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1. Introduction

Fixed point theory is concerned with some properties which ensure that a self map M defined on a
set B admits at least one fixed point. By fixed point of M, we mean a point w € 8B which solves an
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operator equation w = Mw, known as fixed point equation. Now, let F(M) = {w € B : w = Mw}
stand for the set of all fixed points of M. The theory of fixed point plays significant role in finding the
solutions of problems which arise in different branches of mathematical analysis. For some years now,
the advancement of fixed point theory in metric spaces has captured considerable interests from many
authors as a result of its applications in many fields such variational inequality, approximation theory
and optimization theory.

Banach Contraction principle still remains one of the fundamental theorems in analysis. It states
that if (8B, d) is a complete metric space and M : 8 — B fulfills

d(Mf, Mh) < ed(f, h), (1.1)

for all g, h € B with e € [0, 1), then there exists a unique fixed point of M.

Mappings satisfying (1.1) are known as contraction mappings. In 2003, Berinde [10] introduced
the class of weak contraction mappings in metric space. This class of mappings are also called almost
contraction. He proved that this class of mappings is a superclass of the class of Zamfirescu mapping
[53] which properly contains the classes of contraction, Kannan [23] and Chatterjea [11] mappings.

Definition 1.1. A map M : B8 — B is called almost contraction if some constants e € (0, 1] and L > 0
exists such that

dOMf, Mh) < ed(f, h) + Ld(f, Mf), ¥ f,h e B. (1.2)

In [10], Berinde showed that every almost contraction mapping M has a unique fixed point in a
complete metric space (8B, d). The map M is termed nonexpansive if

d(Mg, Mh) < d(g, h), (1.3)
for all g, h € B. It is known as quasi-nonexpansive mapping if F (M) # 0 and
d(Mg,w) < d(g,w), (1.4)

for all g € B and w € F(M). Due to the numerous applications of nonexpansive mappings in
mathematics and other related fields, in recent years, their extensions and generalizations in many
directions have been studied by different authors, see [7,40-42,44].

In 2008, Suzuki [44] studied a class of mapping called the generalized nonexpasive mappings (or
mappings satisfying condition (C). The author studied the existence and convergence analysis of
mappings satisfying condition (C).

Definition 1.2. A map M : 8 — B is said to satisfy condition (C) if
1
Ed(f’Mf) <d(f,h) = dMf, Mh)<d(f,h), ¥ f,heB. (1.5)

In 2011, Garchia-Falset et al. [20] introduced a general class of nonexpansive mappings as follows:
Definition 1.3. A mapping M : B — B is said to satisfy condition E,, if there exists y > 1 such that
d(f, Mh) < pd(f, Mf) +d(f, h), (1.6)

for all f,h € 8. Now, M is said satisfy the condition E whenever M satisfies the condition E, for
some u > 1.
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Remark 1.4. As shown in [40], the classes of generalized a-nonexpansive mappings [42], Reich-Suzuki
nonexpansive mappings [41], Suzuki generalized nonexpansive mappings [44], generalized a-Reich-
Suzuki nonexpansive mapping [40] are properly included in the class of mappings satisfying (1.6).

The celebrated Banach contraction principle works with Picard iteration process. This principle
has some limitations when higher mappings are considered. To get a better rate of convergence and
overcome these limitations, several authors have studied different iteration processes. Some of these
prominent iteration processes include: Mann [31], Ishikawa [26], Noor [32], S [3], Abbas [1], Thakur
[46], Picard-S [22], M [48] iteration processes etc. In [3], the authors showed that S-iterative scheme
converges at the same rate as that of Picard iterative algorithm and faster than Mann iteration process.
In [1], it is shown that Abbas iteration method converges faster than Picard, Mann [31] and S-iteration
[3] processes. In 2016, Thakur et al. [46] defined a new iterative process. It was shown by the authors
that their method enjoys a better speed of convergence than Mann [31], Ishikawa [26], Noor [32], S [3]
and Abass [1] iteration processes. In 2021, the JK iteration process was constructed by Ahmad et al. [4]
for mappings satisfying condition (C). In [4,5], the authors showed that JK iteration process converges
faster than Mann [31], Ishikawa [26], Noor [32], S [3], Abbas [1] and Thakur [46] iteration processes
for mappings satisfying condition (C) and generalized a-nonexpansive mappings, respectively.

