

Data Parallel Quadtree Indexing and Spatial Query
Processing of Complex Polygon Data on GPUs

Jianting Zhang
Department of Computer Science
The City College of New York

 New York, NY, USA
jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, USA
syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK, USA

ggruenwald@ou.edu

ABSTRACT
Fast growing computing power on commodity parallel hardware
makes it both an opportunity and a challenge to use modern
hardware for large-scale data management. While GPU (Graphics
Processing Unit) computing is conceptually an excellent match for
spatial data management which is both data and computing
intensive, the complexity of multi-dimensional spatial indexing
and query processing techniques has made it difficult to port
existing serial algorithms to GPUs. In this study, we propose a
parallel primitives based strategy for spatial data management.
We present data parallel designs for polygon decomposition,
quadtree construction and spatial query processing. These designs
can be realized on both GPUs and multi-core CPUs as well as
future generation hardware when parallel libraries that support the
primitives are available. Using a large-scale geo-referenced
species distribution dataset as an example, the GPU-based
implementations can achieve up to 190X speedups over serial
CPU implementations and 14X speedups over 16-core CPU
implementations for polygon decomposition, which is the most
computing intensive module in the end-to-end spatial data
management solution we have provided. For quadtree
constructions and spatial range/polygon query modules, which are
more data intensive, the speedups over single and multi-core
CPUs are up to 27X and 2X, respectively, depending on
workloads. Comparing with a similar technique on polygon
decomposition that is realized using a native parallel
programming language, our parallel primitives based
implementation is up to 3X faster on the species distribution
dataset. The results may suggest that simplicity and efficiency can
be achieved simultaneously using the data parallel design strategy
by identifying the inherent data parallelisms in application
domains.

1. INTRODUCTION
Multi-dimensional indexing is crucial in speeding up

spatial query processing. Hundreds of indexing structures have
been proposed in the past few decades [1]. However, the majority
of existing indexing structures are designed for traditional
computing models, i.e., serial algorithms targeted for

uniprocessors in a disk-resident system. Meanwhile, as argued in
[2], due to the increasing diversity and heterogeneity of the
mainstream hardware, it is no longer possible to simply work on
top of abstractions provided by either the operating system or by
system libraries and hope to achieve high performance
automatically. However, hardware sensitive designs are fairly
costly and it is very difficult to provide an optimized design for
each and every of hardware architectures.

In this study, we aim at exploiting the inherent data
parallelisms in processing multi-dimensional spatial data and
exploring data parallel designs to achieve high-performance
across multiple parallel hardware platforms. We use quadtree
indexing and querying on complex polygons, which has many real
world applications in Geographical Information Systems (GIS)
and Spatial Databases, as a case study to demonstrate the
feasibility and efficiency of the proposed techniques. Using real
world data and targeting at real world applications of large-scale
species distribution data, we evaluate the realizations of our data
parallel designs on GPUs.

Our technical contributions are three-fold. First, we
develop data parallel designs for indexing and querying complex
polygons in multiple overlapped polygonal datasets that can be
efficiently realized on GPUs using well-understood and well-
supported parallel primitives [3]. Second, we compare our
technique on polygon decomposition with a native parallel
implementation and demonstrate that our parallel primitives based
implementation can achieve both simplicity and efficiency. Third,
we apply our technique to a large-scale global species distribution
dataset and have achieved considerable speedups over serial
implementations on CPUs, which is signficant from an application
perspective.

The rest of the paper is arranged as follows. Section 2
introduces background and related work on indexing multi-
dimensional spatial data on new hardware, including GPUs.
Section 3 presents the application context of our technique and
proposes a spatial database approach to managing large-scale
species distribution data. Section 4 provides details on data
parallel designs of spatial indexing and query processing
techniques on GPUs. Section 5 presents experiment results on the
proposed techniques using the 4000+ bird distribution range maps
in the West hemisphere [4] on GPUs. Section 6 provides
comparison with the PixelBox algorithm [5] that targets at a
similar technical context but uses a different parallelization
strategy on GPUs. Section 7 discusses several high-level design,
implementation and application issues. Finally, Section 8 is
conclusion and future work directions.

2. BACKGROUND AND RELATED WORK
Spatial data processing is known to be both data and

computing intensive [6]. Various techniques, such as minimizing
disk I/O overheads in spatial indexing [1] and the two phase filter-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited
to present their results at ADMS'14, a workshop co-located with
The 40th International Conference on Very Large Data Bases,
September 1st - 5th 2014, Hangzhou, China.

refinement strategy in spatial joins have been proposed [7]. The
increasingly available new hardware, such as inexpensive Solid
State Drives (SSDs), large memory capacities, multi-core CPUs,
and many-core GPUs, have significantly changed the cost models
on which traditional spatial data processing techniques are based.
Developing new indexing and query processing techniques and
adapting traditional ones to make full use of new hardware
features are active research topics in spatial data processing in the
last few years. A generic framework for flash aware trees is
proposed in [8]. The TOUCH technique performs in-memory
spatial join by developing a hierarchical data oriented partitioning
[9]. Furthermore, a comprehensive analysis of iterated spatial
joins in main memory has been provided through extensive
experiments [10]. MapReduce/Hadoop based techniques have
been proposed to achieve higher scalability for spatial
warehousing [11] and geometry computation [12].

Compared with techniques for processing point data, it
is technically more challenging to efficiently index and query
“complex” polygons. Real world polygons, even for those that are
defined as mathematically “simple” polygons, can have complex
data structures. For example, according to Open Geospatial
Consortium (OGC) Simple Feature Specification (SFS) [13], a
simple polygon may have one outer ring and many (including 0, 1
or 1+) inner rings. Determining the spatial relationships between a
quadrant and a polygon with multiple rings, which is fundamental
in quadtree-based indexing, is much more complex than
processing polygons with a single ring. Furthermore, complex
polygons may overlap and there might be multiple polygons
intersect with a single quadrant. Traditional Minimum Bounding
Rectangle (MBR) based spatial indexing techniques are not likely
to be efficient for significantly overlapped polygons due to
decreased spatial discrimination power. This is because MBRs of
overlapped polygons are likely to have higher degrees of overlap.
In addition, many geometric algorithms that are used in the
filtering phase of spatial join processing [7] have at least linear
time complexity with respect to the number of polygon vertices.
As real world polygons can have large numbers of vertices and a
few of them in a dataset may have extremely large numbers of
vertices, the filtering phase can be computing intensive, incurs
long runtimes and difficult to parallelize due to load unbalancing.

In this study, we refer multi-ring and potentially highly
overlapping polygons as “complex” polygons although they are
still considered “simple” mathematically. It is intuitive to rasterize
each polygon as a binary raster to speed up spatial queries. The
QUILT geographical information system [14] developed more
than two decades ago was based on region quadtrees where linear
quadtree nodes are used to represent polygons after rasterization
and support various queries. Linear quadtrees are also used to
index polygon MBRs so that leaf quadtree nodes can also be
indexed by B+ trees based on their Space Filling Curve (SFC [1])
codes in disk-resident databases. However, while the computing
overhead to generate linear quadtrees from binary rasters and
MBRs are light, directly generating quadrants from polygons can
be expensive which makes it desirable to utilize parallel hardware
to speed up the process. In this study, we aim at indexing polygon
internals in-memory and utilizing parallel processing units for
high performance. Our techniques represent complex polygon as
sets of independent quadrants that can be manipulated collectively
in parallel at different granularities (quadtree levels). By
decomposing complex polygons into large numbers of simple
quadrants (squares in geometry), the sharp boundary between
spatial filtering and spatial refinement using MBRs in traditional

spatial joins is now multi-level and can be easily adjusted based
on applications and/or system resources at runtime. The increased
data parallelisms make our techniques more parallelization
friendly on massively data parallel GPUs.

