
Efficient Quadtree Construction for Indexing Large-Scale
Point Data on GPUs: Bottom-Up vs. Top-Down

Jianting Zhang
Department of Computer Science

The City College of the City University of New
York

New York, NY 10031
jzhang@cs.ccny.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Point location data are rapidly growing in volume, velocity
and variety. GPU acceleration is attractive way in efficiently
managing large-scale point data. In this study, we intro-
duce a new bottom-up approach to constructing quadtrees
for indexing large-scale point data on GPUs, which is sig-
nificantly different from previous works that typically adopt
a top-down strategy. In addition to sorting points to be in-
dexed only once based on their Morton codes, our proposed
bottom-up approach adopts a data parallel design and paral-
lel primitive based implementation, which makes a sensible
tradeoff between efficiency and complexity in principle and
often results in more efficient implementations in practice.

We also extend our previous work [26] on identifying leaf
quadrants from large-scale point datasets by repetitively
partitioning the indexing space into quadrants until the num-
ber of points in each quadrant is less than a threshold. Al-
though our previous work was designed for parallelizing spa-
tial joins on GPUs, the extension is able to construct the
quadtree index end-to-end in a top-down manner. As this
top-down approach is more efficient than the quadtree con-
struction code provided as a sample in Nvidia CUDA SDK,
we use it as a strong baseline to compare with our newly pro-
posed bottom-up approach and explore some aspects of du-
ality between the top-down and the bottom-up approaches.

Experiments show that the bottom-up approach is capa-
ble of indexing approximately 170 million taxi pickup loca-
tions in New York City (NYC) in less than 200 milliseconds
and is 3.4X and 4.9X times faster than the top-down ap-
proach with and without including CPU/GPU data trans-
fer time, respectively. The work reported in this paper is
part of an effort to integrate spatial data management func-
tionality into a GPU-accelerated data management system
to support both relational and spatial data in an integrated
manner.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and ADMS 2019.
10th International Workshop on Accelerating Analytics and Data Manage-
ment Systems (ADMS’19), August 26, 2019, Los Angeles, California, CA,
USA.

1. INTRODUCTION
Comparing to polygon and polyline data in geospatial ap-

plications, the volumes of point data have been increasing
very fast due to significant progresses of sensing techniques
and advanced processing tools in recent years. For exam-
ple, in contrast to point locations captured by consumer
GPS devices whose temporal resolution is in the order of
a few to tens of seconds per record, locations derived from
high-resolution cameras using Deep Learning (DL) inferenc-
ing tools can have a frame rate in the order of a few tens
of frames per second and there can be tens to hundreds of
detected objects in a single image. The combined point lo-
cation data volume increases for moving vehicles can be 2-3
orders higher. The same trends also apply to human poses
under different application scenarios. While parallel hard-
ware and distributed systems are emerging to handle such
Spatial BigData, one of the key challenges remaining is to
understand the inherent characteristics of data access pat-
terns in indexing large-scale point data for various types of
spatial queries, such as range queries and spatial joins, on
different parallel hardware and distributed computing plat-
forms.

As Graphics Processing Units (GPUs) hardware are get-
ting into mainstream and General Purpose Graphics Pro-
cessing Unit (GPGPU) technologies become mature, there
are increasing research and application interests on in-memory
data managements on GPUs, such as the open source cuDF
project from Nvidia [16], CoGaDB [4] and OmniDB[32].
However, none of these GPU databases has the capability to
support spatial data management yet. On the other hand,
while a few research projects have developed techniques and
prototype systems for managing large-scale spatial data on
GPUs and reported impressive performance [30][20], they
are yet to be widely applied due to the shear amount of
software engineering work to integrate these techniques into
end-to-end systems with desirable level of usability, in addi-
tion to performance.

In this study, built on top of our previous work on man-
aging large-scale point data on GPUs [26], we propose to
revisit the interesting topic from both a parallel design per-
spective and its implementations on modern GPUs while
keep integrating with mainstream GPU data management
systems such as cuDF in mind. In addition to extending

1

our previous technique to construct quadtrees end-to-end
for point indexing, which we call a top-down approach, to
form a strong baseline for comparison, we have proposed a
new bottom-up approach that is more efficient not only in
terms of end-to-end runtimes but also with respect to mem-
ory footprint. We analyze the two quadtree construction
approaches and highlight some key findings with respect to
data accesses that largely dominate the performance dif-
ferences between the two approaches. While our techniques
currently adopt a non-overlapping space partitioning scheme
for quadtree-alike indexing, we believe many of the discus-
sions can be applied to data-driven spatial indexing, such as
R-Trees [21], as well.

The rest of the paper is arranged as follows. Section 2
is the background, motivation and related work. Section 3
introduces the baseline approach by extending the work we
have reported in [26]. Section 4 presents the new bottom-
up approach for indexing large-scale point data. Section
5 provides experiments and discusses results using taxi trip
pickup locations in NYC. Finally, Section 6 is the conclusion
and future work directions.

2. BACKGROUND, MOTIVATION AND RE-
LATED WORK

Spatial indexing plays a key role in spatial data manage-
ment [21]. For a 2D range query, aka. Window Query, by
exploiting spatial indexing, the complexity can be reduced
from O(n) to O(logn) or even O(1). Probably more sig-
nificantly, for spatial joins that involve two input datasets,
the complexity can be reduced from O(m*n) to O(m*logn),
O(n*logm) or even lower, where m and n are the numbers
of records in the two input datasets in a spatial join.

Indexing on polyline or polygon data typically approxi-
mates complex polylines and polygons using Minimum Bound-
ing Boxes (MBBs) and subsequently indexes the MBBs.
While technically feasible, it would be too costly to degen-
erate points as MBBs and then apply techniques such as
R-Trees [21] for indexing for the purpose. Although various
hashing techniques have been developed for generic multi-
dimensional point data (see e.g. [2][13] for GPU-based con-
struction techniques), hierarchical indexing structures, such
as space partition based kd-trees and quadtrees, remain pop-
ular for indexing geospatial point data that typically have
two or three dimensions, partially for interpretability and
visualization. In this study, we focus on multi-level space
partition based point indexing for 2D geospatial point loca-
tions on GPUs and we refer to the previous works for spatial
indexing on polylines and polygons on GPUs [29][1][24].

While numerous spatial indexing methods have been pro-
posed in the past few decades [21], most of them are designed
for CPUs with a single processor based on a serial computing
model. The past few years have witnessed rapid advances
of parallel hardware, such as multi-core CPUs without and
with SIMD (Single Instruction Multi Data) extensions [11]
and GPUs with thousands of cores and increasingly larger
memory capacities [9]. While multi-core CPUs allow coarse-
grained parallelisms and can be relatively easily applied to
parallelizing serial spatial indexing techniques, it is quite
technically challenging to fully exploit SIMD instructions

that are supported by Vector Processing Units (VPUs) in-
side CPUs due to their stringent parallel programming mod-
els [11]. In contrast, the emergence of CUDA technologies
supported by Nvidia GPUs have provided a flexible parallel
computing platform, a set of easy-to-use APIs, and a user-
friendly and portable parallel library (i.e., Thrust [19]) that
consists of a set of highly efficient parallel primitives to ex-
ploit the massive data parallel computing power on GPUs
[9].

There has been a steady growth of interests in using GPUs
for spatial data management in the past few years (we re-
fer to papers in a 2014 special issue of ACM SIGSPATIAL
Special [30][20] for more comprehensive reviews), in parallel
with using GPUs for relational data management [16][4][32].
In a way similar to the fusion of Relational Database Man-
agement System (RDBMS) and Geographical Information
System (GIS) in late 2000s after major database vendors
supported spatial data, we believe there is a technical trend
in developing GPU-accelerated data management systems
that support both relational and spatial data. Among all
spatial data types, point data might be the first one that
is fully supported in such systems due to practical popular-
ity, data layout regularity (fixed length for 2D/3D points)
and technical maturity, in a way similar to that, point data
seemed to be first supported by NoSQL databases such as
Cassandra before more complex spatial datatypes were sup-
ported [3].