Recently, the following four steps iteration process known as the AH iteration process was
introduced by Ofem et al. [33] in Banach spaces.

fes,

gr = (1 = 6 ) fi + M,

v = MPqy, keN, (1.7)
hk = szk,

Jie1 = (1 = mp)hy + mpMhy,

where {m;} and {0,} are sequences in (0, 1). It was analytically shown in [33] that AH iterative algorithm
(1.7) converges faster than JK iteration process [4] for contractive-like mappings. Furthermore, they
showed numerically that AH iteration process (1.7) converges faster than several existing iteration
processes for contractive—like mappings and Reich-Suzuki nonexpansive mappings, respectively.

Motivated by the above results, in this article, we construct the hyperbolic space version AH
iteration process (3.1). Furthermore, we prove that the modified iteration process is data dependent
for almost contraction mappings. We study several strong and A-convergence analysis of AH iterative
scheme for mappings enriched with condition (E). Some numerical examples of the mappings
enriched with condition (E) are provided to show the efficiency of our method over some existing
methods. Finally, we apply our main results in solving nonlinear integral equation with two delays.
Since hyperbolic spaces are more general than Banach spaces and by Remark 1.4 the class of
mappings enriched with condition (F) is a super-class of those considered in Ahmad et al. [4, 5] and
Ofem et al. [33], it follows that our results will generalize and extend the results of Ahmad [4, 5],
Ofem et al. [33] and so many other existing results of well known authors.

2. Preliminaries

Throughout this paper, we will let N denote the set of natural numbers, R the set of real numbers
and C the set of complex numbers. Any given space that is endowed with some convexity structure is
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an important tool for solving the operator equation w = Mw. Since every Banach space is a vector
space, it follows that a Banach space naturally inherits the convexity structure. On the other hand,
metric spaces do not naturally enjoy this convex structure.

In [45], Takahashi developed the concept convex metric spaces and further investigated the fixed
points of certain mappings in the setting of such spaces. It is well known that convex metric spaces
contains all normed spaces as well as their convex subsets. But there are many examples of convex
metric spaces which are not embedded in any normed space [45]. For some decades now, many authors
have been introduced convex structures in metric spaces. The following “W-hyperbolic spaces was
introduced by Kohlenbach [25]:

Definition 2.1. A ‘W-hyperbolic space (M, d, W) is a metric space (B, d) together with a convexity
mapping W : 8% x [0, 1] — B satisfying the following properties:

(1) d(g, W(f,h,a)) < (1 -a)d(g, f) + ad(g, h)

(2) dW(f,h, ), W(f,h.p)) = |la —Bld(f,h)

(3) (W(fah7a/) = (W(h’f’l - a’)

4) d(W(f,q, @), W(h, p,a)) < (1 —)d(f,h) + ad(q, p)

for all f,h,q,p € Band a,pB € [0, 1].

Suppose (B, d, W) fulfils only condition (1), then (M, d, ‘W) becomes the convex metric space
considered by Takahashi [45]. It is well known that every hyperbolic space is a convex metric space
but converse is not generally true [14].

Normed linear space, CAT(0) spaces, the Hilbert ball and Busseman spaces are important examples
of W-hyperbolic spaces [52].

A hyperbolic space (8B, d, W) is known as uniformly convex [12], if for f,h,q € B, € € (0,2] and
r > 0, it follows that a constant y € (0, 1] exists with d(f,h) < r, d(q, f) < r, and d(h, q) > er. Then,
we get

d(’W(h,q, %),f) <A -yr

The modulus of uniform convexity [56], of B is a mapping & : (0, o) X (0,2] — (0, 1] which gives
v = &(r,e) forany r > 0 and € € (0, 2]. We call £ monotone if it decreases with r (for fixed €), see [56].

A nonempty subset D of a hyperbolic space 8 is called convex if W(f,h,a) € Dforall f,h e D
anda € [0,1]. If f,h € Band a € [0, 1], then we denote W(f, h, @) by (1 —a)f®ah. Itis shown in [28]
that any normed space (8, ||.||) is a hyperbolic with (1 —a)f ® ah = (1 — @)f + ah. This implies that
the class of uniformly convex hyperbolic spaces is a natural generalization of the class of uniformly
convex Banach spaces.