In this study, we extensively utilize parallel primitives
wherever possible to exploit data parallelisms and achieve
portability among multiple hardware platforms, including GPUs.
The strategy is significantly different from traditional approaches
that program parallel hardware using their native programming
languages directly. Here parallel primitives refer to a collection of
fundamental algorithms that can be run on parallel machines, such
as map/transform, sort, scan, and reduction [3]. The behaviors of
popular parallel primitives on one dimensional (1D) arrays or
vectors are well-understood and are well-supported in multiple
parallel platforms. Despite there are inevitable parallel library
overheads, very often using parallel primitives that have been
highly tuned for different hardware achieves better performance
than native parallel programs. In our previous works on GPU-
based spatial data management, including grid-file based point
data indexing [15], min-max quadtree based raster data indexing
[16], point-to-polyline distance based Nearest Neighbor (NN)
spatial join [15] and point-in-polyline test based spatial join [17],
we have extensively explored parallel primitives based designs
and implementations with encouraging good performance.
However, they have not been compared with native parallel
implementations. This study targets at a more complex spatial
data management problem, i.e., indexing complex polygon
internals and speeding up spatial queries (Section 4 and 5). We
also compare our data parallel technique for the most computing
intensive step in indexing with a similar published technique
using a native parallel implementation (PixelBox, [5]) (Section 6).
We hope our study can stimulate the discussions on seeking
effective ways, with respect to both efficiency and productivity, in
utilizing GPUs for domain specific applications.

In the context of indexing polygon internals to speed up
spatial query processing, we note that Microsoft SQL Server
Spatial adopted a similar hierarchical decomposition of space
strategy and used B+ tree to index the decomposed polygons [18].
Spatial query processing is then based on the symbolic ancestor-
descendent relationships of the identifiers of decomposed
quadrants which is typically much faster than testing spatial
relationships based on geometric computation on polygon
vertices. However, the algorithm in tessellating polygons into
quadrants, which is the key to the performance of polygon
indexing, was not well-documented. Although our experiments
have shown that the polygon indexing module in SQL Server
2012 release is able to utilize multiple CPU cores, it is unclear
how the parallelization is achieved and whether it is possible to
extend it to many-core GPUs efficiently.

Another closely related work is the GPU-based
PixelBox algorithm on intersecting two polygons derived from
high resolution biomedical images [5]. Although similar
geometrical principles in determining whether a box or quadrant
intersects with a polygon are used in both PixelBox and our
technique on polygon decomposition for spatial indexing,
PixelBox intersects two polygons and computes their intersection
area at the same time while our technique is designed to
decompose individual polygons. There are also several additional
key differences between the two techniques. First, when multiple
polygons are involved, our technique decomposes each polygon
exactly once and can reuse the resulting quadrants whereas
needed. In contrast, PixelBox would require pair-wise

intersections among multiple polygons. Although PixelBox meets
its design requirement for its targeted application domain well,
where only pair-wise intersections on image-derived single-ring
polygons are needed, it is not efficient in more general cases (such
as our species distribution data management) when multiple
polygons are involved in intersections simultaneously. Second,
PixelBox is implemented natively using CUDA on Nvidia GPUs
while our technique is based on parallel primitives. Despite that
the CUDA implementation has been extensively optimized as
reported in [5], experiments have shown that our technique is not
only simpler in design but also performs up to 3X better. The
comparisons are provided in Section 6.

In addition to adapting traditional linear quadtree
techniques [1] to parallel computing on GPUs, our technique is
also related to rasterization on parallel hardware for rendering
purposes in computer graphics. Efficient parallel techniques to
rasterize triangles into pixels are cornerstones of high-
performance computer graphics and have been extensively
researched. A recent study by Nvidia researchers has shown that
software rasterization is within a factor of 2-8X compared to the
hardware graphics pipeline on a high-end GPU [19]. While it is
interesting to apply these software rasterization techniques for
spatial indexing and query processing in a data management
context, we argue that there are mismatches between the two
application domains which may render the software rasterization
techniques less applicable in spatial data processing. First and
foremost, rasterization techniques for computer graphics are
optimized for triangles and cannot be used to process real world
complex polygons directly. In fact, the GL_POLYGON primitive
defined by OpenGL does not guarantee the correctness of
rendering concave polygons, in addition to being much slower
than GL_TRIANGLES. While some tessellation and triangulation
algorithms and packages are available to decompose complex
polygons to simple polygons or triangles, they may not be
supported by hardware and are left for serial software
implementations. It is non-trivial to parallelize such
implementations on GPUs with high performance. Furthermore,
while it is possible to identify uniform quadrants from rasterized
pixels efficiently, the ultimate goal of software rasterization in
computer graphics is to generate pixel values for triangles that are
visible from current views with visually acceptable resolution. In
contrast, our goal is to decompose polygons in a spatial database
to speed up query processing that guarantees pre-defined numeric
accuracy.

3. A Spatial Database Approach to Managing
Large-Scale Species Distribution Data

Historically, species range maps represent fundamental
understanding of the observed and/or projected distributions of
species. While only a limited number of species are documented
with reasonably accurate range maps throughout human history,
several enabling technologies have made biodiversity data
available at much finer scales in the past decade [20], including
DNA barcoding for species identification and geo-referring for
converting descriptive museum records to geographical
coordinates. The increasingly richer biodiversity data has enabled
ecologists, biogeography researchers and biodiversity
conservation practitioners to compile species range maps from
multiple sources with increasing accuracies. For example,
NatureServ has published range maps of 4000+ birds in the west
hemisphere [4] with 700+ thousand complex polygons and more
than 77 million vertices in ESRI Shapefile format [21]. While

these datasets are useful for visualization purposes and for
scientists that are specialized in a small subset of species to
examine the data manually, it is highly desirable to manage such
data in a database environment to allow queries across a large
number of species and understand the relationships between
global and regional biodiversity patterns and their underlying
environments. Figure 1 illustrates the potential queries among
taxonomy, geography and environment [22].

Figure 1 Illustration of Potential Queries on Species
Distribution Data

Figure 2 A Spatial Query on Species Distribution Data in SQL

Given the numbers of species, ecological zones and

environmental variables, among the virtually countless queries, a
fundamental one is to retrieve the list of species and their
distribution areas within Region of Interests (ROIs). Given the
species range map stored in table SP_TB (sp_id, sp_geom) and
the ROIs stored in table QW_TB (roi_id, roi_geom), where
sp_geom and roi_geom represent geometrical objects (polygons
and rectangles, respectively), the spatial query can be formulated
as the SQL statement listed in Figure 2 according to OGC SFS
specification [13]. We note that the OGC SFS specification has
been largely adopted by SQL/MM and implemented in major
commercial and open source spatial databases, e.g., Microsoft
SQL Server Spatial [18] and PostgreSQL/PostGIS [23]. The
WHERE clause (using ST_INTERSETS boolean function) in
Figure 2 serves as an optimization trick to reduce the number of
calls to the ST_INTERSECTION function for intersecting two

SELECT aoi_id, sp_id, SUM (ST_AREA (inter_geom))
FROM (
 SELECT aoi_id, sp_id,

ST_INTERSECTION (sp_geom,qw_geom) AS inter_geom
 FROM SP_TB, QW_TB
 WHERE ST_INTERSECTS (sp_geometry, qw_geom)
)
GROUP BY aoi_id, sp_id
HAVING SUM(ST_AREA(inter_geom)) >T;

Species

Environment

Taxonomic ranks
 Kingdom
 Phylum
 Class
 Order
 Family
 Genus
 Species
 SubSpecies

Area

Water-
Energy Latitude

Altitude Productivity

Taxonomic (T)

Geographical (G)

Correlation

 Distribution Configuration

Environmental (E)

 Distribution

Community – Ecosystem – Biomes – Biosphere

polygons which is very expensive for complex polygons. The
optional HAVING clause can be used to set the threshold to
prevent from including resulting intersected polygons that are too
smaller, such as “sliver polygons” that appear along the borders of
the two intersecting polygons. Similarly, species distribution
polygons can also be used as ROIs to query environmental
variables. Although the exact query syntax may be different for
spatially querying environmental variables in vector format (e.g.,
rain gauge observations) and in raster format (e.g., satellite
imagery), they can be formulated in a similar spatial query
processing framework [23].