It is obvious that performance is the main driving force
for GPU accelerated data management on large-scale data.
While indexing is optional for moderate size datasets by fully
exploiting GPU hardware capabilities, indexing becomes in-
dispensable for large-scale data. Spatial indexing on point
data is challenging largely due to high data volumes and
significant irregular data accesses and data movements re-
quired for indexing. GPUs are traditionally featured with
large number of processing units, high memory bandwidth
and user managed shared memory/caches, which are desir-
able from a data management perspective. However, high
memory latency and limited cache capacity have imposed
significant technical challenges, in addition to complexity
and programmability, for such purposes [19]. In our previ-
ous studies, we have advocated for parallel primitive based
designs and implementations for spatial indexing and spa-
tial queries (e.g. [26][27][28][31]). Parallel primitives sup-
ported by GPU hardware, e.g., the Thrust library through
CUDA SDK [19][9], provide a desirable isolation between
our spatial data management applications and GPU hard-
ware details and facilitate a well-justified tradeoff between
portability and efficiency. The set of 7 parallel primitives
(with variations) used in this study are listed in the Ap-
pendix for a quick reference.

Among various parallel primitives we have exploited, sort-
ing plays a key role in spatial indexing to move spatially
adjacent points close to each other and generate indices for
the underlying data. Fortunately, sorting is among the most
well-studied parallel primitives on GPUs and its implemen-
tations have been continuously improving and fine-tuned
[22][12]. Modern GPUs are capable of sorting hundreds
of millions or even billions of data items per second which
largely contributes to the overall high performance of GPU-

2

based spatial indexing techniques. Nonetheless, as detailed
in Section 3 and Section 4, utilizing the parallel primitives
(including sorting) in different ways may significantly impact
the performance of spatial indexing applications (and likely
many other applications), which motivates many of the dis-
cussions in this work. As detailed in Section 5, the new
bottom-up technique, while exploiting the same set of par-
allel primitives, has achieved nearly 5X speedup on indexing
approximately 170 million points when compared with the
top-down approach.

Kd-trees and quadtrees are quite similar on indexing point
data, as both of them belong to space partition based spa-
tial indexing techniques. While quadtrees have been pop-
ular in the spatial databases and GIS communities, their
realizations on GPUs appeared much later. Kd-trees have
been popular in the computer graphics community for ap-
plications such as ray tracing, which can be dated back to
the pre-GPGPU era [10]. To the best of our knowledge,
the work reported in [33] is among the earliest on kd-tree
construction on modern GPUs. On the other hand, con-
structing kd-trees on point data for distance-based pruning
of search space completely on GPUs did not appear until
recently [6]. Nevertheless, many design strategies and im-
plementation techniques can be applied to both kd-tree and
quadtree constructions on GPUs.

The works in [8][7][17][14] follow the idea of treating quadtree
construction on GPUs as a level-by-level bucket sort prob-
lem where quadtree nodes are considered as buckets and
points to be indexed are sorted into the buckets based on
the quadrants that the points fall within. In particular,
[8] adopts a CPU-GPU hybrid approach where each thread
processes a quadtree node and loops over the points under
the node for subsequent subdivisions. The first few levels of
quadtree construction are performed on CPUs as the num-
ber of quadtree nodes is small and the degree of parallelism
is low. The technique switches to GPUs only when a suffi-
cient number of quadtree nodes has been created and GPU
parallel computing capacity can be effectively utilized. How-
ever, as each CPU thread needs to process a large number of
points for the upper level quadtree nodes, the within-node
parallelism is not effectively utilized and the CPU process-
ing time could dominate. For the rest of the quadtree nodes
constructed on GPUs, it is likely that the underlying bucket
sort is performed by a single GPU thread which can be in-
efficient. The two major sources of design and implemen-
tation drawbacks make the technique rather inefficient and
the authors reported a runtime of 20 seconds for indexing 15
million points on an unspecified Nvidia GPU around 2011.

The work reported in [7] improves [8] by exploiting block-
level parallelism and letting a block of GPU threads process
all the points indexed by a quadtree node for subdivisions.
The technique can significantly increase the degree of par-
allelism for constructing quadtree nodes, including top-level
ones. This makes an all-GPU based solution possible. How-
ever, there are two new sources of overheads. The first is the
cost of coordination among threads in a block when sorting
points. The second is that threads in warps may be under-
utilized when the number of points within a block is less
than GPU warp size (typically 32). The authors proposed
to switch to single-thread serial construction in this case in-

stead (as in [8]). According to the performance report in
[7], the technique is able to index 80 million points in about
50 seconds on an Nvidia FX 3800 GPU which seems to be
more efficient than the results reported in [8].

CUDA SDK provides a sample code on quadtree indexing
for points starting from version 5.0 for GPUs that supports
Compute Capability 3.5 as a demonstration of dynamic par-
allelism [17]. The design behind the code is similar to [7] in
several aspects but with better block/warp level reduction
and scan support for bucket sort. With hardware support
of dynamic parallelism, the end-to-end process can now be
performed using a single recursive kernel function invoca-
tion. New kernels are launched dynamically by threads that
are processing quadtree nodes that need subdivisions. Four
warps in a block are used to bucket-sort the points where
each warp is assigned to process a quadrant. Warp level
hardware intrinsic functions, such as voting and shifting [15],
are aggressively exploited for efficiency. However, the pol-
icy on processing a quadrant using a single warp may also
limit the degree of parallelization and subsequently affect ef-
ficiency, especially during the construction of top-level nodes
where a large number of points need to be processed. We
also note that the publically available code uses two identi-
cal arrays to store points before bucket sort and after bucket
sort, respectively. The two arrays are swapped when pro-
cessing two consecutive levels during quadtree construction,
which makes the implementation less attractive comparing
with those that support in-place sort. Different from [7] that
only expands non-empty quadtree nodes level-by-level, the
CUDA SDK sample code pre-allocates memory for a full
quadtree (i.e., a pyramid) of depth k with a memory foot-
print of (4k+1 − 1)/3 before the construction process begins,
which is memory inefficient especially when depth k is large.

A more recent work [14] overcomes this memory ineffi-
ciency by allocating memory only for the exact number of
non-empty quadtree nodes. This is achieved by first count-
ing the number of such non-empty quadtree nodes using
atomic operations (e.g., atomicAdd [15]) before actually out-
putting data. However, the amount of hardware resources
that support atomic operations is limited on commodity
GPUs (e.g., L2 cache capacity) and the performance is likely
to be bottlenecked by the hardware resources when indexing
large numbers of points. The situation goes worse in cases
that a few bins have a large number of counts, i.e., skewed
distributions, which is quiet common for real data.

The implementations of all of the four techniques dis-
cussed above seem to be based on the plain CUDA pro-
gramming syntax directly, which is expected to maximize
performance but may not be easily achievable due to imple-
mentation complexity. They share the similar idea of us-
ing bucket-sort for quadtree construction and they also suf-
fer from insufficient degree of exploitable parallelisms due
to the nature of the bucket-sort design. First of all, re-
gardless of whether parallelizing quadtree node construction
is at the thread level, warp level or block level, a thread
needs to loop over potentially a large number of points.
We note that the distribution of the point counts can be
skewed among quadrants. Real world point data are typ-
ically unevenly distributed, such as taxi pickup locations
in NYC where most of the locations are in downtown and

3

middle town areas, especially around hotspots in these ar-
eas. The skewed distribution makes parallelization very dif-
ficult due to unbalanced workloads for parallel processing
units. Second, whether utilizing dynamic parallelization or
not, as a quadtree typically has only four child nodes at
most, exploiting node level parallelism generally results in
insufficient workload when constructing the first few levels
of a quadtree. While overlapping multiple streams of GPU
jobs may potentially increase the overall GPU utilization, it
does not help end-to-end runtime when constructing a single
quadtree. Third, while bucket-sort is conceptually simple,
its GPU implementation is not as extensively fine-tuned as
radix sort on GPUs [12]. Implementing bucket sort at the
block level using a double array approach, which seems to
be adopted in the previous works, results in excessive non-
coalesced GPU global memory copy operations which could
be costly with respect to both memory footprint and run-
time.