The concept of A-convergence in the setting of general metric space was introduced by Lim [30].
This concept of convergence was used by Kirk and Panyanak [24] to proved some results in CAT(0)
spaces that are analogous of some Banach space results involving weak convergence. Furthermore, A-
convergence results of the Picard, Mann [31] and Ishikawa [26] iteration processes in CAT(0) spaces
were obtained by Dhompongsa and Panyanak [17]. In recent years, a number of articles concerning
A-convergence have been published (see [2, 19, 21,27, 34, 52] and the references therein). To define
A-convergence, we consider the following concept.
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Let {1} be a sequence which is bounded in a hyperbolic space B. A function (., {f;}) : B — [0, c0)
can be defined by

r(f,{fi}) = limsupd(f, fi), forall, f € B.

k—o0
An asymptotic radius of a bounded sequence {f;} with respect to a nonempty subset D of B is
denoted and defined by

rp({fi}) = limsup inf{r(f, {fi}) : f € D}.

k—o0
An asymptotic center of a bounded sequence {f;} with respect to a nonempty subset D of B is
denoted and defined by

Ap({fih) = {f € B r(f, (/i) < r(h, {fi}), forall h € D).

Suppose the asymptotic radius of the asymptotic center are taken with respect B, then these are
simply denoted by r({f;}) and A({f;}), respectively. Generally, A({ f;}) may be empty or may even have
infinitely many points, see [2,19,21,27,52,56] .

The following lemmas, definitions and proposition will be useful in our main results.

Definition 2.2. [24] The sequence {f;} in B is said to be A-convergent to a point f € B if f is the
unique asymptotic center of every sub-sequence {f; } of {fi}. For this, we write A — 1}1_&10 fi = f and call

f the A-limit of {f;}.
Lemma 2.3. /28] In a complete uniformly hyperbolic space B with monotone modulus of convexity &,

it is well known that every bounded sequence { f;,} has a unique asymptotic center with respect to every
nonempty closed convex subset D of B.

Lemma 2.4. [29] Let (B,d, W) be a complete uniformly convex hyperbolic space with a monotone
modulus of convexity &. Assume [ € B and {a,} is a sequence in [n,m] for some n,m € (0, 1). Suppose
{fi} and {h} are sequences in B such that limsupd(fi, f) < a, limsupd(h,f) < aq

k—o0 k—00
]}im AW (fi, i, ay), f) = a for some a > 0, then
]}im d(fe, i) = 0.

Lemma 2.5. [47] Let {a;} be a non—negative sequence for which one assumes that there exists an
ny € N such that, for all k > ny,

a1 = (1 — opag + o8
is satisfied, where oy € (0,1) forallk e N, ¥;° 0 = co and g, > 0 Vk € N. Then the following holds:

0 < limsup a; < lim sup g.

k— o0 k—o0

Definition 2.6. [47] Let M, S : 8 — B. Then § is an approximate operator of M if for all € > 0,
implies that d(Mf, Sf) < € holds for any f € 8.

Proposition 2.7. [20] Let M : B — B be a mapping which satisfies the condition (E) with F(M) # 0,
then M is quasi-nonexpansive.

Lemma 2.8. [43] Let D be a subset of (B,d, W). A mapping M : D — D is said to fulfil the
condition (1) if a non-decreasing function o : [0, c0) — [0, 00) exists with 0(0) = 0 such that o(r) > 0
for any r € (0, 00) we have d(f, Mf) > o(dist(f, F(M))) for all f € D, where dist(f, F(M)) stands for
the distance of f from F(M).
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3. Main results

Throughout the remaining part of this article, let (8, d, W) denote a complete uniformly convex
hyperbolic space with a monotone modulus of convexity ¢ and D be a nonempty closed convex subset
of B.

In this section, we construct a modified form of AH iteration process (1.7) in hyperbolic spaces as
follows:

fieD,

qr = W(fi, Mfx, 61)

v = Mqy, k €N, (3.1)
hk = szk,

Jier = W(hy, Mhy, my)

where {my}, {0;} are sequences in (0, 1) and M is a mapping enriched with condition (E).

3.1. Data dependence result

In this section, we show the data dependence result of the iteration process (3.1) for almost
contraction mappings. The following convergence theorem will be useful in obtaining the data
dependence result.

