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ABSTRACT 
Fast growing computing power on commodity parallel hardware 
makes it both an opportunity and a challenge to use modern 
hardware for large-scale data management. While GPU (Graphics 
Processing Unit) computing is conceptually an excellent match for 
spatial data management which is both data and computing 
intensive, the complexity of multi-dimensional spatial indexing 
and query processing techniques has made it difficult to port 
existing serial algorithms to GPUs. In this study, we propose a 
parallel primitives based strategy for spatial data management. 
We present data parallel designs for polygon decomposition, 
quadtree construction and spatial query processing. These designs 
can be realized on both GPUs and multi-core CPUs as well as 
future generation hardware when parallel libraries that support the 
primitives are available. Using a large-scale geo-referenced 
species distribution dataset as an example, the GPU-based 
implementations can achieve up to 190X speedups over serial 
CPU implementations and 14X speedups over 16-core CPU 
implementations for polygon decomposition, which is the most 
computing intensive module in the end-to-end spatial data 
management solution we have provided. For quadtree 
constructions and spatial range/polygon query modules, which are 
more data intensive, the speedups over single and multi-core 
CPUs are up to 27X and 2X, respectively, depending on 
workloads. Comparing with a similar technique on polygon 
decomposition that is realized using a native parallel 
programming language, our parallel primitives based 
implementation is up to 3X faster on the species distribution 
dataset. The results may suggest that simplicity and efficiency can 
be achieved simultaneously using the data parallel design strategy 
by identifying the inherent data parallelisms in application 
domains.  

1. INTRODUCTION 
Multi-dimensional indexing is crucial in speeding up 

spatial query processing. Hundreds of indexing structures have 
been proposed in the past few decades [1]. However, the majority 
of existing indexing structures are designed for traditional 
computing models, i.e., serial algorithms targeted for 

uniprocessors in a disk-resident system. Meanwhile, as argued in 
[2], due to the increasing diversity and heterogeneity of the 
mainstream hardware, it is no longer possible to simply work on 
top of abstractions provided by either the operating system or by 
system libraries and hope to achieve high performance 
automatically. However, hardware sensitive designs are fairly 
costly and it is very difficult to provide an optimized design for 
each and every of hardware architectures.  

In this study, we aim at exploiting the inherent data 
parallelisms in processing multi-dimensional spatial data and 
exploring data parallel designs to achieve high-performance 
across multiple parallel hardware platforms. We use quadtree 
indexing and querying on complex polygons, which has many real 
world applications in Geographical Information Systems (GIS) 
and Spatial Databases, as a case study to demonstrate the 
feasibility and efficiency of the proposed techniques. Using real 
world data and targeting at real world applications of large-scale 
species distribution data, we evaluate the realizations of our data 
parallel designs on GPUs.  

Our technical contributions are three-fold. First, we 
develop data parallel designs for indexing and querying complex 
polygons in multiple overlapped polygonal datasets that can be 
efficiently realized on GPUs using well-understood and well-
supported parallel primitives [3]. Second, we compare our 
technique on polygon decomposition with a native parallel 
implementation and demonstrate that our parallel primitives based 
implementation can achieve both simplicity and efficiency. Third, 
we apply our technique to a large-scale global species distribution 
dataset and have achieved considerable speedups over serial 
implementations on CPUs, which is signficant from an application 
perspective.  

The rest of the paper is arranged as follows. Section 2 
introduces background and related work on indexing multi-
dimensional spatial data on new hardware, including GPUs. 
Section 3 presents the application context of our technique and 
proposes a spatial database approach to managing large-scale 
species distribution data. Section 4 provides details on data 
parallel designs of spatial indexing and query processing 
techniques on GPUs. Section 5 presents experiment results on the 
proposed techniques using the 4000+ bird distribution range maps 
in the West hemisphere [4] on GPUs. Section 6 provides 
comparison with the PixelBox algorithm [5] that targets at a 
similar technical context but uses a different parallelization 
strategy on GPUs. Section 7 discusses several high-level design, 
implementation and application issues. Finally, Section 8 is 
conclusion and future work directions.  

2. BACKGROUND AND RELATED WORK 
Spatial data processing is known to be both data and 

computing intensive [6]. Various techniques, such as minimizing 
disk I/O overheads in spatial indexing [1] and the two phase filter-
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refinement strategy in spatial joins have been proposed [7]. The 
increasingly available new hardware, such as inexpensive Solid 
State Drives (SSDs), large memory capacities, multi-core CPUs, 
and many-core GPUs, have significantly changed the cost models 
on which traditional spatial data processing techniques are based. 
Developing new indexing and query processing techniques and 
adapting traditional ones to make full use of new hardware 
features are active research topics in spatial data processing in the 
last few years. A generic framework for flash aware trees is 
proposed in [8]. The TOUCH technique performs in-memory 
spatial join by developing a hierarchical data oriented partitioning 
[9]. Furthermore, a comprehensive analysis of iterated spatial 
joins in main memory has been provided through extensive 
experiments [10]. MapReduce/Hadoop based techniques have 
been proposed to achieve higher scalability for spatial 
warehousing [11] and geometry computation [12].    

Compared with techniques for processing point data, it 
is technically more challenging to efficiently index and query 
“complex” polygons. Real world polygons, even for those that are 
defined as mathematically “simple” polygons, can have complex 
data structures. For example, according to Open Geospatial 
Consortium (OGC) Simple Feature Specification (SFS) [13], a 
simple polygon may have one outer ring and many (including 0, 1 
or 1+) inner rings. Determining the spatial relationships between a 
quadrant and a polygon with multiple rings, which is fundamental 
in quadtree-based indexing, is much more complex than 
processing polygons with a single ring. Furthermore, complex 
polygons may overlap and there might be multiple polygons 
intersect with a single quadrant. Traditional Minimum Bounding 
Rectangle (MBR) based spatial indexing techniques are not likely 
to be efficient for significantly overlapped polygons due to 
decreased spatial discrimination power. This is because MBRs of 
overlapped polygons are likely to have higher degrees of overlap. 
In addition, many geometric algorithms that are used in the 
filtering phase of spatial join processing [7] have at least linear 
time complexity with respect to the number of polygon vertices. 
As real world polygons can have large numbers of vertices and a 
few of them in a dataset may have extremely large numbers of 
vertices, the filtering phase can be computing intensive, incurs 
long runtimes and difficult to parallelize due to load unbalancing.  

In this study, we refer multi-ring and potentially highly 
overlapping polygons as “complex” polygons although they are 
still  considered  “simple”  mathematically.  It is intuitive to rasterize 
each polygon as a binary raster to speed up spatial queries. The 
QUILT geographical information system [14] developed more 
than two decades ago was based on region quadtrees where linear 
quadtree nodes are used to represent polygons after rasterization 
and support various queries. Linear quadtrees are also used to 
index polygon MBRs so that leaf quadtree nodes can also be 
indexed by B+ trees based on their Space Filling Curve (SFC [1]) 
codes in disk-resident databases. However, while the computing 
overhead to generate linear quadtrees from binary rasters and 
MBRs are light, directly generating quadrants from polygons can 
be expensive which makes it desirable to utilize parallel hardware 
to speed up the process. In this study, we aim at indexing polygon 
internals in-memory and utilizing parallel processing units for 
high performance. Our techniques represent complex polygon as 
sets of independent quadrants that can be manipulated collectively 
in parallel at different granularities (quadtree levels). By 
decomposing complex polygons into large numbers of simple 
quadrants (squares in geometry), the sharp boundary between 
spatial filtering and spatial refinement using MBRs in traditional 

spatial joins is now multi-level and can be easily adjusted based 
on applications and/or system resources at runtime. The increased 
data parallelisms make our techniques more parallelization 
friendly on massively data parallel GPUs.  