Our preliminary work on identifying quadrants with num-
bers of points less than a predefined threshold to balance
workloads in point-in-polygon test based spatial joins on
GPUs [26] predates or in parallel with the works discussed
above [8][7][17][14]. Even though the technique only iden-
tifies such quadrants level-by-level without actually creat-
ing a quadtree, they share quite some commons in design.
However, different from these works, our work [26] exploits
both node and point level parallelisms and adopts a paral-
lel primitive based strategy to make a sensible tradeoff be-
tween efficiency and simplicity. In this study, we extend our
previous work to complete a GPU-accelerated quadtree con-
struction technique and refer it as our top-down approach
for point indexing (Section 3). As the additional phase that
constructs the quadtree from leaf quadrants takes very little
additional runtime, the efficiency of the technique is largely
determined by the first phase on identifying leaf quadrants.
While we defer the presentation of the technique to Section
3, the parallel primitive based implementation avoids several
key issues encountered by other works on quadtree-based
indexing for point data directly using plain CUDA syn-
tax. When comparing to the implementation of the CUDA
SDK sample code [17] (the source code of the other three
works is not publically available and it is non-trivial to re-
implement), the top-down approach can achieve 2.5X higher
performance (Section 5), likely due to better exploitation of
parallelisms in sorting points to appropriate quadrants and
efficient implementations for parallel primitives, in a way
similar to what we have reported in [28] on constructing
multi-attributed quadtrees for complex polygons using par-
allel primitives. Furthermore, by relaxing certain require-
ments imposed by the top-down approach, we have devel-
oped a new bottom-up approach (Section 4) and we use
the top-down approach as a baseline to compare with the
newly proposed bottom-up approach. We next present the
top-down and the bottom-up approaches in Section 3 and
Section 4, respectively.

3. GPU QUADTREE DATA LAYOUT AND
THE TOP-DOWN APPROACH

Before presenting the top-down approach, we first intro-
duce the data layout of the quadtree structure that was de-
signed for the top-down approach but can also be applied

to the bottom-up approach. For notation convenience, when
introducing the proposed Structure-of-Array (SoA) quadtree
data layout, array names are bolded and italicized when they
are first introduced and they will only be italicized when
they are subsequently referred to. When introducing the
algorithms using parallel primitives, parallel primitives are
underscored and their input/out variables are both bolded
and italicized while temporal variables are italicized only
in figures. All of the inputs/output variables and parallel
primitives are only italicized in their accompanying text for
clarity. Some words in text are occasionally bolded (but not
italicized) for emphasis purposes. The conventions are ap-
plied to Section 4 as well.

3.1 SoA-based Quadtree Data Layout
The structure is similar to that in the previous works

[8][7][17][14] in the sense that quadtree nodes are laid out as
an array in a level-by-level order, i.e., Breadth First Search
or BFS. However, our quadtree structure adopts a Structure
of Arrays (SoA) rather than Array of Structures (AoS) strat-
egy (as in the CUDA sample code) for better coalesced mem-
ory accesses on GPUs. The SoA structure in our quadtree
consists of four arrays with the same length. The Morton
(Z-Order) code [21] array, termed as the key array, stores
the Morton codes of quadrants. The boolean leaf indica-
tor array, termed as the indicator array, stores 1/0 values
to indicate whether the respective quadtree node is a leaf
node or not. The first child/point position array, termed as
f pos array, stores the positions of the first child node in
the quadtree SoA for a non-leaf node or the positions of the
first points that fall within the quadrants that are indexed
by a leaf quadtree node, depending on the corresponding
elements in the indicator array. The last one, termed as
length array, stores the numbers of child nodes of non-leaf
nodes or the numbers of points of leaf nodes, again depend-
ing on the indicator array elements. Note that the length
array and the f pos array hold the information related to
both quadtree nodes and points. The combination is possi-
ble due to the fact that leaf-nodes do not have child nodes
anymore and their corresponding elements in the length and
f pos arrays can be reused for information on the points they
index. The consolidation of length/f pos for both quadtree
nodes and points reduces memory footprint to a half. A
running example is provided in Fig. 1, assuming that the
predefined threshold representing the maximum number of
points within a quadrant denoted as nt is 12. Further as-
suming the root node has a level of 0, leaf node 2 is identified
at level 1 (11 points), leaf nodes 4 and 7 are identified at
level 2 (7 and 9 points, respectively) and leaf nodes 9, 10,
11, 12, 13 and 14 are identified at level 3.

Furthermore, by storing the positions of the first child
nodes or the first points in quadrants, instead of the posi-
tions of all child nodes or points, the memory footprint can
be significantly reduced. This is possible in our design as
the quadtree nodes are laid out in a level-by-level manner
and the positions of all child nodes under a parent quadtree
node can be easily computed either sequentially or in paral-
lel. The same argument can be applied to computing point
positions where points among different quadrants are sorted
based on the Morton codes of the quadrants they fall within.
Note that points within a quadrant are unordered due to lack
of practical needs, which also saves data movement costs in

4

Figure 1: SoA Data Layout of Quadtree on GPUs.

sorting. The SoA quadtree data layout will also help coalesc-
ing GPU memory accesses as neighboring threads in GPU
thread blocks are assigned to process neighboring points or
quadtree nodes.

We next briefly summarize in Section 3.2 the first phase of
the top-down approach on identifying leaf quadrants which
was published in [26] before introducing the new second
phase on constructing the quadtree from leaf quadrants in
Section 3.3. The top-down approach serves a baseline for
comparison with our new bottom-up design and implemen-
tation to be introduced in Section 4.

3.2 Phase 1: Identifying Leaf Quadrants
The basic idea of the design of phase 1 in the top-down

approach is similar to the previous works on GPU-based
point indexing discussed in Section 2 in several aspects in
the sense that they all adopt the top-down strategy that
constructs quadtree nodes level-by-level. A running exam-
ple shown in Fig. 2 provides an intuitive illustration. It can
be seen that the indexing space is hierarchically partitioned
and leaf nodes are identified in a top-down manner.

In the first step of Phase 1, Morton codes [21] of the input
points are first generated in parallel by all available threads
using a transform primitive where each thread applies a Z-
order transformation [21] function to the point that is as-
signed to generate the output Morton codes. In the sec-
ond step, the points to be indexed are then sorted based on

points Morton codes using the GPU-efficient radix sort (sta-
ble sort by key). Third, the numbers of points in all valid
quadrants are counted using a reduce by key primitive for a
segmented reduction on sorted Morton codes which is also
highly parallelizable where each thread is assigned to process
a point. Different from the CUDA-based implementations
in the previous works, both sort and segmented reduction
are able to utilize all the threads and blocks in a GPU device
(and potentially across multiple GPU devices and multiple
computing nodes) for a large-scale point dataset where the
number of points is typically far larger than the number of
simultaneous threads of a GPU device.

The next major step in phase 1 is to identify leaf quad-
rants that do not need further subdivisions and identify
points that fall within these quadrants. The identified points
are moved to the front of the point array so that the order
of the last-level quadrants (leaf nodes) is the same as the
order of the points that fall within them. Once this step is
finished, the quadtree construction procedure can move to
the next level.

