rithm that purposely avoids minimal entropy partitions and 
yet produces better trees. 

Another reason to suspect the suitability of information 
entropy to the task of attribute selection derives from re- 
sults in communication and information theory. It has been 
shown that the entropy minimization heuristic tends to yield 
decision trees with near-minimal average depth [8]. Al- 
though this may be a desirable property from a communi- 
cation/vector quantization application perspective, we have 
strong empirical evidence indicating that trees with low aver- 
age depth tend to have a large number of leaves and a higher 
error rate for the data sets encountered in a large variety of 
domains [4, 61. We therefore claim that, from a machine 
learning perspective, the information entropy heuristic aims 
at an inappropriate goal: minimizing the average depth of a 
tree. 

A consequence of Lemma 1 and entropy’s preference for 
finer partitions is that the entropy measure is insensitive to 
within-class fragmentation: the separation of examples hav- 
ing the same classes. For example, consider two partitions 
of a set of examples, one (~2) being a refinement of the other 
(~1). Further assume that both partitions are pure, i.e. each 
of their component blocks consists of examples of the same 
class. Both evaluate equally under entropy-the average 
entropy of each partition being zero. However, the partition 
~2 necessarily fragments examples from some class while 
partition x1 does not. The extra fragmentation simply results 
in more leaves. 

The information entropy measure suffers from two ad- 
ditional deficiencies. The first occurs in cases where the 
training set contains a majority of examples from one class, 
the G&n measure is then necessarily depressed away from 
its possible maximum for all possible partitions. This is 
because the entropy of each set, prior to partitioning, is low. 
In such situations various partitions approach each other in 
merit when evaluated under entropy. 

The second defeciency with the entropy measure is what 
is referred to as the information paradox in [ 151. The basic 
problem is that a set with a given class probability vector 
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evaluates identically to another set whose class vector is a 
permutation of the tirst. Thus if one of the subsets of a set has 
a different majority class than the original but the distribution 
of classes is simply permuted, entropy will not detect the 
change. owever, a major change in the dominant class 
is generally considered as evidence that the attribute value 
is actually relevant to classification. In general, entropy, 
like all other members of the family impurity measures, is 
insensitive to permutations in the components of the class 
probability vector. The reason for this is that it measures the 
impurity of each set in isolation. So the information paradox 

le only indirectly when we average the entropies 
of the two sets in the partition. 

I we have listedl above seven properties that 
we ations that the information entropy measure 
is not particularly well-suited for use as an attribute selection 
measure. It is QIU' hypothesis that a measure that is better 
behaved than entropy, will lead to the generation of better 
decision trees. We shall formulate such a measure. 

We have shown in [6] that for every decision tree, there 
exists a binary decision tree that is logically equiva- 
lent to it. Thus, exploring strictly binary trees does 
not reduce the space of possible decision trees that one 
may discover. At this stage we make a further claim: 

T ypothesis : For a top-down, non- 
ision tree generation algorithm, if the 

algorithm applies a proper attribute selection measure, 
then selecting a single attribute-value pair at each node 
and thus constructing a binary tree, rather than select- 
ing an attribute and branching on all its values simul- 
taneously, is likely to lead to a decision tree with fewer 
1MVeS. 

We have no formal proof of this hypothesis: only infor 
mal analysis and an empirical evaluation of it. Due to space 
constraints’ we do not include the analysis. The empirical 
results supporting this hypothesis are given later in the pa- 
per as part of our comparison of all the algorithms. The 
interest reader is referred to the detailed presentation in 
FL 

at are the ramifications of this hypothesis on decision 
tree generation algorithms? We claim that it establishes a 
reasonable strategy for designing decision tree generation 
algorithms in general. Rather than branching on all attribute 
values of a selected attribute, branch on a single one-the 
“best” value. When we formulated the GID3* algorithm, 
we were considering the problem of deciding which sub- 
set of values of an attribute are relevant for classification 
when the information entropy is used as a measure of merit. 
The discussion presented above gives a different answer to 
the attribute-value selection problem: Rather than deciding 
which subset of values of an attribute is relevant based on 
whatever measure is being used’ always select one value at 
a time; however, insure that the measure of attribute-value 
pair merit is a proper measure for classification. 

we have decided to generate strictly binary de- 
cision trees in which each branch test specifies a single 

bute-value pair, we turn our attention to the design of 
a proper selection (merit) measure for attribute-value pairs. 
Rather than following the tradition of impurity measures and 
defining desirable properties with respect to a single set, we 
shall specify desirable properties with respect to a partition 
on a set. 