In this study, we extensively utilize parallel primitives 
wherever possible to exploit data parallelisms and achieve 
portability among multiple hardware platforms, including GPUs. 
The strategy is significantly different from traditional approaches 
that program parallel hardware using their native programming 
languages directly. Here parallel primitives refer to a collection of 
fundamental algorithms that can be run on parallel machines, such 
as map/transform, sort, scan, and reduction [3]. The behaviors of 
popular parallel primitives on one dimensional (1D) arrays or 
vectors are well-understood and are well-supported in multiple 
parallel platforms. Despite there are inevitable parallel library 
overheads, very often using parallel primitives that have been 
highly tuned for different hardware achieves better performance 
than native parallel programs. In our previous works on GPU-
based spatial data management, including grid-file based point 
data indexing [15], min-max quadtree based raster data indexing 
[16], point-to-polyline distance based Nearest Neighbor (NN) 
spatial join [15] and point-in-polyline test based spatial join [17], 
we have extensively explored parallel primitives based designs 
and implementations with encouraging good performance. 
However, they have not been compared with native parallel 
implementations. This study targets at a more complex spatial 
data management problem, i.e., indexing complex polygon 
internals and speeding up spatial queries (Section 4 and 5). We 
also compare our data parallel technique for the most computing 
intensive step in indexing with a similar published technique 
using a native parallel implementation (PixelBox, [5]) (Section 6).  
We hope our study can stimulate the discussions on seeking 
effective ways, with respect to both efficiency and productivity, in 
utilizing GPUs for domain specific applications.  

In the context of indexing polygon internals to speed up 
spatial query processing, we note that Microsoft SQL Server 
Spatial adopted a similar hierarchical decomposition of space 
strategy and used B+ tree to index the decomposed polygons [18]. 
Spatial query processing is then based on the symbolic ancestor-
descendent relationships of the identifiers of decomposed 
quadrants which is typically much faster than testing spatial 
relationships based on geometric computation on polygon 
vertices. However, the algorithm in tessellating polygons into 
quadrants, which is the key to the performance of polygon 
indexing, was not well-documented. Although our experiments 
have shown that the polygon indexing module in SQL Server 
2012 release is able to utilize multiple CPU cores, it is unclear 
how the parallelization is achieved and whether it is possible to 
extend it to many-core GPUs efficiently.  

Another closely related work is the GPU-based 
PixelBox algorithm on intersecting two polygons derived from 
high resolution biomedical images [5]. Although similar 
geometrical principles in determining whether a box or quadrant 
intersects with a polygon are used in both PixelBox and our 
technique on polygon decomposition for spatial indexing, 
PixelBox intersects two polygons and computes their intersection 
area at the same time while our technique is designed to 
decompose individual polygons. There are also several additional 
key differences between the two techniques.  First, when multiple 
polygons are involved, our technique decomposes each polygon 
exactly once and can reuse the resulting quadrants whereas 
needed. In contrast, PixelBox would require pair-wise 



 
 

intersections among multiple polygons. Although PixelBox meets 
its design requirement for its targeted application domain well, 
where only pair-wise intersections on image-derived single-ring 
polygons are needed, it is not efficient in more general cases (such 
as our species distribution data management) when multiple 
polygons are involved in intersections simultaneously. Second, 
PixelBox is implemented natively using CUDA on Nvidia GPUs 
while our technique is based on parallel primitives. Despite that 
the CUDA implementation has been extensively optimized as 
reported in [5], experiments have shown that our technique is not 
only simpler in design but also performs up to 3X better. The 
comparisons are provided in Section 6.    

In addition to adapting traditional linear quadtree 
techniques [1] to parallel computing on GPUs, our technique is 
also related to rasterization on parallel hardware for rendering 
purposes in computer graphics. Efficient parallel techniques to 
rasterize triangles into pixels are cornerstones of high-
performance computer graphics and have been extensively 
researched. A recent study by Nvidia researchers has shown that 
software rasterization is within a factor of 2-8X compared to the 
hardware graphics pipeline on a high-end GPU [19]. While it is 
interesting to apply these software rasterization techniques for 
spatial indexing and query processing in a data management 
context, we argue that there are mismatches between the two 
application domains which may render the software rasterization 
techniques less applicable in spatial data processing. First and 
foremost, rasterization techniques for computer graphics are 
optimized for triangles and cannot be used to process real world 
complex polygons directly. In fact, the GL_POLYGON primitive 
defined by OpenGL does not guarantee the correctness of 
rendering concave polygons, in addition to being much slower 
than GL_TRIANGLES. While some tessellation and triangulation 
algorithms and packages are available to decompose complex 
polygons to simple polygons or triangles, they may not be 
supported by hardware and are left for serial software 
implementations. It is non-trivial to parallelize such 
implementations on GPUs with high performance. Furthermore, 
while it is possible to identify uniform quadrants from rasterized 
pixels efficiently, the ultimate goal of software rasterization in 
computer graphics is to generate pixel values for triangles that are 
visible from current views with visually acceptable resolution. In 
contrast, our goal is to decompose polygons in a spatial database 
to speed up query processing that guarantees pre-defined numeric 
accuracy.  

3. A Spatial Database Approach to Managing 
Large-Scale Species Distribution Data 

Historically, species range maps represent fundamental 
understanding of the observed and/or projected distributions of 
species. While only a limited number of species are documented 
with reasonably accurate range maps throughout human history, 
several enabling technologies have made biodiversity data 
available at much finer scales in the past decade [20], including 
DNA barcoding for species identification and geo-referring for 
converting descriptive museum records to geographical 
coordinates. The increasingly richer biodiversity data has enabled 
ecologists, biogeography researchers and biodiversity 
conservation practitioners to compile species range maps from 
multiple sources with increasing accuracies. For example, 
NatureServ has published range maps of 4000+ birds in the west 
hemisphere [4] with 700+ thousand complex polygons and more 
than 77 million vertices in ESRI Shapefile format [21]. While 

these datasets are useful for visualization purposes and for 
scientists that are specialized in a small subset of species to 
examine the data manually, it is highly desirable to manage such 
data in a database environment to allow queries across a large 
number of species and understand the relationships between 
global and regional biodiversity patterns and their underlying 
environments. Figure 1 illustrates the potential queries among 
taxonomy, geography and environment [22].   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1 Illustration of Potential Queries on Species 
Distribution Data 

 
 
 
 
 
 
 
 