During the identification process, similar to the previous
works, quadrants that have fewer points than a predefined
threshold are considered as leaf nodes in the quadtree and
no further subdivisions are required. Conceptually, this is
similar to a SQL statement like ”SELECT * FROM Points
WHERE #key IN (SELECT #key FROM Points GROUP
BY #key HAVING COUNT (#key) < nt)”, here #key rep-
resents the Morton codes of quadrants. Due to space limit,

5

Figure 2: Illustration of the Top-Down Quadtree Construction Approach.

we refer to [26] for the details of its implementation by chain-
ing copy if, exclusive scan, scatter if, inclusive scan and gather
primitives to expand the boolean input flag array derived
from the sub-query of the SQL statement to an boolean out-
put flag array to signal whether a point should be indexed
by a leaf node at the present level or postponed to the next
level.

Based on the boolean output flag array, in the final step
of phase 1 (for each level), the points can be rearranged (or
reordered) by using two copy if primitives to copy the two
types of points into a temporal point array and then use a
copy primitive to copy the data back. All are highly paral-
lelizable that can effectively use all GPU threads for large
point datasets. Although device-to-device memory band-
width on modern GPUs is in the order of hundreds of GB/s,
similar to the CUDA sample code that utilizes double arrays,
the extra memory footprint and data access cost are poten-
tial sources of inefficiency, when compared with the newly
proposed bottom-up approach (Section 4).

We note that rearranging points based on the separa-
tion between leaf and non-leaf quadtree nodes allows ap-
plying the same algorithm on the rest of the points (yet-to-
be-indexed points) corresponding to the non-leaf quadtree
nodes to construct next-level quadtree nodes. Upon the
completion of Phase 1, among the four arrays of our SoA
structure for quadtree, the Morton code array (key) and
the leaf indicator array (indicator) have been filled level-
by-level. Note that indicator array is filled by comparing
the numbers of points in the resulting quadrants with the
threshold value nt after the reduce by key primitive. The
key array is filled directly by the output of the key field
after the reduce by key primitive.

3.3 Phase 2: Construction Quadtree from Leaf
Quadrants

To complete the top-down quadtree construction tech-
nique, the remaining task is to fill the length array and the
f-pos array. We have developed a new approach which is
much simpler than the one presented in our earlier technical
report [25] (not part of [26]). The overall process is provided
in Fig. 3 with explanations to follow next. Note that += is
used to denote appending an array to an existing one and
˜denotes element-wise negation in an array. Arrays inside a
pair of curly brackets form a zipped array, 0..n indicates a
sequence, and a scalar number inside a pair of square bracket
denotes lifting the scalar to an array. Finally, expression in-

side a pair of round brackets can be either parameters of a
complicated functor (with implementation skipped) or the
simple implementation of the functor for the corresponding
primitive.

Assuming that the root node sits at level 0, starting from
level 1 and for each level, line 3 computes the Morton codes
for the parent nodes of all the nodes at the current level using
a simple transform primitive with a functor that simply di-
vides an input Morton code by 4 (or right-shift 2 bits). Note
that Morton codes of higher level quadrants have fewer bits.
Line 4 uses reduce by key primitive to count the numbers
of child nodes of the parent nodes. Note that only non-leaf
nodes that have one or more child nodes will appear in the
resulting p key array and n child array, respectively.

Figure 3: Algorithm to Construct Quadtree from
Leaf Nodes.

The rest of the steps are to populate the length and f pos
arrays properly. Line 5 first accumulates the leaf node po-
sitions based on the indicator array to generate a mapping
array n map using an exclusive scan primitive. Line 6 puts
n point elements in the proper positions in the length array
(for quadrants represented by leaf nodes) using a gather if
primitive and n map and indicator as the inputs. Line 7
accumulates the first point positions for the quadrants rep-
resented by leaf nodes by using an exclusive scan primitive

6

again on n point. A gather if primitive is used in Line 8 in
a way similar to Line 6.

The rest of the four lines populate the length and the f pos
arrays for non-leaf nodes. Line 9 uses a copy if primitive and
is based on the negates of the elements in the indicator array
to populate the numbers of child nodes for non-leaf nodes in
the length array. Line 10 sets the n child elements to 0 for
leaf nodes (using a replace if primitive) to correctly com-
pute the accumulated positions for non-leaf nodes in Line
11 using an exclusive scan primitive. Finally, Line 12 popu-
lates the first child positions of non-leaf nodes based on the
results of Line 11 using a copy if primitive, which completes
Phase 2 of the top-down approach.

Experiments show that the runtime of the Phase 2 code
is insignificant comparing with that of Phase 1 (Section 5).
This is expected as the numbers of the resulting quadrants
and quadtree nodes are typically much smaller than the
number of points, especially when the maximum number of
points threshold is set to be relatively large (e.g., nt = 50).
More details on the experiments are provided in Section 5.

4. THE NEWLY PROPOSED BOTTOM-UP
APPROACH

4.1 Key ideas and Conceptual Design
While preliminary experiment results have shown that the

top-down approach is capable of indexing 170 million points
of NYC taxi pick up locations in about a second on a RTX
2080 Ti GPU and is more efficient than the sample CUDA
SDK code (Section 5), a question to ask is whether sorting
yet-to-be-indexed points at all levels to maintain the cor-
respondence between the BFS ordering of quadtree nodes
and points they indexed is necessary, which turns to be the
most expensive part of the top-down approach. Conceptu-
ally, since leaf quadtree nodes keep track of the points they
index using the first point position values and the numbers
of points that fall within the quadrants, by following the
first child position values of intermediate quadtree nodes
from the root to a leaf node, the points in the quadrants
that satisfy the query criteria can be correctly retrieved. As
such, it can be argued that the correspondence may not be
essential, although it is typically the case for quadtree in-
dexing approaches that follow a top-down strategy as in [26].

Without such a requirement, it turns out that points to be
indexed need only be sorted once to generate quadtree nodes
representing quadrants at the finest level based on their
Morton codes (termed as full quadrants). Subsequently, a
quadtree can be fully constructed from the full quadrants
in a bottom-up manner with a few parallel primitives. By
significantly reducing the workload on sorting points which
is the bottleneck in our top-down approach, the overall per-
formance of the newly proposed bottom-up approach can
be significantly improved. We note that while the quadtrees
constructed by the two approaches are identical, the order-
ings of the points that the quadtrees index may be differ-
ent, as points in the two approaches are sorted differently.
That is, the top-down approach sorts points based on Mor-
ton codes at multiple levels and the bottom-up approach

sorts points based on Morton codes at the finest level.

It is worthy of noticing that, for the bottom-up approach,
as points are sorted based on Morton codes, the order of
points does not need to be changed for correct indexing
when lower level quadrants are aggregated to upper level
quadrants. Aggregation along a space partitioning hierar-
chy will result in larger numbers of points (sum) and smaller
first point positions (minimum) for upper level quadrants.
The characteristics are fundamental to the correctness of the
bottom-up approach while achieving efficiency. The run-
ning example in Fig. 4 provides an intuitive idea on the
bottom-up approach where the lower level quadrants are ag-
gregated bottom-up and the unqualified nodes are removed
to construct a quadtree. We next present the design and im-
plementation details of the newly proposed bottom-up ap-
proach.

4.2 Data Parallel Design and Primitive-based
Implementation

The bottom-up approach starts with sorting points (using
a stable sort by key primitive) based on their Morton codes
at the finest level (with the maximum depth) generated by
a transform primitive. While both steps look similar to the
steps discussed previously when presenting the top-down ap-
proach, we note that the top-down approach begins with the
coarsest level Morton codes and the bottom-up approach be-
gins with the finest level Morton codes. Subsequently, for
the bottom-up approach, a reduce by key parallel primitive
is applied to compute the Morton codes of the finest-level
quadrants and count the numbers of points that fall within
these quadrants.

Using these Morton codes and the counted numbers as the
input arrays, in a way similar to Phase 2 in the top-down
approach (Line 2-4 in Fig. 3 of Section 3), for each level of
the quadtree, by using a reduce by key primitive, the Mor-
ton codes and the numbers of child quadtree nodes of the
parent quadrant nodes can be computed. The process is
repeated until reaching the root node. Although they share
some similarities again, the difference is that, the inputs to
the top-down and bottom approaches for this part are the
leaf quadrants and the full quadrants, respectively.