For complex polygons with large number of vertices
and multiple holes, the query shown in Figure 2 may incur very
long response times. Our previous experiments have shown that
even a single simple rectangular ROI (e.g., spatial range/window
query), when used to query against the bird range map in a
PostgreSQL/PostGIS database, may incur more than 100 seconds
[24]. This makes interactive explorations of the dataset
impractical. We have developed techniques to decompose
polygons into quadrants in an offline manner in order to speed up
online query processing in both a disk-resident database
(PostgreSQL/PostGIS) [24] and a memory-resident database
environment [25]. While the online query performance is
satisfactory for both systems (with the help of parallelization on
the disk-resident system through query window decomposition
[24]), it took a long time for offline processing using sophisticated
geospatial software (e.g., GDAL [26]) which is too slow for large-
scale data. In this study, we aim at speeding up polygon
decomposition by utilizing the increasing computing power on
parallel hardware. Different from previous techniques that
extensively use recursions and dynamic memory for both polygon
decompositions and quadtree constructions which make them very
difficult to parallelize, as detailed in the next section, our new data
parallel designs using parallel primitives make them portable
across multiple hardware platforms and easy to scale to large
numbers of processing units. Experiment results are provided in
Section 5 and comparisons with a similar technique are reported
in Section 6.

4. Data Parallel Designs on Quadtree
Indexing and Spatial Query Processing
Compared with manipulating data structures with regular access
patterns (such as arrays and matrices), deriving irregular data
structures (such as quadtrees) from complex polygons with
multiple layers of variable structures on GPUs is technically
challenging. As discussed in Section 2, PixelBox [5] provides a
native CUDA based design for computing the area of the
intersection of two single-ring polygons. Despite that multi-ring
polygons are not supported and the output is only a scalar value
(area), the implementation is already very sophisticated. Our
technique aims at supporting multi-ring polygons (which is
mandatory in our applications) and deriving quadtree structures
for indexing complex polygons. We next present our data parallel
designs for the three major modules in our technique, i.e.,
decomposing polygon into quadrants at multiple levels,
constructing Multiple Attribute Quadtrees (MAQ-Tree [25]) and
spatial queries on quadtrees, by identifying data parallelisms in
each module. Steps in each parallel design are then mapped to
well-understood and well-supported parallel primitives. Simple
loops on top of these parallel primitives may be needed to handle
multiple tree levels, which are supported by the host language of
the parallel library being used. We refer to [3] for excellent

introductions to parallel primitives and the Thrust library website1
for the exact syntax of parallel primitives that are being used in
this study.

4.1 Polygon Decomposition
While it is possible to rasterize polygons into binary rasters and
then use the technique similar to our previous work reported in
[25] to identify linear quadtree nodes and construct quadtrees,
rasterizing complex polygons to fine resolution grid cells incur
significant computing and storage burden. Furthermore, it is very
difficult if not impossible to parallelize polygon rasterization
using fine-grained data parallelisms on GPUs. Our technique
adopts a top-down approach by performing quadrant-polygon
intersection tests in a level-wise manner. The top-down approach
allows stop at any level based on user specification and/or
available system resources. The level-wise processing can
accumulate sufficient quadrant-polygon pairs across multiple
polygons and utilize large number of processing units (e.g., GPU
cores) more effectively. While our data parallel designs using
parallel primitives are significantly different from PixelBox [5] as
discussed previously, we apply a similar set of computational
geometry principles for quadrant-polygon test which is the
building block for polygon decomposition on a polygonal dataset
with a large number of polygons. We next present the procedure
(Figure 4) for testing the relationship (left of Figure 3) between a
single quadrant-polygon pair before we introduce a data parallel
procedure (Figure 5) to decompose multiple polygons in a dataset
into multiple quadrants at different levels. An example illustrates
a decomposed polygon is shown in the right part of Figure 3.

Figure 3 Five Relationships between a Quadrant and a Polygon

with a Hole (left) and An Example of Decomposed Polygon
As shown in Figure 3, among the three possible relationships
between a quadrant and a polygon (inside/intersect/outside), when
a polygon has holes, a quadrant can be outside the polygon if it is
inside one of the holes. In Figure 4, function isEdgeIntersect (line
2) is first used for testing whether any of the polygon edges
intersects with the quadrant (type C) by checking whether any of
polygon edges (lines) intersect with the quadrant. This is
equivalent to line-rectangle intersection test which is well defined
in computational geometry. If none of the polygon’s edges
intersects with the quadrant, function pointInRing is applied to
both the outer ring and all the inner rings for further tests. The
classic ray-tracing algorithm for point-in-polygon test [27] can be
used for implementing function pointInRing. We first test whether
there is any edge of the outer ring intersects with the input
quadrant; if so, the procedure immediately terminates with type C
(Line 3). If none of them intersects with the quadrant, vertices of
the quadrant should be either all inside or outside the ring.

1 https://github.com/thrust/thrust

Therefore, by performing a point-in-polygon test on one vertex of
the quadrant and the outer ring (Line 4), we will know whether all
vertices of the quadrant are inside/outside the outer ring. Notice
that we start from the minimum enclosing quadrant of the polygon
being processed to ensure that there is no chance for subsequent
lower level quadrants to enclose the outer ring. As such, if the
point in polygon test at Line 4 is negative, the quadrant must be
outside the polygon (type A). If a quadrant is completely inside
the outer ring, we still need to verify its relationship with each
inner ring (Line 6~11). Recall that there may be 0, 1 or 1+ inner
rings in a complex polygon (c.f. Section 2). When an inner ring
encloses the quadrant, such quadrant is then outside the polygon
(type A’). On the other hand, even if all the vertices of the
quadrant are outside of all inner rings, the quadrant can be either
complete inside the polygon (type B) or intersect with the polygon
(type C’). To distinguish these two cases, we can simply test
whether any point of an inner ring falls within the quadrant (Line
9). Since quadrants are special rectangles (squares), testing
whether a point is in a quadrant is fairly straightforward.
Assuming a polygon has N points, the complexity of determine
whether any edge intersects with the quadrant is O(N).
Meanwhile, the point-in-polygon test using the ray-tracing
algorithm is also O(N) [27]. Thus, the total complexity of function
QPRelationTest is O(N).

Based on the relationships we have defined previously

(Figure 3), quadrants of a polygon can be generated in a top-down
manner by iteratively testing relationship among refined quadrants
and the polygon. The procedure is illustrated in Figure 5. We first
generate the minimum enclosing quadrant based on the MBR of
the polygon and then split the quadrant into four child quadrants.
The child quadrants are subsequently tested against the polygon.
If a quadrant is completely outside or within the polygon (e.g.,
type A and B in Figure 5), we stop the decomposition process on
such quadrant and output a leaf quadrant for the polygon.
Otherwise, the quadrant either intersects with the polygon or
encloses a ring of the polygon (type C). We then test whether such
quadrant reaches the predefined maximum level (MAX_LEV in
Figure 6) and decide whether it needs to be further processed.

The parallel primitives based GPU implementation is
presented in Figure 6 where the input is a vector of complex
polygons (for parallel processing) and the output is a vector of
quadrants. Note that some parallel primitives may take functional
objects (functors) as parameters. All threads that are assigned to
process elements in input polygon vector will execute the functor

in parallel, where parameters of the functors are extracted from
the input vector by the underlying parallel library dispatcher.