 
Figure 2 A Spatial Query on Species Distribution Data in SQL 

 
Given the numbers of species, ecological zones and 

environmental variables, among the virtually countless queries, a 
fundamental one is to retrieve the list of species and their 
distribution areas within Region of Interests (ROIs).  Given the 
species range map stored in table SP_TB (sp_id, sp_geom) and 
the ROIs stored in table QW_TB (roi_id, roi_geom), where 
sp_geom and roi_geom represent geometrical objects (polygons 
and rectangles, respectively), the spatial query can be formulated 
as the SQL statement listed in Figure 2 according to OGC SFS 
specification [13]. We note that the OGC SFS specification has 
been largely adopted by SQL/MM and implemented in major 
commercial and open source spatial databases, e.g., Microsoft 
SQL Server Spatial [18] and PostgreSQL/PostGIS [23]. The 
WHERE clause (using ST_INTERSETS boolean function) in 
Figure 2 serves as an optimization trick to reduce the number of 
calls to the ST_INTERSECTION function for intersecting two 

SELECT aoi_id, sp_id, SUM (ST_AREA (inter_geom))  
FROM ( 
         SELECT aoi_id, sp_id,  

ST_INTERSECTION (sp_geom,qw_geom) AS inter_geom  
        FROM SP_TB, QW_TB  
        WHERE ST_INTERSECTS (sp_geometry, qw_geom) 
          ) 
GROUP BY aoi_id, sp_id 
HAVING SUM(ST_AREA(inter_geom)) >T; 
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polygons which is very expensive for complex polygons. The 
optional HAVING clause can be used to set the threshold to 
prevent from including resulting intersected polygons that are too 
smaller, such  as  “sliver  polygons”  that  appear  along  the  borders  of  
the two intersecting polygons. Similarly, species distribution 
polygons can also be used as ROIs to query environmental 
variables. Although the exact query syntax may be different for 
spatially querying environmental variables in vector format (e.g., 
rain gauge observations) and in raster format (e.g., satellite 
imagery), they can be formulated in a similar spatial query 
processing framework [23].   

For complex polygons with large number of vertices 
and multiple holes, the query shown in Figure 2 may incur very 
long response times. Our previous experiments have shown that 
even a single simple rectangular ROI (e.g., spatial range/window 
query), when used to query against the bird range map in a 
PostgreSQL/PostGIS database, may incur more than 100 seconds 
[24]. This makes interactive explorations of the dataset 
impractical. We have developed techniques to decompose 
polygons into quadrants in an offline manner in order to speed up 
online query processing in both a disk-resident database 
(PostgreSQL/PostGIS) [24] and a memory-resident database 
environment [25]. While the online query performance is 
satisfactory for both systems (with the help of parallelization on 
the disk-resident system through query window decomposition 
[24]), it took a long time for offline processing using sophisticated 
geospatial software (e.g., GDAL [26]) which is too slow for large-
scale data. In this study, we aim at speeding up polygon 
decomposition by utilizing the increasing computing power on 
parallel hardware. Different from previous techniques that 
extensively use recursions and dynamic memory for both polygon 
decompositions and quadtree constructions which make them very 
difficult to parallelize, as detailed in the next section, our new data 
parallel designs using parallel primitives make them portable 
across multiple hardware platforms and easy to scale to large 
numbers of processing units. Experiment results are provided in 
Section 5 and comparisons with a similar technique are reported 
in Section 6.  

4. Data Parallel Designs on Quadtree 
Indexing and Spatial Query Processing  
Compared with manipulating data structures with regular access 
patterns (such as arrays and matrices), deriving irregular data 
structures (such as quadtrees) from complex polygons with 
multiple layers of variable structures on GPUs is technically 
challenging. As discussed in Section 2, PixelBox [5] provides a 
native CUDA based design for computing the area of the 
intersection of two single-ring polygons. Despite that multi-ring 
polygons are not supported and the output is only a scalar value 
(area), the implementation is already very sophisticated. Our 
technique aims at supporting multi-ring polygons (which is 
mandatory in our applications) and deriving quadtree structures 
for indexing complex polygons. We next present our data parallel 
designs for the three major modules in our technique, i.e., 
decomposing polygon into quadrants at multiple levels, 
constructing Multiple Attribute Quadtrees (MAQ-Tree [25]) and 
spatial queries on quadtrees, by identifying data parallelisms in 
each module. Steps in each parallel design are then mapped to 
well-understood and well-supported parallel primitives. Simple 
loops on top of these parallel primitives may be needed to handle 
multiple tree levels, which are supported by the host language of 
the parallel library being used. We refer to [3] for excellent 

introductions to parallel primitives and the Thrust library website1 
for the exact syntax of parallel primitives that are being used in 
this study.  

4.1 Polygon Decomposition 
While it is possible to rasterize polygons into binary rasters and 
then use the technique similar to our previous work reported in 
[25] to identify linear quadtree nodes and construct quadtrees, 
rasterizing complex polygons to fine resolution grid cells incur 
significant computing and storage burden. Furthermore, it is very 
difficult if not impossible to parallelize polygon rasterization 
using fine-grained data parallelisms on GPUs. Our technique 
adopts a top-down approach by performing quadrant-polygon 
intersection tests in a level-wise manner. The top-down approach 
allows stop at any level based on user specification and/or 
available system resources. The level-wise processing can 
accumulate sufficient quadrant-polygon pairs across multiple 
polygons and utilize large number of processing units (e.g., GPU 
cores) more effectively. While our data parallel designs using 
parallel primitives are significantly different from PixelBox [5] as 
discussed previously, we apply a similar set of computational 
geometry principles for quadrant-polygon test which is the 
building block for polygon decomposition on a polygonal dataset 
with a large number of polygons. We next present the procedure 
(Figure 4) for testing the relationship (left of Figure 3) between a 
single quadrant-polygon pair before we introduce a data parallel 
procedure (Figure 5) to decompose multiple polygons in a dataset 
into multiple quadrants at different levels. An example illustrates 
a decomposed polygon is shown in the right part of Figure 3.  
 
 
 
 
 
 
 

 
Figure 3 Five Relationships between a Quadrant and a Polygon 

with a Hole (left) and An Example of Decomposed Polygon 
As shown in Figure 3, among the three possible relationships 
between a quadrant and a polygon (inside/intersect/outside), when 
a polygon has holes, a quadrant can be outside the polygon if it is 
inside one of the holes.  In Figure 4, function isEdgeIntersect (line 
2) is first used for testing whether any of the polygon edges 
intersects with the quadrant (type C) by checking whether any of 
polygon edges (lines) intersect with the quadrant. This is 
equivalent to line-rectangle intersection test which is well defined 
in computational geometry. If   none   of   the   polygon’s   edges 
intersects with the quadrant, function pointInRing is applied to 
both the outer ring and all the inner rings for further tests.  The 
classic ray-tracing algorithm for point-in-polygon test [27] can be 
used for implementing function pointInRing. We first test whether 
there is any edge of the outer ring intersects with the input 
quadrant; if so, the procedure immediately terminates with type C 
(Line 3). If none of them intersects with the quadrant, vertices of 
the quadrant should be either all inside or outside the ring. 