We argue that the combined steps so far are conceptually
equivalent to Phase 1 of the top-down approach. Differ-
ent from the top-down approach that generates leaf quad-
rants with BFS order in Phase 1 which makes its Phase 2
much easier, Phase 1 of the bottom-up approach generates
all possible non-empty quadrants (i.e., full quadrants) which
makes its Phase 2 much more difficult. The rest of Section
4 is dedicated for Phase 2 of the bottom-up approach. As a
summary, after the above three steps (Phase 1), the outputs
have four arrays which also serve as the input for Phase 2:
an array of Morton codes of quadrants (pkey), an array of
the numbers of non-empty sub-quadrants (clen), an array
of the numbers of points in these quadrants (nlen), and fi-
nally, an array of sorted points based on the Morton codes
of the quadrants at the last level (pnt), where pkey, clen
and nlen have the same lengths and their elements have a
one-to-one correspondence.

Two major issues remain in Phase 2. First, as shown in

7

Fig. 4, it can be seen that, among the full quadrants, some
cannot be represented as valid quadtree nodes and should
be removed (more details shortly). Second, although the
key and the length arrays are filled during the bottom-up
level-by-level iterations, the f pos array and the indicator
array need to be computed. The algorithm to tackle these
two issues and generate a quadtree from full quadrants are
provided in Fig. 5 and its details are provided in the two
subsections to follow next.

4.2.1 Identifying Valid Quadtree Nodes
Recall that, in the top-down approach, leaf nodes can be

simply identified by comparing the number of points that fall
within the quadrants, i.e., nk, with the threshold value nt.
As points that belong to leaf nodes and non-leaf nodes are re-
ordered in the output point array at each level, the positions
of the first points in the leaf nodes are simply pre-fix sums
(exclusive scan) of the numbers of points in these quadrants.
As discussed in Section 3.1, points under the quadrants rep-
resented by non-leaf nodes need to be re-ordered and sorted
based on their Morton codes at each level to maintain the
order, which is the major bottleneck of the top-down ap-
proach.

For the bottom-up approach, it can be seen that whether
a quadrant is represented by a leaf node or non-leaf node de-
pends not only on nk but also on the number of points that
fall within its parent node (np). The nodes correspond-
ing to the last level quadrants with nk > nt automatically
qualify as leaf nodes. However, for the rest of the quad-
rants, only when nk <= nt < np can the node be qualified
as a valid leaf node. Otherwise, the quadrants need to be
aggregated until a valid leaf node can be identified. Nodes
representing such lower level quadrants are not part of the
final quadtree and must be removed. As shown in Fig. 4, all
the quadrants covered by the leaf node with 11 points (the
lower-left part of the four sub-panels, highlighted) should be
removed and only the leaf node should appear in the final
constructed quadtree. The problem can be trivially solved if
we keep a pointer (or array offset) to the parent node of the
current node but our SoA quadtree data structure has only
the length and the f pos arrays for the memory efficiency
reason (Section 3 and Fig. 1).

To construct a quadtree with only the numbers of points
in the last-level quadrant and the numbers of child nodes
for all quadrants derived from the last-level quadrants, our
approach transforms the criteria for identifying leaf-nodes
into new ones. The new criteria can be verified in two suc-
cessive steps where each step can be implemented by one
or more parallel primitives. The new criteria are that, first,
if a quadrant whose parent quadrant has no more than nt
points, i.e., np <= nt, it should be removed. For the remain-
ing quadrants, if nk <= nt, they should be represented by
leaf nodes; otherwise, they should be represented by non-leaf
nodes. The algorithm with the primitive based implemen-
tation is illustrated in the first five lines of Fig. 5.

Lines 1-3 compute the numbers of points in the quad-
rants parent quadrants, given the numbers of points of child
quadrants under these parent quadrants. Essentially this is
equivalent to computing the offsets of parent quadrants for
all child quadrants on-the-fly as the numbers of points and

their quadrants have a one-to-one correspondence in their
respective arrays as part of the inputs. At an abstract level,
this can be realized by a special expand parallel primitive
which is a chain of exclusive scan - scatter - inclusive scan.
The exclusive scan primitive takes the default ”plus” as the
functor parameter to accumulate the numbers of children
into the positions of the first child nodes as we have discussed
before. The scatter primitive puts the sequence numbers of
the parent nodes into these first child node positions. Fi-
nally, the inclusive scan primitive with ”maximum” as the
functor fills in the blanks between the consecutive first node
positions with the sequence identifier of the first child node.
This is because of the fact that all child nodes have the
same sequence identifiers of their parent nodes. The com-
pound expand primitive is special for two reasons. First,
as the numbers of child nodes of a parent node are always
greater than 0 and thus scatter, instead of the conditional
scatter if, can be used, which is more efficient. Second, as
the sequence identifiers of parent quadtree nodes, which are
sequential and range from 0 to |clen|, are exactly what we
want to expand, the last step with a gather primitive to ac-
tually replicate the input data items (especially when these
data items are not comparable) can be omitted.

Line 5 is the key step where the unqualified quadrants are
removed by using a remove if primitive. To keep the corre-
spondence among qkey, clen and nlen arrays, we zip them to-
gether as a single input vector for the primitive. This brings
a caveat that needs special attention, due to the reason that
remove if is an in-place primitive. When the elements of the
input array are applied to the remove if primitive in paral-
lel, they are being modified during the primitives execution.
Unfortunately, the primitives functor also rely on nlen to
compare its elements with nt where we expect nlen array to
be constant, which results in a semantic conflict. The issue
is solved by duplicating the nlen array and using its copy
for the functor (Line 4). The duplicate is then deleted after
its lifecycle is over to reduce GPU memory footprint.

4.2.2 Populating INDICATOR and F POS arrays
The leaf and non-leaf indicator array can be populated

by applying the second criteria discussed previously to the
output of Phase 1 to decide whether a quadtree node above
the last level is a leaf node or not. This is implemented by
a transform primitive using a simple comparison functor by
comparing the numbers of points under the quadrants with
the threshold nt as shown in Line 6 of Fig. 5. The elements
are set to non-leaf when nk > nt. Line 7 takes care of the
quadrants at the last level where they are considered as leaf
nodes even if nk > nt. This can be simply implemented by
a transform primitive to set the respective elements in the
indicator array to true.

The last five lines in Fig. 5 are used to fill the length ar-
ray in the quadtree data structure based on clen, nlen and
the indicator arrays. Line 8 changes the elements in the
nlen array to 0 for non-leaf quadtree nodes by a replace if
primitive before applying an exclusive scan primitive to ac-
cumulate the nlen array into a ppos array to record the
offsets of the first point positions at Line 9. Note that the
nlen array elements with zero values (for non-leaf nodes) do
not increase the corresponding ppos values and these values
are irrelevant to the final length array. Similarly, the clen

8

Figure 4: Illustration of the Bottom-Up Quadtree Construction Approach.

Figure 5: Bottom-Up Quadtree Construction Algo-
rithm from Full Quadrants.

array are accumulated into the cpos array after setting the
clen elements corresponding to the leaf nodes to 0 in Line
10 and Line 11, respectively. Again, the clen elements with
zero values do not increase the corresponding cpos elements.
Finally, step 11 assembles the ppos and cpos arrays into the
first position array f pos based on the leaf indicator array,
which is naturally implemented as a transform primitive us-
ing a simple switch function as the functor with ppos and
cpos as the inputs. Using classic C syntax, the functor can
be expressed as f pos[i] = (indicator[i])?ppos[i] : cpos[i] for
easy interpretation.