Given a test T on an attribute A and a set of training ex- 
amples S, T induces a binary partition on the set S into: S = 
ST USy7, where ST = (e E Sle satisfies T), and %, = 
s - ST. 

We propose that a selection measure should in principle 
satisfy the properties: 
1. It is maximum when the classes in ST are disjoint with 

the classes in %, (inter-class separation). 
2. It is minimum when the class distribution in ST is identical 

to the class distribution in ST. 
3. It favours partitions which keep examples of the same 

class in the same block (intra-class cohesiveness). 
4. It is sensitive to permutations in the class distribution. 
5. It is non-negative, smooth (differentiable), and symmetric 

with respect to the classes. 
This defines a family of measures, called C-SEP (for Class 
SEParation), for evaluating binary partitions. 

By keeping as many examples of the same class together, 
we are aiming at leaves with high example support. This 
leads to better predictors and to a smaller number of leaves. 
Recall that the number of leaves and the expected error 
rate are related to each other, as shown in [4,6], and that the 
training support per leaf serves as a semantic (vs. syntactic), 
estimate of rule generality [6]. 

Note that the conditions listed above force members of the 
family to compare class distributions directly since many of 
the properties are not detectable if each class vector is eval- 
uated in isolation (c.f. impurity measures). The heuristic 
that is instantiated by selection measures that are members 
of the impurity measures family (including entropy) may be 
summarized as: 

Favor the partition for which, on average, the dis- 
tribution of classes in each block is most uneven. 

On the other hand, members of the C-SEP family of mea- 
sures represent the following heuristic: 

Favor the partition which separates as many dif- 
ferent classes from each other as possible, and keeps 
examples of the same class together. 

re 
For a h-vector V, l]Vll denotes the magnitude of V: 

I 
IWI = 

4 
c x2* 
i=l 

Let VI be the class vector of ST and V2 be the class vector 
of s-7. In order to measure class overlap/separation directly, 

Fayyad and Irani 107 



what should be done is to examine the “angle” between the 
two class vectors. In general k-space, what we need is a 
measure of the degree of orthogonal&y of the two vectors. 
Two vectors are orthogonal when their non-zero components 
do not overlap. We implicitly assume that the test r is a 
meaningful test in that it induces a non-trivial partition on 
S’ i.e., we implicitly assume that S7 # S,, # 8. Since our 
vectors are in nf”, the angle is at a maximum when it is 90’ 
and is minimum when it is 0’. 

One measure of the angle is to take its cosine. The cosine 
of the angle between two vectors VI and V2,6(V,, V,) 
is given by: 

cos qv,, V2) = Vl OV2 
IlYdl l llk2ll 

where ‘0’ represents the inner (dot) product: 

k 

VlOyp c &i&i- 

i=l 

It is minimum when the two vectors are orthogonal and is 
maximum when they are parallel. ‘Iwo vectors are parallel 
when one is a constant multiple of the other, whence the 
angle between them is zero. 

Selection Measure ORT : For a set S of training ex- 
amples and a test r inducing a binary partition on S 
into S7 and S,, having class vectors 771 and V2, 
respectively, the orthogonality measure is defined as 

ORT(q S) = I - cos B(Vp, V2). 
I I 

Note that this measure takes values inthe range [0, I]. A 
maximum value indicates that the vectors are orthogonal. 
We now show that the orthogonality measure possesses the 
desirable properties listed above. 