Theorem 3.1. Let D be a nonempty, closed and convex subset of hyperbolic space Band M : D — D
an almost contraction mapping. If the {fi} is the sequence defined by (3.1), then ]}im fi = w, where

we F(M).
Proof. Suppose that w € F(M), from (1.2), (3.1) and Proposition 2.7, we have

d(qew) = dW(fi, Mfi, 61), w)
< (1= 60d(fio w) + Sk d(Mfi, w)
< (1= 6d(fi, w) + dred(fis w)

(I = = e)o)d(fi, w). (3.2)

Since 6, € (0,1), e € [0,1) then 0 < (1 — (1 — e)d;) < 1, thus (3.2) yields

Also, by (3.1) and (3.3), we have

dvi,w) = dMq,w)
d(M(M)gy., w)
ed(Maqi, w)

e d(qy, w)

ed(fi, w). (3.4)

IANIN A
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Again, from (3.1) and (3.4), we get

d(h, w) dMPvi, w)
dMM)vg, w)
ed(Mvi, w)

d(vi, w)

e4d(fk, w). (3.5)

IAIA

IA

Finally, using (3.1) and (3.5), we obtain

d(ﬁ<+l ’ W)

d(W(hi, My, my.), w)

(1 — m)d(hy, w) + md(Mhy, w)

(1 — mpd(hi, w) + mped(hy, w)

(1 = (1 = e)dpd(hy, w)

ed(fi, w). (3.6)

IA A

IA

Inductively, we obtain
d(fesr, w) < e*®Dd(fy, w).
Since 0 < e < 1, it follows that ]}im fi=w. m]

Theorem 3.2. Let D, B and M be same as defined in Theorem 3.1. Let S an approximate operator of
Mand { fi} a sequence defined by (3.1). We define an iterative sequence {x;} for an almost contraction
mapping M as follows:

x| €D,

2 = Wi, Sxi, 0x)

wy = 8%z k €N, (3.7)
Yi = Szwk

Xir1 = WO, Sy, my)

where {m;} and {0,} are sequences in (0, 1) satisfying % <my, k€ Nand Y2 gmy = co. If Mw = w and
St =t such that x; — t as k — oo, then we have

1
dow,1) < - c,

where € is a fixed number.
Proof. Using (1.2), (3.1) and (3.7), we have
d((W(Qk, Mﬁ’ 5/(), (W(Xk, M)Ck, 6/())

(1 = 6)d( fr» xi) + oxd(M fi, Sxi)
(1 - 5k)d(ﬁ, Xk) + 5kd(Mﬁ<, Mxk) + 5kd(MXk, Sxk)

d(qx, zx)

IAN A

AIMS Mathematics Volume 8, Issue 7, 14919-14950.



14926

(I = 6)d(fi, xi) + oxed(fie, xi) + Ok Ld(fi, Mfi) + Oe
[1—=(1=e)orld(fi, xi) + 6k L(1 + e)d(fi, w) + € (3.8)

IAN A

dviwi) = dMqi, S’z

dM(Mgqy), S(Sz))

d(M(Maq), M(Sz)) + d(M(Sz), S(Szi)

ed(Mqy, Szi) + Ld(Mai, M(Mqy)) + €

e(d(Mqi, Mzi) + d(Mzi, Szi)) + Ld(Mai, M(Maqy)) + €
e d(qi, %) + eLd(qe, Mqy) + e€

+L(d(Mgyi, w) + dw, M(Mgqy))) + €

d(qe, ) + eL(d(qu w) + d(w, Mgy))

+ee + L(ed(qi,w) + ed(w, Mqy)) + €

e*d(qx, z) + eL(1 + e)d(gy, w)

+e€ + Le(1 + e)d(q,w) + € (3.9

INIAN CIAN CIAN

IA

dM?vi, S*wy)

d(M(Mvy), S(Swy))

dMMv), M(Swy)) + d(M(Swy), S(Swy))
ed(Mvi, Swy) + Ld(Mvi, M(Mw)) + €
e(d(Mvi, Mwy) + d(Mwy, Swy))

+Ld(Mvi, M(Mvy)) + €

e*d(vi, wi) + eLd(vi, Mvy) + ee€

+L(d(Mvi, w) + dw, M(Mwy))) + €

e2d(ve, wi) + eL(d(vi, w) + d(w, Mvy))