5. EXPERIMENTS AND RESULTS

5.1 Data and Experiment Setup
Among the four top-down approaches discussed in details

by the end of Section 2, only the CUDA SDK sample code is
publically available. We thus compare the end-to-end run-
times produced by the CUDA SDK sample code (or simply
SDK), our top-down approach (TD), and our bottom-up ap-
proach (BU). However, the memory allocation scheme of the
SDK code prevents it from constructing large quadtrees with
the maximum level/depth larger than 14 on typical GPUs

(e.g., RTX 2080 Ti with 11 GB memory and Titan V with
12 GB memory). As such, max level in the SDK code is
set to 14. For the top-down and bottom-up approaches that
we have developed, the memory footprints are generally lin-
ear with respect to the numbers of points to index and not
directly related to the maximum depth/level limits. Using
a max level =16 is already capable of indexing points in a
space of 216 ∗ 216. For resolution as high as 1 meter, which
is much higher than typical GPS location accuracy around
30 meters, the index space is about 65*65 kilometers, which
should be sufficient for most city scale applications. As such,
we set the maximum depth/level to 16 in our top-down and
bottom-up approaches. The maximum number of points in
a leaf quadrant (except for the last level) nt is set to 200.

While it would be also interesting to use synthetic data
with random distribution or some skewed distributions, we
are more interested in the performance on real world data
that are typically unevenly distributed and difficult to be ap-
proximated by simple mathematical distributions. We have
picked a popular dataset which is the taxi trip pickup/drop-
off locations in New York City (NYC) with yearly 170
million points [23] for experiments. In this study, we have
chosen the pickup locations in 2009 which has 168,898,952
points. The original latitude/longitude coordinates have
been re-projected into the standard EPSG 2263 projection
that is typically adopted for city-level geospatial applica-
tions in NYC and its neighboring Long Island area [5]. The
unit of the projected coordinates is foot which is suitable for
direct distance computation without further processing. To
test the scalability of the designs and the implementations
of the approaches, we accumulate the pickup location data
for first 1-12 months and treat them as 12 datasets, each for
an experiment.

All experiments are performed on a Nvidia GTX 2080
Ti GPU with 4,325 CUDA cores running at 1.65 GZ and
11 GB GDDR5 memory with 352-bit memory bandwidth.
All implementations are compiled with CUDA SDK version
10.1, computing capability 7.5 and -O3 optimization flag.
We measured the maximum memory footprints for the top-
down and the bottom-up approaches, which are 5.99GB and
3.15GB, respectively. Although we leave fine-tuning mem-
ory management for future work, e.g., reusing temporal ar-
rays and finer-grained memory allocation/deallocation, the
current implementations can run on inexpensive commod-
ity GPUs with 8GB memory, which is becoming the main-
stream for the current generation of Nvidia GPUs. As the

9

Table 1: Runtimes of Three Approaches (in millisec-
onds): CUDA SDK Sample Code (SDK), Top-Down
(TD) and Bottom-up (BU) and Speedups)

#Mo. #ofpoints T1 T2 T3 SP1 SP2
1 13,887,620 360.4 143.3 40.8 2.52 3.51
2 27,079,723 619.4 244.4 68.5 2.53 3.57
3 41,284,081 833.4 336.7 98.6 2.48 3.41
4 55,383,596 1057.1 426.7 128.8 2.48 3.31
5 69,970,743 1290.6 535.5 150.1 2.41 3.57
6 84,035,490 1549.0 608.8 189.3 2.54 3.22
7 97,553,533 1769.2 711.5 199.1 2.49 3.57
8 111,127,610 1977.6 786.8 226.4 2.51 3.48
9 124,993,700 2206.7 869.3 253.9 2.54 3.42
10 140,444,141 2463.6 966.0 287.8 2.55 3.36
11 154,523,740 2685.2 1050.0 314.5 2.56 3.34
12 168,898,952 2959.5 1124.9 339.1 2.63 3.32
T1: CUDA SDK Sample Runtime
T2: Top-Down Runtime
T3: Bottom-Up Runtime
SP1=T1/T2
SP2=T2/T3

bottom-up approach requires only about half of the GPU
memory of the top-down approach, it is suitable to run on
even lower-end GPUs with as little as 4GB memory for the
yearly NYC taxi trip data.

5.2 Results
The numbers of points and the end-to-end runtimes of the

three approaches for the 12 experiments are listed in Table 1.
The last two columns of Table 1 also list the speedup of our
top-down implementation over the CUDA SDK sample code
and the speedup of the bottom-up approach over the top-
down approach. It can be seen that the top-down approach
(max level=16) is about 2.5X faster than the CUDA SDK
sample code (max level=14) while the bottom-up approach
is 3.4X faster than the top-down approach. The speedups
are quite consistent across the 12 experiments for both com-
parisons. This is likely due to the similar distributions of
taxi pickup locations in NYC across different months (and
likely across multiple years). Due to the inferior perfor-
mance of the CUDA SDK sample code, we exclude it from
further discussion. As a summary, the bottom-up approach
not only runs faster (3.4X) but also is more memory efficient
(2X), when compared with the top-down approach.

To further understand the performance differences be-
tween the top-down and the bottom-up approach, we have
listed the breakdown times of the three components in both
approaches, i.e., the initialization time, Phase 1 time and
Phase 2 time. The initialization part is responsible for GPU
memory allocation and CPU to GPU data transfer; the ini-
tialization times are listed as TD-I and BU-I in Table 2 for
the two approaches, respectively. Although the top-down
and the bottom-up approaches utilize slightly different data
structures, the runtime on transferring point data from CPU
to GPU which is common to both approaches, dominates
both TD-I and BU-I. As a result, TD-I and BU-I are very
close. For situations that point data is already on GPU de-
vices, TD-I and BU-I will be close to 0 and can be excluded
from their respective runtimes.

From Table 2, it can be seen that the runtime for Phase 1
(TD-P1) in the top-down approach is much larger than that
of Phase 2 (TD-P2) as we have discussed in the previous
sections. In fact, the difference between TD-P1 and TD-P2
gets larger as the numbers of points increase. As a matter of
fact, TD-P1 over TD-P2 increases from 10.4X (119.9/11.9)
to 46.2X (965.4/20.9) from 1 month to 12 months. When
comparing TD-P1 and TD-P2 for 1 month and 12 months,
TD-P1 increases 8.1X while TD-P2 increases only 1.8X. This
is because the resulting numbers of leaf quadrants which are
the inputs of TD’s Phase 1, grow sub-linearly with respect
to the numbers of points, which are the input for Phase 2.
As a result, it is likely that, as the number of points to index
increases, the resulting leaf nodes become more full, but the
numbers of points in these quadrants are still less than the
threshold nt. When comparing BU-P1 and BU-P2, we can
see that they are much closer, although BU-P2 is still lower
than BU-P1 for all months.

The results of Table 2 also support our previous discus-
sions that Phase 1 in the top-down approach is more com-
plex than Phase 1 in the bottom-up approach due to the
fact that TD-P1 sorts yet-to-be indexed points at each and
every level while BU-P2 sorts all points to be indexed only
once at the finest level. In contrast, TD-P2 is much sim-
pler than BU-P2 as TD-P2 constructs a quadtree from leaf
quadrants only while BU-P2 constructs a quadtree from full
quadrants. In addition to the reason that the number of
full quadrants can be several times larger than the number
of leaf quadrants, BU-P2 also needs sophisticated logic to
remove quadrants that cannot be qualified as leaf quadtree
nodes among the full quadrants.

Assuming that the point data to be indexed are already
on GPU devices, the total runtime of the top-down approach
(TD-tot) would be just TD-P1+TD-P2 and the total run-
time of the bottom-up approach (BU-tot) would be just
BU-P1+BU-P2. The speedup, defined as TD-tot/BU-tot,
is computed. As shown in the last column of Table 2, the
speedup is about 4.9X across the 12 experiments, which is
higher than 3.4X when the initialization time (mostly CPU
to GPU data transfer time) is included.