                                                                 
1 https://github.com/thrust/thrust 



 
 

Therefore, by performing a point-in-polygon test on one vertex of 
the quadrant and the outer ring (Line 4), we will know whether all 
vertices of the quadrant are inside/outside the outer ring. Notice 
that we start from the minimum enclosing quadrant of the polygon 
being processed to ensure that there is no chance for subsequent 
lower level quadrants to enclose the outer ring. As such, if the 
point in polygon test at Line 4 is negative, the quadrant must be 
outside the polygon (type A). If a quadrant is completely inside 
the outer ring, we still need to verify its relationship with each 
inner ring (Line 6~11). Recall that there may be 0, 1 or 1+ inner 
rings in a complex polygon (c.f. Section 2). When an inner ring 
encloses the quadrant, such quadrant is then outside the polygon 
(type A’). On the other hand, even if all the vertices of the 
quadrant are outside of all inner rings, the quadrant can be either 
complete inside the polygon (type B) or intersect with the polygon 
(type   C’). To distinguish these two cases, we can simply test 
whether any point of an inner ring falls within the quadrant (Line 
9). Since quadrants are special rectangles (squares), testing 
whether a point is in a quadrant is fairly straightforward. 
Assuming a polygon has N points, the complexity of determine 
whether any edge intersects with the quadrant is O(N). 
Meanwhile, the point-in-polygon test using the ray-tracing 
algorithm is also O(N) [27]. Thus, the total complexity of function 
QPRelationTest is O(N).  

 
Based on the relationships we have defined previously 

(Figure 3), quadrants of a polygon can be generated in a top-down 
manner by iteratively testing relationship among refined quadrants 
and the polygon. The procedure is illustrated in Figure 5. We first 
generate the minimum enclosing quadrant based on the MBR of 
the polygon and then split the quadrant into four child quadrants. 
The child quadrants are subsequently tested against the polygon. 
If a quadrant is completely outside or within the polygon (e.g., 
type A and B in Figure 5), we stop the decomposition process on 
such quadrant and output a leaf quadrant for the polygon. 
Otherwise, the quadrant either intersects with the polygon or 
encloses a ring of the polygon (type C). We then test whether such 
quadrant reaches the predefined maximum level (MAX_LEV in 
Figure 6) and decide whether it needs to be further processed. 

The parallel primitives based GPU implementation is 
presented in Figure 6 where the input is a vector of complex 
polygons (for parallel processing) and the output is a vector of 
quadrants. Note that some parallel primitives may take functional 
objects (functors) as parameters. All threads that are assigned to 
process elements in input polygon vector will execute the functor 

in parallel, where parameters of the functors are extracted from 
the input vector by the underlying parallel library dispatcher.  

In Line 1, from a vector of polygons, we generate their 
corresponding minimum enclosing quadrants in parallel and store 
them in a vector VQ. Each element of VQ is a tuple in the format 
of (polygon_id, z_val, lev), where polygon_id is an identifier to 
locate the input polygon, z_val and lev represent the Morton code 
[1] and the quadrant level, respectively. Given an MBR, the level 
of the quadrant being processed can be calculated as 
lev=__clz(z1^z2)/d where z1 and z2 are the Morton codes of the 
top-left and lower-right corners, ^ is the bit-wise XOR operation, 
d=2 is the number of dimensions and __clz is the intrinsic 
function available on CUDA-enabled GPUs for calculating the 
number of leading zeros in an integer (similar intrinsic function is 
available for other hardware architectures). The Morton code of 
the quadrant code (z_val) is calculated as z1 with the lower 2*lev 
bits set to zeros if lev is larger than 0. In particular, lev =0 denotes 
the minimum enclosing quadrant is the root of the quadtree being 
constructed. Examples for computing the lev value and the 
Morton codes for two MBRs are shown in Figure 7. Note that we 
use 4-bit words (W=4) in the __clz function in the figure for 
illustration purpose while our GPU implementation uses 32-bit 
words (W=32). The design is loop free and can be implemented as 
a functor to work with a map/transform parallel primitive.  
 
 
 
 
 
 
     

 
 
 

Figure 5 Illustration of Indexing Polygon Internals through 
Iterative Polygon Decomposition 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Input: quadrant Q, polygon P 
Output: relation type A, B or C 
QPRelationTest(Q, P) 

1.  V = vertex(Q) //get one of the vertex of Q 
2.   intersect = isEdgeIntersect(Q, P) //quadrant intersection test 
3.   if (intersect)   return C; 
4.   inOuterRing = pointInRing(V, P.outer_ring)  
5.   if(!inOuterRing) return A; //outside of outer ring 
6.   for each IR in P.inner_rings do: 
7.          inInnerRing = pointInRing(V, IR) 
8.          if (inInnerRing) return A //inside a inner ring 
9.          if (any point of IR is in Q) 
10.              return C //quadrant encloses a ring 
11.    end for    
12.    return B //inside 
 

Figure 4 Algorithm on Testing Relationship between Quadrant 
and Polygon 

 
 Input: vector of polygons Ps 

Output: vector of quadrant pairs Qs 
ParallelPolygonDecomposition(Ps, Qs): 
1. VQ = transform(Ps) //generate minimum enclosing  

                                   quadrants from MBRs of Ps 
2. While (VQ.size() > 0 or TempQ.size() > 0): 
3.     if (VQ.size() > MAX_CAPACITY): 
4.         copy out-of-capacity items from VQ to TempQ 
5.     if (VQ.size() == 0 and TempQ.size() > 0): 
6.         copy  items from TempQ to VQ 
7.     NextVQ = split(VQ) //split is a combination of scatter, 

              scan and transform primitives 
8.     Status = transform(NextVQ, QPRelationTest) //for each  

                              quadrant, a QPRelationTest is performed 
9.     sort(Status, NextVQ) // sort NextVQ based on Status 
// if Status is set to either leaf node or MAX_LEV is reached 
10.     Qs = copy_if(NextVQ, Status, MAX_LEV) 
//Otherwise 
11.     VQ = copy_if(NextVQ, Status, MAX_LEV) 
12. return Qs 

Figure 6 Algorithm Polygon Decomposition 
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Lines 2~11 in Figure 6 consist the major part of the 
whole procedure of polygon decomposition. Since that GPU 
memory is limited comparing with CPU memory, we use a 
temporary vector TempQ in CPU memory to hold workload when 
it exceeds the predefined MAX_CAPACITY threshold (Lines 2-
6). The threshold is set based on the size of available GPU 
memory. In Line 7, VQ is split into four sub-quadrants at the next 
level and saved to NextVQ (to be detailed next). After the split, 
each new quadrant is tested with its corresponding polygon, and 
the relationship test results are saved in a vector called Status 
(Line 8). Line 9 sorts NextVQ based on Status before we can 
copy the quadrants to Qs which stores the output quadrant (Line 
10) or to VQ for the next iteration (Line 11). 

 
 
 
 
 
 
 
 
 
 
Figure 7 Examples of Extracting Minimum Enclosing Quadrants 

from Polygon MBRs 
The split procedure used in Line 7 of Figure 6 is 

illustrated in Figure 8 where the two upper shaded quadrants need 
to be split. At the first step, a vector of 4s is set up and an 
exclusive scan is used to generate write positions for input data. 
The second step writes input data in VQ to NextVQ using a 
scatter primitive according to the previously generated positions 
followed by an inclusive scan primitive to fill the rest of the 
vector. The scan   is   implemented   by   using   “maximum”   as   its  
functor  and  we  call  it  as  “inclusive  maximum  scan”.  A transform 
primitive is lastly used to generate the Morton codes 
(z_val’=4*z_val+{0,1,2,3}) and levels (lev’=lev+1) in parallel. 
The offset (0-3) for each quadrant in Morton code calculation can 
be easily derived from CUDA thread identifiers, which does not 
require additional space in the GPU implementation.   