In Line 1, from a vector of polygons, we generate their
corresponding minimum enclosing quadrants in parallel and store
them in a vector VQ. Each element of VQ is a tuple in the format
of (polygon_id, z_val, lev), where polygon_id is an identifier to
locate the input polygon, z_val and lev represent the Morton code
[1] and the quadrant level, respectively. Given an MBR, the level
of the quadrant being processed can be calculated as
lev=__clz(z1^z2)/d where z1 and z2 are the Morton codes of the
top-left and lower-right corners, ^ is the bit-wise XOR operation,
d=2 is the number of dimensions and __clz is the intrinsic
function available on CUDA-enabled GPUs for calculating the
number of leading zeros in an integer (similar intrinsic function is
available for other hardware architectures). The Morton code of
the quadrant code (z_val) is calculated as z1 with the lower 2*lev
bits set to zeros if lev is larger than 0. In particular, lev =0 denotes
the minimum enclosing quadrant is the root of the quadtree being
constructed. Examples for computing the lev value and the
Morton codes for two MBRs are shown in Figure 7. Note that we
use 4-bit words (W=4) in the __clz function in the figure for
illustration purpose while our GPU implementation uses 32-bit
words (W=32). The design is loop free and can be implemented as
a functor to work with a map/transform parallel primitive.

Figure 5 Illustration of Indexing Polygon Internals through
Iterative Polygon Decomposition

Input: quadrant Q, polygon P
Output: relation type A, B or C
QPRelationTest(Q, P)

1. V = vertex(Q) //get one of the vertex of Q
2. intersect = isEdgeIntersect(Q, P) //quadrant intersection test
3. if (intersect) return C;
4. inOuterRing = pointInRing(V, P.outer_ring)
5. if(!inOuterRing) return A; //outside of outer ring
6. for each IR in P.inner_rings do:
7. inInnerRing = pointInRing(V, IR)
8. if (inInnerRing) return A //inside a inner ring
9. if (any point of IR is in Q)
10. return C //quadrant encloses a ring
11. end for
12. return B //inside

Figure 4 Algorithm on Testing Relationship between Quadrant
and Polygon

 Input: vector of polygons Ps

Output: vector of quadrant pairs Qs
ParallelPolygonDecomposition(Ps, Qs):
1. VQ = transform(Ps) //generate minimum enclosing

 quadrants from MBRs of Ps
2. While (VQ.size() > 0 or TempQ.size() > 0):
3. if (VQ.size() > MAX_CAPACITY):
4. copy out-of-capacity items from VQ to TempQ
5. if (VQ.size() == 0 and TempQ.size() > 0):
6. copy items from TempQ to VQ
7. NextVQ = split(VQ) //split is a combination of scatter,

 scan and transform primitives
8. Status = transform(NextVQ, QPRelationTest) //for each

 quadrant, a QPRelationTest is performed
9. sort(Status, NextVQ) // sort NextVQ based on Status
// if Status is set to either leaf node or MAX_LEV is reached
10. Qs = copy_if(NextVQ, Status, MAX_LEV)
//Otherwise
11. VQ = copy_if(NextVQ, Status, MAX_LEV)
12. return Qs

Figure 6 Algorithm Polygon Decomposition

Quadrant
Refinement

Relationship Test

Type A

Type B

Type C

Stop
Decomposition

Max Level
Reached?

Yes

No

Continue
Decomposition

Lines 2~11 in Figure 6 consist the major part of the
whole procedure of polygon decomposition. Since that GPU
memory is limited comparing with CPU memory, we use a
temporary vector TempQ in CPU memory to hold workload when
it exceeds the predefined MAX_CAPACITY threshold (Lines 2-
6). The threshold is set based on the size of available GPU
memory. In Line 7, VQ is split into four sub-quadrants at the next
level and saved to NextVQ (to be detailed next). After the split,
each new quadrant is tested with its corresponding polygon, and
the relationship test results are saved in a vector called Status
(Line 8). Line 9 sorts NextVQ based on Status before we can
copy the quadrants to Qs which stores the output quadrant (Line
10) or to VQ for the next iteration (Line 11).

Figure 7 Examples of Extracting Minimum Enclosing Quadrants

from Polygon MBRs
The split procedure used in Line 7 of Figure 6 is

illustrated in Figure 8 where the two upper shaded quadrants need
to be split. At the first step, a vector of 4s is set up and an
exclusive scan is used to generate write positions for input data.
The second step writes input data in VQ to NextVQ using a
scatter primitive according to the previously generated positions
followed by an inclusive scan primitive to fill the rest of the
vector. The scan is implemented by using “maximum” as its
functor and we call it as “inclusive maximum scan”. A transform
primitive is lastly used to generate the Morton codes
(z_val’=4*z_val+{0,1,2,3}) and levels (lev’=lev+1) in parallel.
The offset (0-3) for each quadrant in Morton code calculation can
be easily derived from CUDA thread identifiers, which does not
require additional space in the GPU implementation.

Figure 8 Illustration of Data-Parallel Split Procedure Using

Parallel Primitives

4.2 Quadtree Construction
We do not keep the parent-child relationships among quadrants in
the polygon decomposition module although we could have done

so. The most important reason in the decision is that keeping such
relationships in a data parallel computing setting is much more
cumbersome than in a serial computing setting and we want to
simplify the implementation of polygon decomposition module as
much as possible. Furthermore, a quadrant may be covered by
multiple polygons and we would like to group polygons based on
quadrant identifiers. This is not possible during polygon
decomposition as quadrants are grouped based on polygon
identifiers there. However, after quadrants corresponding to leaf
nodes are identified by the polygon decomposition module,
constructing a quadtree from quadrants of a set of polygons can be
accomplished by chaining parallel primitives as in the polygon
decomposition module (Section 4.1). We note that, while
quadrants identified from a single polygon do not overlap (classic
quadtree structures where typically there is no information to be
associated with intermediate nodes), quadrants identified from a
set of polygons may overlap and polygon identifiers may be
associated with intermediate tree nodes. Our previous work on
constructing such an extended quadtree from a large number of
overlapped polygon datasets on CPUs, termed as Multi-Attribute
Quadtree or MAQ-Tree [25] is illustrated in the top of Figure 9
where the tree is constructed dynamically in CPU memory.
Experiments have shown that storage overhead of a MAQ-Tree
can be much smaller than storing individual quadtree or combined
quadtree using classic quadtree representation by pushing down
identifiers to leaf nodes [25]. In addition, window query on MAQ-
Trees is more efficient than traversing multiple individual classic
quadtrees each representing a polygon datasets with non-
overlapping polygons.

Figure 9 Illustration of MAQ-Tree Structure Using Memory
Pointer (Top) and Array (Bottom) Representations

We have developed an array representation that is
suitable for GPUs by extending the GPU-based BMMQ-Tree
proposed in our previous work [16]. As illustrated in the bottom
of Figure 9, for each node in the GPU-based MAQ-Tree, in
addition to the quadrant identifier (z_val), level (lev), First Child
Position (fc) and Number of Child Nodes (nc) fields as in
BMMQ-Tree, two additional fields, i.e., First Polygon Identifier
Position (fp) and Number of Polygon Identifier Position (np) are

3

20

1

9

10

8

11

7

54

6

15

1312

14

0 1 2 3

0

1

2

3

(0,2)

(1,3)

(1,1)

(3,2)

Z1(0,2) = 8 = 1000
Z2(1,3) = 11 = 1011
Z1^Z2 = 1000^1011 = 0011
lev = __clz(0011)/2 = 2/2 = 1
M = Z1>>(W - (lev<<1)) = 1000>>2 = 10

Z1(1,1) = 3 = 0011
Z2(3,2) = 13 = 1101
Z1^Z2 = 0011^1101 = 1110
lev = __clz(1110)/2 = 0/2 = 0
M = 0

input

0

0

1

10

level

z-value

4 4 0 4

(exclusive) scan

0 0 1 11 10 0

0 0 10 1010 100 0

scatter
scan (max, inclusive)