Proposition 1 The QRT measure possesses the following 
properties: 

1. If the class probability vectors of the two sets in the par- 
tition are identical, then QRT is minimum. 

2. If ORT(r, S) = 0 then the class probability vectors of 
the two sets in the partition of S are identical. 

3. The QRT measure is maximum iff the classes in S7 are 
disjointfrom the classes that appear in Sy7. 

4. The measure QRT favours partitions which keep like 
classes in the same subset. 

Proof: See [6]. cl 

Note that condition 2 for minimum is equivalent to the 
condition under which information gain is minimum: 

Corollary 1 Gc&a(T, S) = 0 e QRT(q S) = 0. 
hofi See [6]. cl 
Although the conditions under which Ge&a and ORT are 
minimum are equivalent, the conditions for maximum are 
not. This is where ORT possesses desirable properties that 
information entropy does not. Actually, the conditions under 
which ORTachieves its maximum value, 1, are more general 
than those under which entropy is as its minimum, 0: 

Co~~~lBlaq 2 Given a test 7 that induces a binary partition 
on a set S of training examples containing more than one 
class, then E(r, S) =O a QRT(r,S) = 1. 

See 161. 0 

ly that the ORT measure 
results in better trees. We name the binary tree 

algorithm that uses the ORT measure 0-BTree. We turn our 
attention to comparing the performance of with that 
of ID3, ID3-IV, GID3*,and ID3-BIN. ID3 mply the 
ID3 algorithm modified to branch on a single attribute-value 
pair at each node (hence generating strictly binary trees). 
We have earlier claimed that ID3-BIN should consistently 
outperform ID3 and ID3-IV. The results of this comparison 
will also demonstrate this fact as a side effect. 

The data sets used for empirical evaluation were of two 
type: synthetic and real-world. The synthetic data was used 
since we have complete control over it so it can serve as a 
clean controlled test. A set of rules was constructed manu- 
ally for diagnosing a well-understood portion of the Reactive 
Ion Etching (RIE) process in semiconductor manufacturing. 
The rules were verified physically and semantically by the 
domain experts. This set of rules was used to generate ran- 
dom examples. Each rule specifies the values of only a 
few of the available attributes. Since attributes not ap 
ing in a rule’s precondition are considered irrelevant to the 
classification task, random values are generated for those 
attributes in order to obtain examples. The goal of the learn- 
ing program is to attempt to rediscover, or approximate, the 
original set of rules. This establishes a reference point for 
comparing the performance of the learning algorithms. The 
learning task contains 8 attributes (all discrete) and 6 classes. 
The classes are roughly equally likely. Hence the error rate 
of a “naive” classifier that always guesses the most common 
class for any example should not be lower than 83%. 

In order to eliminate random variation, IO independent 
experiments were conducted on IO independently generated 
random RlE data sets’. The performance is measured by 
number of leaves and error rate. The error rates were col- 
lected by classifying examples in a separate fixed test set of 
1886 examples. 

The results reported will all be in terms of ratios rela- 
tive to GID3* performance. Figure 2 shows the relative 
performance for the RIE random experiments. In this do- 
main, better trees were generated by 0-BTree. One note to 
make here is that although GID3* and O-BTree managed to 
discover trees with the minimal number of leaves on many 
occasions, the trees were actually different. As a matter of 
fact, 0-BTree was able to discover the original (optimal) 
tree on some trials. This tree has a zero error rate. 

The second type of data used consisted of a real-world 
application data set from semiconductor manufacturing 
(HARR90), and some publicly available data having only 

‘A training set consists of 150 examples on the average. 
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for RIE-random Domain Ratios for RSErandom Domain 
(cxIB*al.Q) (Gm3*rl.O) 
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Figure 2: Performance of Various Algorithms (Relative to GID3*) in RIE Domain. 