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8 Illustration of Data-Parallel Split Procedure Using 

Parallel Primitives 

4.2 Quadtree Construction 
We do not keep the parent-child relationships among quadrants in 
the polygon decomposition module although we could have done 

so. The most important reason in the decision is that keeping such 
relationships in a data parallel computing setting is much more 
cumbersome than in a serial computing setting and we want to 
simplify the implementation of polygon decomposition module as 
much as possible. Furthermore, a quadrant may be covered by 
multiple polygons and we would like to group polygons based on 
quadrant identifiers. This is not possible during polygon 
decomposition as quadrants are grouped based on polygon 
identifiers there. However, after quadrants corresponding to leaf 
nodes are identified by the polygon decomposition module, 
constructing a quadtree from quadrants of a set of polygons can be 
accomplished by chaining parallel primitives as in the polygon 
decomposition module (Section 4.1). We note that, while 
quadrants identified from a single polygon do not overlap (classic 
quadtree structures where typically there is no information to be 
associated with intermediate nodes), quadrants identified from a 
set of polygons may overlap and polygon identifiers may be 
associated with intermediate tree nodes. Our previous work on 
constructing such an extended quadtree from a large number of 
overlapped polygon datasets on CPUs, termed as Multi-Attribute 
Quadtree or MAQ-Tree [25] is illustrated in the top of Figure 9 
where the tree is constructed dynamically in CPU memory. 
Experiments have shown that storage overhead of a MAQ-Tree 
can be much smaller than storing individual quadtree or combined 
quadtree using classic quadtree representation by pushing down 
identifiers to leaf nodes [25]. In addition, window query on MAQ-
Trees is more efficient than traversing multiple individual classic 
quadtrees each representing a polygon datasets with non-
overlapping polygons.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Illustration of MAQ-Tree Structure Using Memory 
Pointer (Top) and Array (Bottom) Representations 

We have developed an array representation that is 
suitable for GPUs by extending the GPU-based BMMQ-Tree 
proposed in our previous work [16]. As illustrated in the bottom 
of Figure 9, for each node in the GPU-based MAQ-Tree, in 
addition to the quadrant identifier (z_val), level (lev), First Child 
Position (fc) and Number of Child Nodes (nc) fields as in 
BMMQ-Tree, two additional fields, i.e., First Polygon Identifier 
Position (fp) and Number of Polygon Identifier Position (np) are 
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added. Note that fc and fp are shown in all the tree nodes at the 
bottom part of Figure 9 while z_val, lev, nc and np are not shown 
due to space limit. The functionality of the two array offsets 
fields, i.e., fc and fp, are equivalent to memory pointers in CPUs. 
However, they can be computed in parallel (to be detailed next) 
and do not need memory allocations which are expensive on 
GPUs. The algorithm to construct a MAQ-Tree using parallel 
primitives is listed in Figure 10. The input (Qs) is a vector of leaf 
quadrants with their corresponding polygon identifiers that are 
generated in the previous module. We use tuple (z_val, lev, p_id) 
to represent a leaf quadrant. The output of the algorithm will be a 
GPU-based MAQ-Tree that consists of a tree structure array (T) 
and a polygon identifier array (P), as illustrated in the bottom of 
Figure 9.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lines 1-4 in Figure 10 group polygon identifiers that are 
associated with quadrants, and compute the positions of the first 
polygon identifiers (fp) associated with each unique quadrant 
identifier based on (z_val, lev). Note that quadrants at different 
levels may have the same Morton codes based on the algorithms 
discussed in polygon decomposition module. This is also the 
reason that we use the combination of Morton code and quadrant 
level as the key in Line 3. After this step, we can get a vector of 
unique quadrants (UQs) where each item contains the Morton 
code (z_val), level (lev), the first polygon identifier position (fp) 
and the number of polygon identifiers (np). As indicated in Line 
4, fp can be computed from np by using an exclusive scan parallel 
primitive, as fp[i]=sum(np[j]) for j=0..(i-1) by the definition of a 
scan primitive [3].  

Next, the polygon identifiers array is then saved to P 
(Line 5), so that a quadrant in the tree can easily look up its 
related polygons by using fp and np, i.e., all polygon identifiers 
that are associated with the quadrant are stored at the position 
fp..(fp+np-1) of array P. Lines 6-7 sort quadrants by levels and 
generate level boundaries to keep track of the number of 
quadrants at each level. We first copy the last level quadrants to 
the tree (Line 8) and process tree nodes in a bottom up manner 

(Line 10-15). To generate a new level, say current_lev, there are 
two major components. The first component directly comes from 
the Morton codes of leaf quadrants generated during polygon 
decomposition. With the level information derived at Line 6 and 
8, we can easily locate leaf quadrants at current_lev and copy 
them to a temporary space (TempQs). The other component 
comes from the reduction of lower level quadrants, i.e., the 
quadrants at current_lev + 1. Those quadrants are reduced to 
remove duplications before they are appended to TempQs (Line 
12-13).  

To maintain the parent-child links between two 
consecutive levels in a quadtree using an array representation, fc 
(first child position) and nc (number of children) fields of all tree 
nodes need to be set appropriately. Similar to computing np and fp 
as discussed above, computing nc and fc can be realized by 
chaining a sort, a segmented reduction and an exclusive scan 
parallel primitive (Line 14-16). The last step during an iteration is 
to append TempQs (using a copy primitive) to the tree structure T 
(Line 17 in Figure 10). The iteration will continue at a higher 
level until the root of the tree is constructed. The alert reader 
might ask what would be the np and fp values of the non-leaf 
nodes as they may be created level-wise bottom-up in the loop. 
The answer is that, for a non-leaf tree node created in Line 12, we 
check whether the corresponding quadrant is already in Qs. If not, 
then the non-leaf  node   is   just  a  “via  node”   in   the   tree  and   is  not  
associated with any polygon identifiers. We set both np and fp to a 
negative number as an indication. If the quadrant corresponding to 
the none-leaf node is already in Qs, our algorithm makes sure 
that, the combination functor in the reduce primitive in Line 12 
only updates nc and fc while keep np and fp unchanged. Actually, 
the check logic can be easily implemented in the combination 
functor by checking the signs of np and fp of the two input tree 
nodes to be combined when the reduce primitive is invoked to 
process all tree nodes at the level in parallel. 

4.3 Spatial Query Processing 
Once a MAQ-Tree is constructed, it can be used to speed up 
spatial queries by traversing the tree in either a breadth-first 
search (BFS) or a depth-first search (DFS) manner. As processing 
a single query on trees with limited depth on modern hardware 
(including both CPUs and GPUs) are typically fast, it is more 
beneficial to process multiple queries on GPUs to make full use of 
its computing power. Our previous work on parallel R-tree based 
batched queries on GPUs [28] showed that BFS generally 
performs better than DFS on GPUs. As such, in this work, we 
have chosen to implement parallel quadtree based batched queries 
on GPUs using BFS. We propose techniques for two types of 
spatial queries, including batched range (or window) query and 
polygon query where a query is defined by a polygon. Clearly, 
polygon queries are more generic but are more complex. Using 
the polygon decomposition techniques discussed in Section 4.1, 
complex query polygons can be decomposed into quadrants with 
different sizes. As such, both types of queries can be supported 
using a unified design and implementation.  