0 1 2 30 12 3

result

1 1 2 22 21 1

00 01 1010 10111000 100110 11

transform (level+1)
offset

transform (plus)

MAQ-Tree using memory pointers in CPUs

0.0

1.1

1.2

1.3

3.0

3.1

3.2

A,B

C

B

A

C

A

C

A,B

A

B

R

0

1

3

T

P

R

A

B

B

C

C

A

C

A

A

B

A

B

First child node position (fc)

 First polygon identifier position (fp)

MAQ-Tree using arrays in GPUs

 Node Layout (z_val, lev, fc, nc, fp, np)

added. Note that fc and fp are shown in all the tree nodes at the
bottom part of Figure 9 while z_val, lev, nc and np are not shown
due to space limit. The functionality of the two array offsets
fields, i.e., fc and fp, are equivalent to memory pointers in CPUs.
However, they can be computed in parallel (to be detailed next)
and do not need memory allocations which are expensive on
GPUs. The algorithm to construct a MAQ-Tree using parallel
primitives is listed in Figure 10. The input (Qs) is a vector of leaf
quadrants with their corresponding polygon identifiers that are
generated in the previous module. We use tuple (z_val, lev, p_id)
to represent a leaf quadrant. The output of the algorithm will be a
GPU-based MAQ-Tree that consists of a tree structure array (T)
and a polygon identifier array (P), as illustrated in the bottom of
Figure 9.

Lines 1-4 in Figure 10 group polygon identifiers that are
associated with quadrants, and compute the positions of the first
polygon identifiers (fp) associated with each unique quadrant
identifier based on (z_val, lev). Note that quadrants at different
levels may have the same Morton codes based on the algorithms
discussed in polygon decomposition module. This is also the
reason that we use the combination of Morton code and quadrant
level as the key in Line 3. After this step, we can get a vector of
unique quadrants (UQs) where each item contains the Morton
code (z_val), level (lev), the first polygon identifier position (fp)
and the number of polygon identifiers (np). As indicated in Line
4, fp can be computed from np by using an exclusive scan parallel
primitive, as fp[i]=sum(np[j]) for j=0..(i-1) by the definition of a
scan primitive [3].

Next, the polygon identifiers array is then saved to P
(Line 5), so that a quadrant in the tree can easily look up its
related polygons by using fp and np, i.e., all polygon identifiers
that are associated with the quadrant are stored at the position
fp..(fp+np-1) of array P. Lines 6-7 sort quadrants by levels and
generate level boundaries to keep track of the number of
quadrants at each level. We first copy the last level quadrants to
the tree (Line 8) and process tree nodes in a bottom up manner

(Line 10-15). To generate a new level, say current_lev, there are
two major components. The first component directly comes from
the Morton codes of leaf quadrants generated during polygon
decomposition. With the level information derived at Line 6 and
8, we can easily locate leaf quadrants at current_lev and copy
them to a temporary space (TempQs). The other component
comes from the reduction of lower level quadrants, i.e., the
quadrants at current_lev + 1. Those quadrants are reduced to
remove duplications before they are appended to TempQs (Line
12-13).

To maintain the parent-child links between two
consecutive levels in a quadtree using an array representation, fc
(first child position) and nc (number of children) fields of all tree
nodes need to be set appropriately. Similar to computing np and fp
as discussed above, computing nc and fc can be realized by
chaining a sort, a segmented reduction and an exclusive scan
parallel primitive (Line 14-16). The last step during an iteration is
to append TempQs (using a copy primitive) to the tree structure T
(Line 17 in Figure 10). The iteration will continue at a higher
level until the root of the tree is constructed. The alert reader
might ask what would be the np and fp values of the non-leaf
nodes as they may be created level-wise bottom-up in the loop.
The answer is that, for a non-leaf tree node created in Line 12, we
check whether the corresponding quadrant is already in Qs. If not,
then the non-leaf node is just a “via node” in the tree and is not
associated with any polygon identifiers. We set both np and fp to a
negative number as an indication. If the quadrant corresponding to
the none-leaf node is already in Qs, our algorithm makes sure
that, the combination functor in the reduce primitive in Line 12
only updates nc and fc while keep np and fp unchanged. Actually,
the check logic can be easily implemented in the combination
functor by checking the signs of np and fp of the two input tree
nodes to be combined when the reduce primitive is invoked to
process all tree nodes at the level in parallel.

4.3 Spatial Query Processing
Once a MAQ-Tree is constructed, it can be used to speed up
spatial queries by traversing the tree in either a breadth-first
search (BFS) or a depth-first search (DFS) manner. As processing
a single query on trees with limited depth on modern hardware
(including both CPUs and GPUs) are typically fast, it is more
beneficial to process multiple queries on GPUs to make full use of
its computing power. Our previous work on parallel R-tree based
batched queries on GPUs [28] showed that BFS generally
performs better than DFS on GPUs. As such, in this work, we
have chosen to implement parallel quadtree based batched queries
on GPUs using BFS. We propose techniques for two types of
spatial queries, including batched range (or window) query and
polygon query where a query is defined by a polygon. Clearly,
polygon queries are more generic but are more complex. Using
the polygon decomposition techniques discussed in Section 4.1,
complex query polygons can be decomposed into quadrants with
different sizes. As such, both types of queries can be supported
using a unified design and implementation.

4.3.1 Parallel Batched Range Query
The problem of batched range query is to answer a set of range
queries in parallel and locate all intersecting quadrants for each
individual range query. A naïve approach to parallelize batched
query is to assign a thread to process a range query and queries
are processed independently. However, such design can easily
incur significant load unbalancing and uncoalesced memory
accesses on GPUs, which is likely to result in poor performance.

Input: leaf quadrants Qs where each element is (z_val, lev, p_id)
Output: MAQ-tree (T, P) where T is in the format of (z_val, lev, fc, nc,
fp, np) and P is a vector of polygon identifiers

ParallelConstructMAQTree(Qs):
1. stable_sort Qs by z_val
2. stable_sort Qs by lev
//UQs is in the format of (z_val, lev, np, fp)
3. (UQs.z_val, UQs.lev, UQs.np) = reduce Qs by (z_val, lev)
4. UQs.fp = exlusive_scan(UQs.np)
5. copy Qs.p_id to P
//count the size of quadrants at each level
6. (lev, lev_size) = reduce UQs by lev
//compute the start position for each level
7. lev_pos = exlusive_scan(lev_size)
8. copy last level quadrants from UQs to T
9. current_lev = MAX_LEV
//level-wise iteration starts
10. while (current_lev > 0)
11. current_lev = current_lev – 1
12. transform and reduce quadrants in T at current_lev+1 to

current_lev and save in TempQs
13. copy (append) quadrants at current_lev from UQs to TempQs
14. sort and unique TempQs
15. reduce (by key) using z_val as the key to compute TempQs nc
16. scan on TempQs.nc to compute TempQs.fc
17. copy TempQs to T
18. return (T, P)

Figure 10 Algorithm MAQ-Tree Construction

The key idea of our fine-grained data parallel design is to process
a query batch using BFS and redistribute workload within an
iteration. As shown in Figure 11, the workload is represented as
query pairs where each pair consists of a query id (query_id) and a
quadtree node in quadtree T. The main process of the query
algorithm in Figure 11 is from Line 3 to Line 15. For all pairs,
rectangle-quadrant intersection tests are performed in parallel and
the results are saved to Status (Line 8). In Line 9, W is reordered
based on Status, where the first part of W contains pairs that need
to be processed in the next iteration and the size is denoted as
new_size. Based on Status, intersected pairs in W that need to be
output will be copied to the result vector (Line 11). The next step
is to expand the first new_size pairs of W that need be processed
in the next iteration. Note that the “expand” operation in Line 13
is almost identical to the “split” operation first introduced in
polygon decomposition (Section 4.1, c.f. Figure 8) with a slight
difference, i.e., the number of items to be expanded at next level.
The number is always 4 in polygon decomposition but varies
based on nc (number of children of the tree node) in batched
query processing. During the process, the memory consumed by
workload W might exceed the GPU device memory capacity. Our
solution is to use a temporary space (TempW) allocated in CPU
memory to offload out-of-capacity pairs (Line 5), which will be
copied back to GPU when needed (Line 7).