Although the exact runtimes of quadtree constructions re-
ported in [14] are unavailable, it can be seen from its Fig.
8 that it takes about 21 milliseconds to index 9.5 million
points for skewed distribution, which is already the largest
in the experiment that generates the figure. Our bottom-up
approach indexes 13.9 million points (the first month in the
NYC taxi trip dataset) in about 28.9 milliseconds, which
suggests slightly higher performance of our bottom-up ap-
proach, i.e., 481 million points/s vs. 452 million points/s,
for relatively small-scale data. Since Fig. 8 of [14] exhibits
super-liner increase of runtime with respect to the numbers
of points for skewed data, extrapolating the runtime to 169
million points would not be accurate or even possible. Nev-
ertheless, even assuming a linear extrapolation for [14], the
achieved performance of our bottom-up approach, i.e., in-
dexing 169 million points in 199.6 ms which is equivalent to
846 million points per second, would still perform about 2X
faster.

10

Table 2: Breakdown Runtimes (in milliseconds) of the Top-Down Approach (TD) and Bottom-Up Approach
#Mo. TD − I TD − P1 TD − P2 BU − I BU − P1 BU − P2 Speedup
1 11.9 119.9 11.5 11.9 13.4 15.5 4.55
2 22.7 207.2 14.5 22.8 22.2 23.4 4.86
3 34.3 287.2 15.2 34.7 31.7 32.2 4.73
4 45.8 365.9 14.9 45.9 41.2 41.7 4.59
5 58.4 456.1 21.0 57.5 52.0 40.6 5.15
6 69.6 517.2 22.0 69.7 61.4 58.2 4.51
7 80.3 609.3 21.8 80.2 71.6 47.3 5.31
8 91.4 674.0 21.5 91.6 80.3 54.6 5.16
9 102.3 744.4 22.6 104.8 89.7 59.4 5.14
10 115.2 829.3 21.5 115.8 96.4 75.7 4.94
11 126.8 900.8 22.4 128.3 111.7 74.5 4.96
12 138.6 965.4 20.9 139.6 120.7 78.9 4.94
I: Initialization time, including GPU memory allocation and CPU to GPU data transfer
P1 and P2: phase 1 and phase 2 runtimes
Speedup=(TD-P1+TD-P2)/(BU-P1+BU-P2)

Overall, the total runtime of the proposed bottom-up ap-
proach is capable of indexing approximately 170 million points
in about 200ms. With an indexing rate of 850 million points
per second, it may suggest the possibility of real-time and
on-the-fly indexing for point datasets at scale, even on in-
expensive commodity GPUs . The high-performance may
open opportunities for interactive explorations through the
emerging GPU-based data management systems such as Nvidia
cuDF [16], as discussed in the introduction section. We are
in the process of integrating the quadtree indexing approach
as well as several other GPU-based spatial query techniques
into cuDF.

6. CONCLUSIONS AND FUTURE WORK
In this study, after extending our previous work on iden-

tifying leaf quadrants from a large-scale point dataset by
repetitively partitioning space into quadrants until the num-
bers of points in each quadrant is smaller than a predefined
threshold for parallelizing spatial joins to a full quadtree in-
dexing approach, termed as the top-down approach, we have
developed a new and more efficient bottom-up approach.
While not exactly, the top-down and the bottom-up ap-
proaches share some duality features in indexing point data
which makes exploring the two approaches simultaneously
interesting. We present the design and implementation de-
tails of the extension of the top-down approach and the com-
plete bottom-up approach. Different from previous works
whose implementations adopt plain CUDA programming,
our implementations are based on parallel primitives which
are simple to understand, easy to implement, and offer high
level of portability.

Experiments on the yearly 170 million taxi pickup loca-
tions in NYC in 2009 have shown that the top-down im-
plementation is about 2.5X faster than the quadtree con-
struction code that is shipped as a CUDA SDK sample even
though our top-down implementation indexes with a maxi-
mum level/depth of 16 while the SDK code is only capable of
indexing with a maximum level/depth of 14 before running
out of memory. Both running at a maximum level/depth
of 16, the bottom-up approach is 3.4X better than the top-
down approach when CPU to GPU data transfer time is

included. The speedup increases to 4.9X when the point
data to be indexed are already on GPU devices and the
data transfer time is not needed. With an indexing time of
about 200 milliseconds to index about 170 million points,
our bottom-up approach seems to be capable of real-time
and on-the-fly indexing for interactive explorations, even on
inexpensive commodity GPUs.

For future work, first, as discussed inline, we would like
to fine-tune the memory management part to reduce both
memory allocation/deallocation time and to minimize mem-
ory footprint. The RAPIDS Memory Manager (rmm [18]),
which is also used in cuDF, can be a good option for the more
efficient memory allocation/deallocation on GPUs. Care-
fully analyzing the lifecycle of each temporal variables and
deallocating (or offloading to CPU memory) promptly on
variables that are no longer needed or cannot be reused seem
to be a low hanging fruit for this purpose. The task could
be easier for data parallel designs and primitive-based im-
plementations as most of their important variables are ar-
rays and the number of such variables tends to be small.
Second, we plan to integrate the indexing techniques into
GPU-based data management systems such as Nvidia cuDF
([16], part of RAPIDS) to extend such systems to manage
both relational and spatial (and spatiotemporal/trajectory)
data with indexing support. There are considerable software
engineering challenges to make such a system available and
we plan to tackle them.

7. ACKNOWLEDGMENTS
This work is supported through NSF Grants IIS-1302423

and IIS-1302439 and PSC-CUNY 60777-00 48. Part of the
work is done while Jianting Zhang is visiting Nvidia Corpo-
ration.

11

8. REFERENCES

[1] D. Aghajarian, S. Puri, and S. Prasad. Gcmf: An
efficient end-to-end spatial join system over large
polygonal datasets on gpgpu platform. In Proc.
ACM-GIS Conf., SIGSPACIAL ’16, pages 18:1–18:10,
New York, NY, USA, 2016. ACM.

[2] D. A. Alcantara, A. Sharf, F. Abbasinejad,
S. Sengupta, M. Mitzenmacher, J. D. Owens, and
N. Amenta. Real-time parallel hashing on the gpu.
ACM Trans. Graph., 28(5):154:1–154:9, Dec. 2009.

[3] M. Ben Brahim, W. Drira, F. Filali, and N. Hamdi.
Spatial data extension for cassandra nosql database.
Journal of Big Data, 3(1):11, Jun 2016.

[4] S. Breß, H. Funke, and J. Teubner. Robust query
processing in co-processor-accelerated databases. In
Proc. SIGMOD Conf., SIGMOD ’16, pages
1891–1906, New York, NY, USA, 2016. ACM.

[5] EPSG. Epsg:2263 projection. https://epsg.io/2263.

[6] F. Gieseke, J. Heinermann, C. Oancea, and C. Igel.
Buffer k-d trees: Processing massive nearest neighbor
queries on gpus. In Proc. ICML Conf., ICML’14,
pages I–172–I–180. JMLR.org, 2014.

[7] J. Gluck and A. Danner. Fast gpgpu based quadtree
construction. Dept. of Computer Sci., Carnegie
Mellon.

[8] M. Kelly and A. Breslow. Quadtree construction on
the gpu: A hybrid cpu-gpu approach.
https://www.sccs.swarthmore.edu/users/10/

mkelly1/quadtrees.pdf.

[9] D. B. Kirk and W.-M. W. Hwu. Programming
Massively Parallel Processors: A Hands-on Approach
(2nd ed.). Morgan Kaufmann, 2012.

[10] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke,
and D. Manocha. Fast bvh construction on gpus.
Computer Graphics Forum, 28:375 – 384, 04 2009.

[11] M. McCool, J. Reinders, and J. Reinders. Structured
Parallel Programming: Patterns for Efficient
Computation. Morgan Kaufmann, 2012.

[12] D. Merrill and A. Grimshaw. High performance and
scalable radix sorting: a case study of implementing
dynamic parallelism for gpu computing. Parallel
Processing Letters, 21:245–272, 06 2011.