4.3.1 Parallel Batched Range Query 
The problem of batched range query is to answer a set of range 
queries in parallel and locate all intersecting quadrants for each 
individual range query. A naïve approach to parallelize batched 
query is to assign a thread to process a range query and queries 
are processed independently. However, such design can easily 
incur significant load unbalancing and uncoalesced memory 
accesses on GPUs, which is likely to result in poor performance. 

Input: leaf quadrants Qs where each element is (z_val, lev, p_id) 
Output: MAQ-tree (T, P) where T is in the format of (z_val, lev, fc, nc, 
fp, np) and P is a vector of polygon identifiers 

ParallelConstructMAQTree(Qs): 
1. stable_sort Qs by z_val 
2. stable_sort Qs by lev 
//UQs is in the format of (z_val, lev, np, fp) 
3. (UQs.z_val, UQs.lev, UQs.np) = reduce Qs by (z_val, lev)  
4. UQs.fp = exlusive_scan(UQs.np) 
5. copy Qs.p_id to P 
//count the size of quadrants at each level 
6. (lev, lev_size) = reduce UQs  by lev  
//compute the start position for each level 
7. lev_pos = exlusive_scan(lev_size)  
8. copy last level quadrants from UQs to T 
9. current_lev = MAX_LEV 
//level-wise  iteration starts 
10. while (current_lev > 0)  
11.    current_lev = current_lev – 1 
12.    transform and reduce quadrants in T at current_lev+1 to 

current_lev and save in TempQs 
13.    copy (append) quadrants at current_lev from UQs to TempQs  
14.   sort and unique TempQs  
15.   reduce (by key) using z_val as the key to compute TempQs nc 
16.   scan on TempQs.nc to compute TempQs.fc 
17. copy TempQs to T  
18. return (T, P) 

Figure 10 Algorithm MAQ-Tree Construction  
 



 
 

The key idea of our fine-grained data parallel design is to process 
a query batch using BFS and redistribute workload within an 
iteration. As shown in Figure 11, the workload is represented as 
query pairs where each pair consists of a query id (query_id) and a 
quadtree node in quadtree T. The main process of the query 
algorithm in Figure 11 is from Line 3 to Line 15. For all pairs, 
rectangle-quadrant intersection tests are performed in parallel and 
the results are saved to Status (Line 8). In Line 9, W is reordered 
based on Status, where the first part of W contains pairs that need 
to be processed in the next iteration and the size is denoted as 
new_size. Based on Status, intersected pairs in W that need to be 
output will be copied to the result vector (Line 11). The next step 
is to expand the first new_size pairs of W that need be processed 
in the next iteration. Note that the  “expand”  operation  in  Line  13  
is almost identical to the “split”   operation   first introduced in 
polygon decomposition (Section 4.1, c.f. Figure 8) with a slight 
difference, i.e., the number of items to be expanded at next level. 
The number is always 4 in polygon decomposition but varies 
based on nc (number of children of the tree node) in batched 
query processing. During the process, the memory consumed by 
workload W might exceed the GPU device memory capacity. Our 
solution is to use a temporary space (TempW) allocated in CPU 
memory to offload out-of-capacity pairs (Line 5), which will be 
copied back to GPU when needed (Line 7).   

 
4.3.2 Parallel Polygon Query 
In addition to range query, we also support queries that are 
defined by polygons instead of rectangular windows, which we 
call polygon query. Such types of query are very useful in two 
scenarios. Firstly, visual analytics, where user defined a query by 
drawing a polygon, and secondly, to serve as an advanced spatial 
filtering for spatial joins on polygons. Instead of filtering based on 
rectangular MBRs of polygons, we may build a MAQ-Tree on 
one polygon dataset and use the other one as query polygons. As 
the MAQ-Tree represents polygons being queried more accurately 
than the MBRs of the polygons, it can be more effective in spatial 
filtering with fewer false positives that need to be refined in the 
refinement phase in spatial joins [7]. Since polygons are 
decomposed into quadrants rather than arbitrary rectangles as in 
range queries discussed in Section 4.1, an optimization can be 
done is to replace intersection test of two rectangles with bit 
operations over the Morton codes of two quadrants (c.f., Figure 
7).  

5. EXPERIMENTS 
We use a real large-scale dataset to validate the designs and test 
the efficiency of the implementations. The dataset consists of 
708,509 polygons of 4062 bird species distribution range maps in 
the West Hemisphere [4]. The total number of polygon vertices in 
the dataset is 77,699,991, i.e., roughly 110 vertices per polygon. 
We divide the original dataset into four groups based on numbers 
of vertices as shown in Table 1. Here we essentially treat the four 
groups of datasets as four separate datasets to test the scalability 
of our proposed techniques.  All the experiments are performed on 
a workstation equipped with two Intel Xeon CPUs (at 2.60 GHz, 
16 physical cores in total), 128 GB DDR3 memory and an Nvidia 
GTX Titan GPU. The operating system is CentOS 6.4 with GCC 
4.7.2, TBB 4.2 and CUDA 5.5 installed. All the codes are 
compiled using O3 optimization. We use the Thrust parallel 
library that comes with Nvidia CUDA SDK when parallel 
primitives are used in our GPU implementations. All runtimes are 
reported in milliseconds and are based on the average of 5 runs, 
unless otherwise stated.  

Table 1 Statistics of Bird Species Range Map Datasets 

Polygon 
Group 

num of vertices 
range  

total num of 
polygons 

total num of 
points 

1 10-100 497,559 11,961,389 
2 100-1,000 33,374 8,652,278 
3 1,000-10,000 6,719 20,436,931 
4 10,000-100,000 1,213 33,336,083 

5.1 Performance on Polygon Decomposition 
We implemented our proposed parallel decomposition algorithm 
described in Section 4.1 on Nvidia GPUs using Thrust library. A 
serial implementation using only one CPU core is adopted as the 
baseline (termed CPU-Serial) where polygons are decomposed 
iteratively. Since Thrust allows compiling its code to multi-core 
CPUs using TBB [3] as the backend, we use the TBB 
implementation for multi-core CPUs (termed as CPU-TBB). We 
performed experiments on polygon decomposition using different 
maximum quadtree levels (i.e., MAX_LEV), ranging from 12 to 
15, to understand how the implementations perform under 
different workloads. Since data transfer times are insignificant, 
they are excluded from reporting.  