4.3.2 Parallel Polygon Query
In addition to range query, we also support queries that are
defined by polygons instead of rectangular windows, which we
call polygon query. Such types of query are very useful in two
scenarios. Firstly, visual analytics, where user defined a query by
drawing a polygon, and secondly, to serve as an advanced spatial
filtering for spatial joins on polygons. Instead of filtering based on
rectangular MBRs of polygons, we may build a MAQ-Tree on
one polygon dataset and use the other one as query polygons. As
the MAQ-Tree represents polygons being queried more accurately
than the MBRs of the polygons, it can be more effective in spatial
filtering with fewer false positives that need to be refined in the
refinement phase in spatial joins [7]. Since polygons are
decomposed into quadrants rather than arbitrary rectangles as in
range queries discussed in Section 4.1, an optimization can be
done is to replace intersection test of two rectangles with bit
operations over the Morton codes of two quadrants (c.f., Figure
7).

5. EXPERIMENTS
We use a real large-scale dataset to validate the designs and test
the efficiency of the implementations. The dataset consists of
708,509 polygons of 4062 bird species distribution range maps in
the West Hemisphere [4]. The total number of polygon vertices in
the dataset is 77,699,991, i.e., roughly 110 vertices per polygon.
We divide the original dataset into four groups based on numbers
of vertices as shown in Table 1. Here we essentially treat the four
groups of datasets as four separate datasets to test the scalability
of our proposed techniques. All the experiments are performed on
a workstation equipped with two Intel Xeon CPUs (at 2.60 GHz,
16 physical cores in total), 128 GB DDR3 memory and an Nvidia
GTX Titan GPU. The operating system is CentOS 6.4 with GCC
4.7.2, TBB 4.2 and CUDA 5.5 installed. All the codes are
compiled using O3 optimization. We use the Thrust parallel
library that comes with Nvidia CUDA SDK when parallel
primitives are used in our GPU implementations. All runtimes are
reported in milliseconds and are based on the average of 5 runs,
unless otherwise stated.

Table 1 Statistics of Bird Species Range Map Datasets

Polygon
Group

num of vertices
range

total num of
polygons

total num of
points

1 10-100 497,559 11,961,389
2 100-1,000 33,374 8,652,278
3 1,000-10,000 6,719 20,436,931
4 10,000-100,000 1,213 33,336,083

5.1 Performance on Polygon Decomposition
We implemented our proposed parallel decomposition algorithm
described in Section 4.1 on Nvidia GPUs using Thrust library. A
serial implementation using only one CPU core is adopted as the
baseline (termed CPU-Serial) where polygons are decomposed
iteratively. Since Thrust allows compiling its code to multi-core
CPUs using TBB [3] as the backend, we use the TBB
implementation for multi-core CPUs (termed as CPU-TBB). We
performed experiments on polygon decomposition using different
maximum quadtree levels (i.e., MAX_LEV), ranging from 12 to
15, to understand how the implementations perform under
different workloads. Since data transfer times are insignificant,
they are excluded from reporting.

The runtimes of polygon decompositions using different
experiment settings are plotted in Figure 12. In subplots for
dataset group 3 and 4, some CPU implementations cannot
complete in reasonable time and are excluded. Figure 12 shows
that our GPU implementations outperform all CPU counterparts at
all quadtree levels. For dataset group 1, 43X-75X speedups are
measured over the serial CPU implementations and 3.5X-7.1X
speedups are measured over the multi-core CPU implementations
(TBB, 16 CPU cores). The speedups are higher for dataset groups
2, 3 and 4, which are 107X-190X and 11.1X-14.6X, respectively.
The speedups for dataset group 1 are lower than the other three
dataset groups might be due to the fact that the dataset group has a
large number of small polygons and the ratio of data accesses to
computation may be too high to saturate GPU computing power
as the other three groups do. The speedups clearly demonstrate the
efficiency of polygon decompositions on GPUs by taking
advantages of their excellent floating point computing power as
well as high memory bandwidth. Figure 12 also suggests that,
while CPU serial implementation for dataset group 4 already takes
more than four hours at quadtree level 13 and becomes infeasible

Input: Query windows Q, Quadtree T
Output: intersected pairs (query_id, quadrant_id)
ParallelRangeQuery(Q, T):
1. generate query pairs W = (query_id, T.root)
2. size = Q.size()
3. while (size > 0 or TempW.size() > 0):
4. if (size > MAX_CAPACITY):
5. copy out-of-capacity pairs to TempW
6. if (size == 0):
7. copy workload from TempW to W
8. Status = transform(W, IntersectionTest)
 //first new_size pairs will be further processed
9. sort W according to Status
10. size = new_size
11. copy_if W to Result based on Status
12. if (size == 0) continue;

 //quadrants are expanded for next iteration
13. NextW = expand(W, size)
14. W = NextW
15. size = W.size()

Figure 11 Parallel Batched Range Query

for higher quadtree levels, our GPU implementation only takes
about 7 minutes at quadtree level 15. The high efficiency is
desirable for indexing complex polygons with large numbers of
vertices, such as those in group dataset 4.
To help better understand the scalability of the data parallel design
for polygon decomposition, the numbers of the resulting
quadrants at the four quadtree levels in the four groups of datasets
are plotted in Figure 13. As expected, the numbers of the resulting
quadrants grow exponentially as the quadtree levels (MAX_LEV)
increase which also explains that the runtimes of the three
categories of implementations (CPU-serial, CPU-TBB and GPU)
increase exponentially with the quadtree levels as observed in
Figure 12. Note that the Y-Axis in both Figure 12 and Figure 13
uses a logarithmic scale. From Figure 13 we can also see that,
while dataset group 1 has larger number of polygons and larger
number of total points than group 2 (Table 1), the resulting
numbers of quadrants in group 2 is much larger than those of
dataset group 1. The runtimes are largely determined by the
resulting numbers of quadrants, not the numbers of input polygons

or their total numbers of vertices. The results are consistent with
our design where each quadrant needs to test its relationship with
the polygon that its parent quadrant intersects. The number of
tests and hence the runtimes are generally proportional to the total
numbers of quadrants that are being tested at each quadrant level
ranging from level 0 (root) to MAX_LEV.

5.3 Performance on Quadtree Construction
Since the four groups of polygon datasets used in the polygon
decomposition module may produce similar numbers of
quadrants, it is not suitable to use the same data to test the
scalability of the design and implementation of quadtree
construction. As such, we have combined all the computed
quadrants and randomly select 216 to 221 quadrants for testing
purposes. We repeat the random sampling process four times and
report average runtimes for the 6 sampling tests. Note that the
reported runtimes are end-to-end and include times to transfer
data among CPUs and GPUs for GPU-based implementations.
The results are plotted in Figure 14.