[13] M. NieBner, M. ZollhOfer, S. Izadi, and
M. Stamminger. Real-time 3d reconstruction at scale
using voxel hashing. ACM Trans. Graph.,
32(6):169:1–169:11, Nov. 2013.

[14] Z. Nouri and Y.-C. Tu. Gpu-based parallel indexing
for concurrent spatial query processing. In Proc.
SSDBM Conf., SSDBM ’18, pages 23:1–23:12, New
York, NY, USA, 2018. ACM.

[15] Nvidia. Cuda c programming guide.
https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html.

[16] Nvidia. cudf - gpu dataframes.
https://github.com/rapidsai/cudf.

[17] Nvidia. Quad tree construction.
https://github.com/huoyao/cudasdk/tree/master/

6_Advanced/cdpQuadtree.

[18] Nvidia. Rmm: Rapids memory manager.
https://github.com/rapidsai/rmm.

[19] Nvidia. Thrust parallel library.
https://thrust.github.io/.

[20] S. K. Prasad, M. McDermott, S. Puri, D. Shah,
D. Aghajarian, S. Shekhar, and X. Zhou. A vision for
gpu-accelerated parallel computation on geo-spatial
datasets. SIGSPATIAL Special, 6(3):19–26, Apr. 2015.

[21] H. Samet. Foundations of Multidimensional and
Metric Data Structures. Morgan Kaufmann Publishers
Inc., 2005.

[22] N. Satish, M. Harris, and M. Garland. Designing
efficient sorting algorithms for manycore gpus. In
Proc. IEEE IPDPS Conf., IPDPS ’09, pages 1–10,
Washington, DC, USA, 2009. IEEE Computer Society.

[23] N. TLC. Tlc trip record data. https://www1.nyc.
gov/site/tlc/about/tlc-trip-record-data.page.

[24] S. You, J. Zhang, and L. Gruenwald.
High-performance polyline intersection based spatial
join on gpu-accelerated clusters. In Proc. BigSpatial
Workshop, BigSpatial ’16, pages 42–49, New York,
NY, USA, 2016. ACM.

[25] J. Zhang and L. Gruenwald. Spatial indexing of
large-scale geo-referenced point data on gpgpus.
http://geoteci.engr.ccny.cuny.edu/primcsptp/

CSPTP_tr.pdf.

[26] J. Zhang and S. You. Speeding up large-scale
point-in-polygon test based spatial join on gpus. In
Proc. BigSpatial Workshop, BigSpatial ’12, pages
23–32, New York, NY, USA, 2012. ACM.

[27] J. Zhang and S. You. High-performance quadtree
constructions on large-scale geospatial rasters using
gpgpu parallel primitives. Int. J. Geogr. Inf. Sci.,
27(11):2207–2226, Nov. 2013.

[28] J. Zhang, S. You, and L. Gruenwald. Data parallel
quadtree indexing and spatial query processing of
complex polygon data on gpus. In ADMS workshop,
pages 13–34, 2014.

[29] J. Zhang, S. You, and L. Gruenwald. Parallel online
spatial and temporal aggregations on multi-core cpus
and many-core gpus. Information Systems, 4:134–154,
2014.

[30] J. Zhang, S. You, and L. Gruenwald. Large-scale
spatial data processing on gpus and gpu-accelerated
clusters. SIGSPATIAL Special, 6(3):27–34, Apr. 2015.

[31] J. Zhang, S. You, and L. Gruenwald. Parallel
selectivity estimation for optimizing multidimensional
spatial join processing on gpus. In Proc. IEEE ICDE
Workshops, pages 1591–1598, April 2017.

[32] S. Zhang, J. He, B. He, and M. Lu. Omnidb: Towards
portable and efficient query processing on parallel
cpu/gpu architectures. Proc. VLDB Endow.,
6(12):1374–1377, Aug. 2013.

[33] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time
kd-tree construction on graphics hardware. ACM
Trans. Graph., 27(5):126:1–126:11, Dec. 2008.

12

9. APPENDIX: A QUICK REFERENCE OF
THRUST PARALLEL PRIMITIVES

(1) Sort, sort by key and stable sort by key.
https://thrust.github.io/doc/group__sorting.html

While sort performs a key-only sort, sort by key also takes a
value array and performs a key-value sort. Stable sort by key
preserves the relative ordering of equivalent elements which
is more expensive than sort by key but may be desirable in
certain applications.

(2) Reduce and reduce by key.
https://thrust.github.io/doc/group__reductions.html

Reduce is used to accumulate a vector array to a scalar
value. For example, reduce([3,2,4])− >11. While the sum-
mation (using a default ”plus” functor) is frequently used
in reductions, Thrust allows using a user defined associative
binary function for tailored summation, such as determin-
ing the maximum entry (”maximum” functor) or computing
bounding boxes of points (useful to have an additional bbox
array in the quadtree SOA structure). Reduce by key is a
generalization of Reduce to key-value pairs based on groups
where consecutive keys in the groups are the same. For ex-
ample, reduce ([1,3,3,2],[2,1,3,4])− >([1,3,2],[2,4,6]).

(3) Scan and scan by key.
https://thrust.github.io/doc/group__segmentedprefixsums.

html

The Scan primitive computes the cumulative sums of a vec-
tor/array. The Scan primitive can also take a user de-
fined associative binary function. Both the inclusive and
exclusive scans are available. For example, exclusive scan
works as ([3,2,4])− >([0,3,5]) while inclusive scan works as
([3,2,4])− >([3,5,9]). Similarly, scan by key works on con-
secutive key groups instead of a whole vector/array. In this
research, inclusive scan by key and exclusive scan by key are
extensively used to compute the positions of entries in a vec-
tor after applying reduce by key which outputs numbers of
entries with same keys.

(4) Copy and copy if.
https://thrust.github.io/doc/group__copying.html

https://thrust.github.io/doc/group__stream__compaction.

html

The functionality of the two primitives is self-evident by
names. In this research, we use copy to move groups of en-
tries from one location to another, mostly within a same
vector. The conditional copy if primitive is mostly used for
identifying points and keys that satisfy certain criteria ex-
pressed as a boolean array and output the identified entries
to a new vector for further processing.

(5) Remove if.
https://thrust.github.io/doc/group__stream__compaction.

html

Remove if marks elements in a vector that satisfy a predicate
and compact the unmarked elements to the beginning of the
vector so that the marked elements are removed. For exam-
ple, Remove if works as ([1, 4, 2, 8, 5, 7,is even])− >[1,5,7].
Remove if is functionally equivalent to copy if but it allows
in-place operation in the Thrust library. In contrast, using
copy if would require a temporary vector and remove if is
more convenient in this case.

(6) Transform.
https://thrust.github.io/doc/group__transformations.

html

The basic form of Transform applies a unary function to
each entry of an input sequence and stores the result in the
corresponding position in an output sequence. Transform is
more general than copy as it allows a user defined operation
(functor) to be applied to entries rather than simply copy-
ing. The functor can be reasonably complex as long as each
and every element in the input array is expected to apply
the same logic in the functor. The functor can also takes
global memory pointers as its input parameter so that the
functor can access additional data besides its input element
from the input array.

(7) Gather, Gather if, Scatter and Scatter if.
https://thrust.github.io/doc/group__gathering.html

https://thrust.github.io/doc/group__scattering.html

Gather copies elements from a source array into a destina-
tion range according to a map and Scatter copies elements
from a source range into an output array according to a map.
For example, Gather([3,0,2],[4,7,8,12,15])− >([12,4,8]) and
Scatter([3,0,2],[12,4,8],[*,*,*,*,*,*])− >([4,*,8,*12,*]). Simi-
lar to copy if and remove if, gather if and scatter if take an
additional boolean sign array and perform gather/scatter on
the input elements only when the corresponding sign values
are true.

13