The runtimes of polygon decompositions using different 
experiment settings are plotted in Figure 12. In subplots for 
dataset group 3 and 4, some CPU implementations cannot 
complete in reasonable time and are excluded. Figure 12 shows 
that our GPU implementations outperform all CPU counterparts at 
all quadtree levels. For dataset group 1, 43X-75X speedups are 
measured over the serial CPU implementations and 3.5X-7.1X 
speedups are measured over the multi-core CPU implementations 
(TBB, 16 CPU cores). The speedups are higher for dataset groups 
2, 3 and 4, which are 107X-190X and 11.1X-14.6X, respectively. 
The speedups for dataset group 1 are lower than the other three 
dataset groups might be due to the fact that the dataset group has a 
large number of small polygons and the ratio of data accesses to 
computation may be too high to saturate GPU computing power 
as the other three groups do. The speedups clearly demonstrate the 
efficiency of polygon decompositions on GPUs by taking 
advantages of their excellent floating point computing power as 
well as high memory bandwidth. Figure 12 also suggests that, 
while CPU serial implementation for dataset group 4 already takes 
more than four hours at quadtree level 13 and becomes infeasible 

Input: Query windows Q, Quadtree T 
Output: intersected pairs (query_id, quadrant_id) 
ParallelRangeQuery(Q, T): 
1. generate query pairs W = (query_id, T.root)  
2. size = Q.size() 
3. while (size > 0 or TempW.size() > 0): 
4.    if (size > MAX_CAPACITY): 
5.       copy out-of-capacity pairs to TempW 
6.    if (size == 0): 
7.       copy workload from TempW to W 
8.    Status = transform(W, IntersectionTest) 
            //first new_size pairs will be further processed 
9.    sort W according to Status  
10.    size = new_size 
11.    copy_if W to Result based on Status 
12.    if (size == 0) continue; 

   //quadrants are expanded for next iteration 
13.    NextW = expand(W, size)  
14.    W = NextW 
15.    size = W.size() 

Figure 11 Parallel Batched Range Query 



 
 

for higher quadtree levels, our GPU implementation only takes 
about 7 minutes at quadtree level 15. The high efficiency is 
desirable for indexing complex polygons with large numbers of 
vertices, such as those in group dataset 4.  
To help better understand the scalability of the data parallel design 
for polygon decomposition, the numbers of the resulting 
quadrants at the four quadtree levels in the four groups of datasets 
are plotted in Figure 13. As expected, the numbers of the resulting 
quadrants grow exponentially as the quadtree levels (MAX_LEV) 
increase which also explains that the runtimes of the three 
categories of implementations (CPU-serial, CPU-TBB and GPU) 
increase exponentially with the quadtree levels as observed in 
Figure 12. Note that the Y-Axis in both Figure 12 and Figure 13 
uses a logarithmic scale. From Figure 13 we can also see that, 
while dataset group 1 has larger number of polygons and larger 
number of total points than group 2 (Table 1), the resulting 
numbers of quadrants in group 2 is much larger than those of 
dataset group 1. The runtimes are largely determined by the 
resulting numbers of quadrants, not the numbers of input polygons 

or their total numbers of vertices. The results are consistent with 
our design where each quadrant needs to test its relationship with 
the polygon that its parent quadrant intersects. The number of 
tests and hence the runtimes are generally proportional to the total 
numbers of quadrants that are being tested at each quadrant level 
ranging from level 0 (root) to MAX_LEV.  

5.3 Performance on Quadtree Construction 
Since the four groups of polygon datasets used in the polygon 
decomposition module may produce similar numbers of 
quadrants, it is not suitable to use the same data to test the 
scalability of the design and implementation of quadtree 
construction. As such, we have combined all the computed 
quadrants and randomly select 216 to 221 quadrants for testing 
purposes. We repeat the random sampling process four times and 
report average runtimes for the 6 sampling tests. Note that the 
reported runtimes are end-to-end and include times to transfer 
data among CPUs and GPUs for GPU-based implementations. 
The results are plotted in Figure 14.  

  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12 Runtimes of the Four Dataset Groups Using Four Quadtree Levels 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 

 
 
 

Fig. 14 Runtime Comparison on Quadtree Constructions Figure 13 Sizes of Generated Quadrants in Four Groups 



 
 

From the figure, we can see that the serial implementation 
actually performs better on single-core CPUs when the number of 
quadrants is below 218. This is not surprising due to the overheads 
in data transfers and kernel invocations. However, when the 
number of quadrants is above 220 (~1 million), the speedup is 
increased to 15.2X. The speedup is further increased to 27.3X 
when the number of quadrants researches 2 million. Different 
from the CPU-serial implementation whose runtimes grow almost 
linearly with the number of quadrants, the runtimes of the GPU 
implementation increase only 0-5 milliseconds when the numbers 
of quadrant double for the number of quadrants up to 2 million, 
which is already the largest number of quadrants in our tests. We 
believe further speedups are achievable for larger datasets and/or 
using higher maximum quadtree levels (MAX_LEV) which is 
beyond the scope of our current applications. The results clearly 
indicate the efficiency of our parallel primitives based design and 
its GPU implementation. On the other hand, the runtimes for 
quadtree constructions are relatively insignificant when compared 
with those of polygon decompositions. As such, the significance 
of further performance improvement of the module is relatively 
low. Nevertheless, we consider our parallel primitives based 
design and implementation of MAQ-Tree using simple vector 
structures a novel and efficient technique when compared with 
traditional tree construction techniques that adopt DFS traversals 
and rely on intensive dynamic memory operations which are 
becoming increasingly expensive on modern hardware. We plan 
to perform direct comparisons in our future work.  

5.3 Performance on Spatial Queries 
We have generated five groups of random spatial window/range 
queries to test the scalability of the proposed parallel design and 
implementations. The numbers of queries in the four groups are 
1,000, 5,000, 10,000, 50,000 and 100,000, respectively. The 
window is first generated by randomly picking a center point (x/y) 
and then randomly picking a width and a height. The runtimes of 
the CPU-Serial, CPU-TBB and GPU implementations using 
quadtree level 12 are plotted in Figure 15 (using other levels 
shows similar results and are skipped). In a way similar to the 
results in quadtree constructions, the GPU implementation is only 
superior to the CPU-TBB implementation when there are 
sufficient numbers of queries to saturate GPU hardware. For the 
largest test set, the GPU implementation is about 10-20X faster 
than CPU-serial and about 2X faster than CPU-TBB when all the 
16 CPU cores are used.   
 
 
 
 
 
 
 
 
 
 

Figure 15 Runtime Comparison on Parallel Range Queries 
We have also performed experiments on parallel 

polygon queries by using the boundary of USA (labeled as “USA”  
in Figure 16) and boundaries of a set of countries in South 

America (labeled  as  “countries” in Figure 16) as our test data to 
query against the quadtree derived from the species range data at 
the four different quadtree levels and the results are plotted in 
Figure 16. As expected, the results are similar to range queries 
where GPU implementation is only faster when both the query 
polygons and the quadtrees are sufficiently large.  The speedup of 
the GPU implementation is up to 2X faster over CPU-TBB 
implementation.  

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Figure 16 Runtime Comparison on Parallel Polygon Queries 

6. Comparisons with PixelBox* on Polygon 
Decomposition 
Despite that PixelBox proposed in [5] is designed for computing 
the area of intersection between two polygons rather than 
indexing a single polygon as in our work, they share the 
commonality on top-down and level-wise polygon decomposition. 
We obtained the source code of PixelBox from their authors and 
provided an interface for constructing quadtree from multiple 
complex polygons on top of the SubSampBox routine in 
PixelBox. We call the resulting hybrid technique as PixelBox*. 
Similar to PixelBox, PixelBox* also maintains a stack in the 
shared memory of a thread block that is assigned to decompose a 
polygon. Each thread in the tread block is assigned to decompose 
a single box/quadrant and the decomposed quadrants are pushed 
onto the stack for further decompositions in the next round (level) 
if they are qualified. Due to the last-in-first-out nature of stacks, 
PixelBox* inherits the DFS order when decomposing polygons. 
We also note that, different from the original PixelBox that only 
supports single-ring polygons, PixelBox* supports complex 
polygons with holes after extension, which is a must in our 
applications.   