Figure 12 Runtimes of the Four Dataset Groups Using Four Quadtree Levels

Fig. 14 Runtime Comparison on Quadtree Constructions Figure 13 Sizes of Generated Quadrants in Four Groups

From the figure, we can see that the serial implementation
actually performs better on single-core CPUs when the number of
quadrants is below 218. This is not surprising due to the overheads
in data transfers and kernel invocations. However, when the
number of quadrants is above 220 (~1 million), the speedup is
increased to 15.2X. The speedup is further increased to 27.3X
when the number of quadrants researches 2 million. Different
from the CPU-serial implementation whose runtimes grow almost
linearly with the number of quadrants, the runtimes of the GPU
implementation increase only 0-5 milliseconds when the numbers
of quadrant double for the number of quadrants up to 2 million,
which is already the largest number of quadrants in our tests. We
believe further speedups are achievable for larger datasets and/or
using higher maximum quadtree levels (MAX_LEV) which is
beyond the scope of our current applications. The results clearly
indicate the efficiency of our parallel primitives based design and
its GPU implementation. On the other hand, the runtimes for
quadtree constructions are relatively insignificant when compared
with those of polygon decompositions. As such, the significance
of further performance improvement of the module is relatively
low. Nevertheless, we consider our parallel primitives based
design and implementation of MAQ-Tree using simple vector
structures a novel and efficient technique when compared with
traditional tree construction techniques that adopt DFS traversals
and rely on intensive dynamic memory operations which are
becoming increasingly expensive on modern hardware. We plan
to perform direct comparisons in our future work.

5.3 Performance on Spatial Queries
We have generated five groups of random spatial window/range
queries to test the scalability of the proposed parallel design and
implementations. The numbers of queries in the four groups are
1,000, 5,000, 10,000, 50,000 and 100,000, respectively. The
window is first generated by randomly picking a center point (x/y)
and then randomly picking a width and a height. The runtimes of
the CPU-Serial, CPU-TBB and GPU implementations using
quadtree level 12 are plotted in Figure 15 (using other levels
shows similar results and are skipped). In a way similar to the
results in quadtree constructions, the GPU implementation is only
superior to the CPU-TBB implementation when there are
sufficient numbers of queries to saturate GPU hardware. For the
largest test set, the GPU implementation is about 10-20X faster
than CPU-serial and about 2X faster than CPU-TBB when all the
16 CPU cores are used.

Figure 15 Runtime Comparison on Parallel Range Queries
We have also performed experiments on parallel

polygon queries by using the boundary of USA (labeled as “USA”
in Figure 16) and boundaries of a set of countries in South

America (labeled as “countries” in Figure 16) as our test data to
query against the quadtree derived from the species range data at
the four different quadtree levels and the results are plotted in
Figure 16. As expected, the results are similar to range queries
where GPU implementation is only faster when both the query
polygons and the quadtrees are sufficiently large. The speedup of
the GPU implementation is up to 2X faster over CPU-TBB
implementation.

Figure 16 Runtime Comparison on Parallel Polygon Queries

6. Comparisons with PixelBox* on Polygon
Decomposition
Despite that PixelBox proposed in [5] is designed for computing
the area of intersection between two polygons rather than
indexing a single polygon as in our work, they share the
commonality on top-down and level-wise polygon decomposition.
We obtained the source code of PixelBox from their authors and
provided an interface for constructing quadtree from multiple
complex polygons on top of the SubSampBox routine in
PixelBox. We call the resulting hybrid technique as PixelBox*.
Similar to PixelBox, PixelBox* also maintains a stack in the
shared memory of a thread block that is assigned to decompose a
polygon. Each thread in the tread block is assigned to decompose
a single box/quadrant and the decomposed quadrants are pushed
onto the stack for further decompositions in the next round (level)
if they are qualified. Due to the last-in-first-out nature of stacks,
PixelBox* inherits the DFS order when decomposing polygons.
We also note that, different from the original PixelBox that only
supports single-ring polygons, PixelBox* supports complex
polygons with holes after extension, which is a must in our
applications.

Different from PixelBox* (and hence PixelBox), our
parallel primitives based design adopts a BFS order where the
polygons are decomposed level by level. In addition, we do not
use a private queue for each polygon at the thread block level.
Instead, a global queue is maintained for all polygons due to the
parallel primitives based design as the underlying parallel
primitives support only element-wise operations defined in their
functors. While it is generally believed that implementations using
native programming languages such as CUDA and using shared
memory can significantly improve overall performance, we next
show empirically that our parallel primitives based design and
implementation is more efficient than PixelBox*, which is
implemented in CUDA and optimized for GPUs (see [5] for
design considerations and optimization details). First, similar to
our experiments on R-Tree traversals, BFS is more efficient than

0

100

200

300

400

500

600

700

12 13 14 15

tim
e

(m
s)

level

USA-CPU-TBB
USA-GPU
countries-CPU-TBB
countries-GPU

DFS on GPUs as there are much higher degrees of coalesced
memory accesses using BFS despite that accessing the stack on
shared memory is faster than accessing the queue structure in
GPU device memory in our technique. Second, to make full use of
the GPU hardware capacity, the number of split factor should be
at least the same as the warp size (32) in PixelBox* (and
PixelBox). Take the N=8*8=64 decomposition pattern for
example, when traversing along the polygon boundary, the
number of expensive tests on the relationship between
boxes/quadrants and polygons can be significantly smaller than
T=64 when using a multi-level N=2*2=4 decomposition pattern.
As our parallel primitives based approach exploits fine-grained
data parallelisms and is agnostic to the thread block boundary
(which is determined by parallel primitives and invisible to users),
it does not suffer from GPU resource utilization constraints as
PixelBox and PixelBox*.

For fair comparisons, we force PixelBox* to use N=64
(which is suitable for PixelBox) instead of N=4 in each iteration
(as in our original design), in order to improve GPU utilization as
in PixelBox. The configuration is termed as PixelBox*-shared.
Furthermore, to get rid of the shared memory limit in PixelBox*
and potentially achieve better performance, we have modified
PixelBox* to use GPU global memory for the stack. The
modification allows experiment with different N sizes without
worrying about overflowing the stack due to limited per-thread
block shared memory capacity. We term the new implementation
as PixelBox*-global. We compare our proposed parallel
primitives based technique with both PixelBox*-shared and
PixelBox*-global. The runtimes on the four dataset groups are
plotted in Figure 17.

Figure 17 Runtime Comparisons among the Proposed

technique and PixelBox* Variations
The fact that our parallel primitives based technique is

significantly faster (~3X) than PixelBox*-global, which is the best
among different PixelBox* variations, can be explained by the
previous discussions. However, the observation that PixelBox*-
global is about ~2X faster than PixelBox*-shared across the four
dataset groups is somewhat surprising, given the common belief
that using shared memory can boost GPU performance
significantly. One explanation is that, the reported PixelBox*-
global runtimes are the best among all configurations using
different N sizes. While N can be neither too big nor too small to
meet shared memory capacity constraints in PixelBox*-shared,
using global memory allows search a much larger parameter space
and get better performance in PixelBox*-global. For example,
while using a large N may reduce the GPU occupancy in
PixelBox*-shared, it may actually improve the overall

performance in PixelBox*-global due to better warp scheduling
opportunities when there are a larger number of warps in a thread
block can be selected for execution. In addition, coalesced global
memory accesses to the stack may render the advantages of using
shared memory less signficant in this particular application.

In summary, while more thorough investigations are
needed to fully understand the advantages of our parallel
primitives based design and implementation for polygon
decomposition in our particular application, our experiments have
shown that, using high level parallel tools, such as parallel
primitives, may not necessarily lead to inferior performance. Both
efficiency and simplicity can be achieved simultaneously by
identifying the inherent data parallelisms in applications, map
them to parallel primitives and chain the parallel primitives to
develop end-to-end, high-performance applications.

7. Summary and Discussions
Our research and development effort on quadtree indexing and
spatial query processing are motivated by the practical needs in
efficiently managing large-scale species distribution data, in a
way similar to several recent works on managing spatial data in
high-resolution biomedical images using new hardware, ranging
from multi-core CPUs [9], GPUs [5] to Hadoop-alike distributed
systems [11]. Given the ubiquitous nature of spatial data, it is
important to research and develop a set of high-performance and
scalable spatial data management tools across multiple
commodity parallel hardware platforms and are applicable to
multiple domains.