discrete attributes. These were the foreign imports auto- 
mobile insurance data (AU’IG), the soybean disease data 
sets (SOYBEAN) and the mushroom classification task 
(MLJSHRM). We avoid using data that have continuous- 
valued attributes in order to avoid confusing the issue of at- 
tribute selection and continuous-valued attribute discretiza- 
tion which is performed prior to selection. We would like to 
isolate the effect of attribute selection as much as possible. 
The results for these domains are shown in Figure 3. A 
data set worth noting here is the SOYBEAN data. This data 
happens to have attribute-value pairs that induce total class 
separation at the very root of the tree. Although this did not 
decrease the number of leaves, the error rate of the tree gen- 
erated by 0-BTree was a little over haIf the corresponding 
error rate for ID3-BIN. We may therefore conclude that the 
ORT measure lead to more appropriate choices than those 
made by minimizing the information entropy at any stage 
(ID3-BIN). 

We have proposed a new 
use in selecting attributes during decision tree generation. 
The selection measures that are widely used in the decision 
tree induction literature typically use a selection mmure 
from the family of impurity measures. We illustrated why 
we believe that the C-SEP family is more appropriate in 
the context of top-down decision tree generation. The main 
difference between the two families of measures is that im- 
purity measures examine each subset in a partition separately 
withoutparticularregard to cross-subset class overlap. They 
detect overlap indirectly by averaging over all the subsets. 
While indirect detection works well in the two-class case, it 
deteriorates as the number of classes grows. 

Since members of the C-SEP family of measures evalu- 
ate a partition by comparing two class vectors, they require 
that partitions be strictly binary. This does not limit the 
expressive power of the trees produced. Furthermore, we 
hypothesize and informally argue that binary decision tree 
generation is likely to produce better trees than ID3-type 
branching. is hypothesis is verified empirically by com- 

paring the performance of ID3 with its binary tree generating 
counterpart, ID3-BIN. 

The family C-SEP, with the ORT measure being represen- 
tative of its members, was defined using the same approach 
used in defining the family of impurity measures: specify 
where the maxima and minima should occur, and hope, with 
some assumptions of smoothness, that the behavior of the 
measure on the cases in-between the minima and maxima 
is “reasonable.” The term “reasonable” implicitly means: 
correctly captures the aspects that make a partition good. 
The reason we make this implicit assumption is that, we, 
as designers of these measures, do not really know how to 
evaluate the partitions that constitute neither minimal nor 
maximal partitions according to the measure(s) being con- 
sidered. Given a choice among several impure partitions, 
the entropy heuristic calls for favoring the partition in which 
the average class distribution is most uneven. On the other 
hand, faced with the same choices, the ORTmeasure favours 
the partition for which unlike classes overlap least and like 
classes overlap most. However, we have no clear reason to 
favor one measure over the other in those regions, since we 
do not know which is the better partition in the first place. 
What we did in this paper is point out that for some regions 
that are “well-understood” by us, the impurity measures fail 
to detect good partitions. This failure was a consequence of 
the fact that impurity measures are defined on single sets. We 
corrected this aspect by defining a new family of measures. 

The proper approach to the selection measure design prob- 
lem must first answer this question in some justifiable way: 
When can we say that one partition is better than another, 
meaning that it will eventually lead (or is likely to lead) to a 
tree with fewer leaves given the training data? 

The intent of this paper is to point out that the problem 
of attribute selection is an important, and not yet adequately 
addressed problem. Future work here seems impossible 
without a formalism which allows us to answer the general 
question of what constitutes a better partition when gener- 
ating a tree in a non-backtracking framework. We know 
how to answer the question if we perform a full lookahead 
search, but that is computationally infeasible. If there are 
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Figure 3: Performance of Various Algorithms (Relative to GID3*) over SeveraI Domains. 

Ku attribute-value pairs in the problem, and the minimal tree 
has tz leaves, then an exhaustive search requires exploring 
at least (c:r) possible trees, since the binary tree has n - 1 
internal (decision) nodes. A good selection measure should 
not be expected to find the minimal tree since this would 
make P=NP, a fact that we generally consider unlikely to 
be true. However, this does not rule out the possibility of 
solving the problem in the sense of formulating a measure 
that leads to minimal or near-minimal trees with high prob- 
ability. Such an investigation is, of course, left as future 
work. 
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