Different from PixelBox* (and hence PixelBox), our 
parallel primitives based design adopts a BFS order where the 
polygons are decomposed level by level. In addition, we do not 
use a private queue for each polygon at the thread block level. 
Instead, a global queue is maintained for all polygons due to the 
parallel primitives based design as the underlying parallel 
primitives support only element-wise operations defined in their 
functors. While it is generally believed that implementations using 
native programming languages such as CUDA and using shared 
memory can significantly improve overall performance, we next 
show empirically that our parallel primitives based design and 
implementation is more efficient than PixelBox*, which is 
implemented in CUDA and optimized for GPUs (see [5] for 
design considerations and optimization details). First, similar to 
our experiments on R-Tree traversals, BFS is more efficient than 
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DFS on GPUs as there are much higher degrees of coalesced 
memory accesses using BFS despite that accessing the stack on 
shared memory is faster than accessing the queue structure in 
GPU device memory in our technique. Second, to make full use of 
the GPU hardware capacity, the number of split factor should be 
at least the same as the warp size (32) in PixelBox* (and 
PixelBox). Take the N=8*8=64 decomposition pattern for 
example, when traversing along the polygon boundary, the 
number of expensive tests on the relationship between 
boxes/quadrants and polygons can be significantly smaller than 
T=64 when using a multi-level N=2*2=4 decomposition pattern. 
As our parallel primitives based approach exploits fine-grained 
data parallelisms and is agnostic to the thread block boundary 
(which is determined by parallel primitives and invisible to users), 
it does not suffer from GPU resource utilization constraints as 
PixelBox and PixelBox*.  

For fair comparisons, we force PixelBox* to use N=64 
(which is suitable for PixelBox) instead of N=4 in each iteration 
(as in our original design), in order to improve GPU utilization as 
in PixelBox. The configuration is termed as PixelBox*-shared. 
Furthermore, to get rid of the shared memory limit in PixelBox* 
and potentially achieve better performance, we have modified 
PixelBox* to use GPU global memory for the stack. The 
modification allows experiment with different N sizes without 
worrying about overflowing the stack due to limited per-thread 
block shared memory capacity. We term the new implementation 
as PixelBox*-global. We compare our proposed parallel 
primitives based technique with both PixelBox*-shared and 
PixelBox*-global. The runtimes on the four dataset groups are 
plotted in Figure 17.  

 
Figure 17 Runtime Comparisons among the Proposed 

technique and PixelBox* Variations 
The fact that our parallel primitives based technique is 

significantly faster (~3X) than PixelBox*-global, which is the best 
among different PixelBox* variations, can be explained by the 
previous discussions. However, the observation that PixelBox*-
global is about ~2X faster than PixelBox*-shared across the four 
dataset groups is somewhat surprising, given the common belief 
that using shared memory can boost GPU performance 
significantly. One explanation is that, the reported PixelBox*-
global runtimes are the best among all configurations using 
different N sizes. While N can be neither too big nor too small to 
meet shared memory capacity constraints in PixelBox*-shared, 
using global memory allows search a much larger parameter space 
and get better performance in PixelBox*-global. For example, 
while using a large N may reduce the GPU occupancy in 
PixelBox*-shared, it may actually improve the overall 

performance in PixelBox*-global due to better warp scheduling 
opportunities when there are a larger number of warps in a thread 
block can be selected for execution. In addition, coalesced global 
memory accesses to the stack may render the advantages of using 
shared memory less signficant in this particular application.  

In summary, while more thorough investigations are 
needed to fully understand the advantages of our parallel 
primitives based design and implementation for polygon 
decomposition in our particular application, our experiments have 
shown that, using high level parallel tools, such as parallel 
primitives, may not necessarily lead to inferior performance. Both 
efficiency and simplicity can be achieved simultaneously by 
identifying the inherent data parallelisms in applications, map 
them to parallel primitives and chain the parallel primitives to 
develop end-to-end, high-performance applications.  

7. Summary and Discussions 
Our research and development effort on quadtree indexing and 
spatial query processing are motivated by the practical needs in 
efficiently managing large-scale species distribution data, in a 
way similar to several recent works on managing spatial data in 
high-resolution biomedical images using new hardware, ranging 
from multi-core CPUs [9], GPUs [5] to Hadoop-alike distributed 
systems [11]. Given the ubiquitous nature of spatial data, it is 
important to research and develop a set of high-performance and 
scalable spatial data management tools across multiple 
commodity parallel hardware platforms and are applicable to 
multiple domains.   

While previous research works have explored different 
parallelization techniques that are popular to their respective 
hardware platforms, in this study, we have investigated a different 
parallelization strategy in hope to achieve both simplicity in 
design/implementation and efficiency in execution in the context 
of spatial data management. Our case study on quadtree indexing 
and spatial query processing based on the quadtree indexing 
structure has demonstrated the feasibility of the proposed strategy. 
Our primitives based parallel designs, although originally 
designed for GPUs, can be easily ported to multi-core CPUs and 
achieve high performance.  

Although the parallel primitives based techniques may 
not always bring the best performance due to the inevitable library 
overheads, we believe that the process in seeking data parallel 
designs helps understand the inherent parallelisms in processing 
large-scale spatial data. Different from hardware specific designs, 
fine-grained data parallel designs on top of parallel primitives 
may both scale up and scale out (automatically) across multiple 
hardware generations. This may also simplify integration of 
multiple hardware platforms, as only a single codebase needs to 
be maintained as long as the parallel primitives are supported by 
the underlying hardware platforms. We believe the feature is 
desirable from an application perspective and the approach merits 
further research   

8. Conclusions and Future Work 
Motivated by the practical needs in efficiently managing large-
scale geo-referenced species distributed data on new hardware and 
the difficulties in developing hardware specific techniques for 
such complex applications, we have proposed a parallel primitives 
based approach to spatial data management. Using quadtree 
indexing and spatial query processing on complex polygons as a 
case study, we have developed data parallel designs for polygon 



 
 

decomposition, quadtree construction and both range and polygon 
based spatial query processing. We implemented the designs on 
both GPUs and multi-core CPUs. Experiments have demonstrated 
that, GPU implementations can achieve 100X+ speedups over 
serial CPU implementations and 10X+ speedups over multi-core 
CPU implementations for computationally intensive tasks, such as 
polygon decompositions for dataset groups 2-4. While the 
speedups over single and 16 CPU cores drop to 10-27X and less 
than 2X for quadtree construction and spatial query processing, 
respectively, they are still significant from an application 
perspective.   

For future work, first of all, we would like to apply the 
primitives based parallel design strategy to additional spatial data 
management tasks and develop a comprehensive set of tools to 
support spatial data management on modern parallel hardware. 
Second, we plan to provide an integrated frontend with SQL 
interface to our existing toolset to help using commodity parallel 
hardware more effectively. Finally, as discussed, we would like to 
investigate how the data parallel designs may help efficient 
scheduling across multiple hardware platforms both within and 
across computing nodes for larger scale data processing.   
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