While previous research works have explored different
parallelization techniques that are popular to their respective
hardware platforms, in this study, we have investigated a different
parallelization strategy in hope to achieve both simplicity in
design/implementation and efficiency in execution in the context
of spatial data management. Our case study on quadtree indexing
and spatial query processing based on the quadtree indexing
structure has demonstrated the feasibility of the proposed strategy.
Our primitives based parallel designs, although originally
designed for GPUs, can be easily ported to multi-core CPUs and
achieve high performance.

Although the parallel primitives based techniques may
not always bring the best performance due to the inevitable library
overheads, we believe that the process in seeking data parallel
designs helps understand the inherent parallelisms in processing
large-scale spatial data. Different from hardware specific designs,
fine-grained data parallel designs on top of parallel primitives
may both scale up and scale out (automatically) across multiple
hardware generations. This may also simplify integration of
multiple hardware platforms, as only a single codebase needs to
be maintained as long as the parallel primitives are supported by
the underlying hardware platforms. We believe the feature is
desirable from an application perspective and the approach merits
further research

8. Conclusions and Future Work
Motivated by the practical needs in efficiently managing large-
scale geo-referenced species distributed data on new hardware and
the difficulties in developing hardware specific techniques for
such complex applications, we have proposed a parallel primitives
based approach to spatial data management. Using quadtree
indexing and spatial query processing on complex polygons as a
case study, we have developed data parallel designs for polygon

decomposition, quadtree construction and both range and polygon
based spatial query processing. We implemented the designs on
both GPUs and multi-core CPUs. Experiments have demonstrated
that, GPU implementations can achieve 100X+ speedups over
serial CPU implementations and 10X+ speedups over multi-core
CPU implementations for computationally intensive tasks, such as
polygon decompositions for dataset groups 2-4. While the
speedups over single and 16 CPU cores drop to 10-27X and less
than 2X for quadtree construction and spatial query processing,
respectively, they are still significant from an application
perspective.

For future work, first of all, we would like to apply the
primitives based parallel design strategy to additional spatial data
management tasks and develop a comprehensive set of tools to
support spatial data management on modern parallel hardware.
Second, we plan to provide an integrated frontend with SQL
interface to our existing toolset to help using commodity parallel
hardware more effectively. Finally, as discussed, we would like to
investigate how the data parallel designs may help efficient
scheduling across multiple hardware platforms both within and
across computing nodes for larger scale data processing.
Acknowledgement: This work is supported in part by NSF
Grants IIS-1302423 and IIS-1302439 Medium Collaborative
Research project “Spatial Data and Trajectory Data Management
on GPUs”. We would like to thank Kaibo Wang for sharing the
PixelBox CUDA source code.

9. REFERENCES
[1] H. Samet, Foundations of Multidimensional and Metric Data

Structures, Morgan Kaufmann Publishers Inc., 2005.
[2] G. Alonso, "Hardware Killed the Software Star," in IEEE

29th International Conference on Data Engineering (ICDE),
Brisbane, 2013.

[3] M. McCool and J. R. J. Reinders, Structured Parallel
Programming: Patterns for Efficient Computation, Morgan
Kaufmann, 2012.

[4] R. Ridgely, T. Allnutt, T. Brooks, D. McNicol, D. Mehlman,
B. Young and J. Zook, "Digital Distribution Maps of the
Birds of the Western Hemisphere, version 1.0.,"
NatureServe, Arlington, Virginia, USA, 2003.

[5] K. Wang, Y. Huai, R. Lee, F. Wang, X. Zhang and J. H.
Saltz, "Accelerating Pathology Image Data Cross-
comparison on CPU-GPU Hybrid Systems," Proc. VLDB
Endow., vol. 5, no. 11, pp. 1543--1554, 2012.

[6] S. Shekhar and S. Chawla, Spatial Databases: A Tour,
Prentice Hall, 2003.

[7] E. H. Jacox and H. Samet, "Spatial join techniques," ACM
Transaction on Database Systems, vol. 32, no. 1, pp. 7-24,
2007.

[8] M. Sarwat, M. F. Mokbel, X. Zhou and S. Nath, "Generic
and efficient framework for search trees on flash memory
storage systems," GeoInformatica , vol. 13, no. 3, pp. 417-
448 , 2013.

[9] S. Nobari, F. Tauheed, T. Heinis, P. Karras, S. Bressan and
A. Ailamaki, "TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning," in SIGMOD
Conference, 2013.

[10] B. Sowell, M. A. V. Salles, T. Cao, A. J. Demers and J.
Gehrke, "An Experimental Analysis of Iterated Spatial Joins
in Main Memory," Proceedings of the VLDB Endowment ,
vol. 6, no. 4, pp. 1882-1893 , 2013.

[11] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang and J. H.
Saltz, "Hadoop-GIS: A High Performance Spatial Data
Warehousing System over MapReduce," Proceedings of the
VLDB Endowment , vol. 6, no. 11, pp. 1009-1020, 2013.

[12] A. Eldawy, Y. Li, M. F. Mokbel and R. Janardan,
"CG_Hadoop: Computational Geometry in MapReduce," in
ACM-GIS Conference, 2013.

[13] OGC, OpenGIS Simple Feature Specificaiton for SQL, 2006.
[14] C. A. Shaffer, H. Samet and R.C. Nelson, "QUILT: a

geographic information system based on quadtrees,"
International Journal of Geographical Information Systems,
vol. 4, no. 2, pp. 103-131, 1990.

[15] J. Zhang, S. You and L. Gruenwald, "Parallel Online Spatial
and Temporal Aggregations on Multi-core CPUs and Many-
Core GPUs," Information Systems, vol. 4, p. 134–154, 2014.

[16] J. Zhang and S. You, "High-performance quadtree
constructions on large-scale geospatial rasters using GPGPU
parallel primitives," International Journal of Geographical
Information Sciences (IJGIS), vol. 27, no. 11, pp. 2207-2226,
2013.

[17] J. Zhang and S. You, "Speeding up large-scale point-in-
polygon test based spatial join on GPUs," in Proceedings of
the ACM SIGSPATIAL Workshop on Analytics for Big
Geospatial Data (BigSpatial’12), 23-32, 2012.

[18] Y. Fang, M. Friedman, G. Nair, M. Rys and A.-E. Schmid,
"Spatial indexing in microsoft SQL server 2008," in
SIGMOD Conference 2008, 2008.

[19] S. Laine and T. Karras, "High-Performance Software
Rasterization on GPUs," in High-Performance Graphics,
2011.

[20] F. A. Bisby, "The quiet revolution: Biodiversity informatics
and the internet," Science, vol. 289, no. 5488, pp. 2309-2312,
2000.

[21] ESRI, Shapefile Technical Description, 1998.
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[22] J. Zhang and L. Gruenwald, "Embedding and extending GIS
for exploratory analysis of large-scale species distribution
data," in ACM-GIS Conference, 2008.

[23] R. Obe and L. Hsu, PostGIS in Action, Manning
Publications, 2011.

[24] J. Zhang, M. Gertz and L. Gruenwald, "Efficiently Managing
Large-scale Raster Species Distribution Data in
PostgreSQL," in ACM-GIS Conference, 2009.

[25] J. Zhang, "A high-performance web-based information
system for publishing large-scale species range maps in
support of biodiversity studies," Ecological Informatics, vol.
8, pp. 68-77, 2012.

[26] GDAL, Geospatial Data Abstraction Library.
http://www.gdal.org/

[27] J. O’Rourke, Computational geometry in C., Cambridge
University Press, 1998.

[28] J. Zhang and S. You, "GPU-based Spatial Indexing and
Query Processing Using R-Trees," in ACM SIGSPATIAL
Workshop on Analytics for Big Geospatial Data
(BigSpatial’13), 2013