+ee + L(ed(vi, w) + ed(w, Mvy)) + €

e*d(vi, wi) + eL(1 + e)d(vi, w)

+ee + Le(1 + e)d(vi,w) + € (3.10)

d(h, yi)

IAIA A

IA IA

IA

d(fist ) = AW, My, mi), Wy, Myr, my))

(1 = my)d(he, i) + md(Mhy, Syi)

(1 = my)d(he, yi) + md(Mhy, My + mpd(Myy, Syr)

(1 = m)d(he, yi) + myed(hy, yi) + mLd(hy, Mhy) + 6r€

[1 = (1 —eym]d(hy,yi) + o L(1 + e)d(hy, w) + mye 3.11)

(VAN VAN VAN VAN

Using (3.8)—(3.11), we have
d(ferts Xe1) < €1 = (1 —eml[1 — (1 — e)Sxld(fi 1)
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+e* 0 [1 — (1 — e)my ] L(1 + €)d(f, w) + 6x[1 — (1 — e)my e
+e’[1 = (1 — e)m]L(1 + e)d(gy, w) + €’[1 = (1 — e)mye
+e’[1 = (1 — e)m)Le(1 + e)d(qe, w) + €*[1 = (1 — e)myle
+e[l — (1 — e)m JL(1 + e)d(vi, w) + e[1 — (1 — e)my]e
+[1 — (1 —e)m]Le(1 + e)d(vi, w) + [1 — (1 — e)my]e

+my L(1 + e)d(hy, w) + mye

e[l = (1 = em][1 = (1 = e)5eld(fi, i)

+e* 0 [1 — (1 — e)my ] L(1 + e)d(fi, w) + Sxe

+mdi(e — e + €°[1 — (1 — e)m)L(1 + e)d(gx, w)

+e’e + e*mpe + €*[1 — (1 — e)my]Le(1 + e)d(qi,w)
+e’e+ e[l — (1 — e)m]L(1 + e)d(vi, w) + e€

+[1 — (1 — e)my]Le(1 + e)d(vi, w) + € + m L(1 + e)d(hy, w). (3.12)

Since {my}, {6;} € (0,1) and e € (0, 1], then it follows that (¢ — 1) < 0, [1 — (1 —e)m,] < 1 and
[1-=(1—-e)d;] < 1. Therefore, (3.12) becomes

d(fies15 Xi+1)

[1 - —emld(fi, xi) + L(1 + e)d(fi, w)

+L(1 + e)d(gi,w) + Le(1 + e)d(qi, w)

+Le(1 + e)d(vi, w) + Le(1 + e)d (v, w)

+m L(1 + e)d(hy, w) + mpe + S5¢

= [1 - -emld(fi, xi) + L(1 + e)d(fi, w)

+L(1 + e)*d(gi, w) + L(1 + €)*d(v, w)

+m L(1 + e)d(hy, w) + mie + Se. (3.13)

IA

Since % <my, Yk >1,then 1 < 2my, Yk > 1. Thus, (3.13) becomes

Therefore,

where

d(fies15 Xe+1)

A1 = d(fk+la Xk+1)
or = (1 —e)my € (0, 1),

and

[1 - (1 = e)myld(fi, xi) + 2m L(1 + e)d(fi, w)
+2m L(1 + )’ d(qr, w) + 2mL(1 + e)*d(vy, w)
+my L(1 + e)d(hy, w) + mye + 10mye.

= [1 = = eyme)d(fi, xi) + mi(1 — €) X

{ 2L(1+e)d(fi,w)+2L(1+e)?d(q,w)+2L(1 +e)2d(v,w)+myp L(1+e)d(hg,w)+11€ } (3.14)
l—e : :

IA

a1 = (1 — o)ag + o,

8k =

AIMS Mathematics

2L(1+e)d(fk,w)+2L(]+e)2d(qk,w)+2L(l+e)2d(vk,w)+ka(]+e)d(hk,w)+]16 >0

l1-e
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From Theorem 3.1, we have that I}im d(fi,w) = ,}im dhg,w) = ,}im dve,w) = ]}im d(qr,w) = 0. By

the hypothesis x; — ¢ as k — oo and using Lemma 2.5, we obtain

11e
1-¢

dw,t) <
This completes the proof.

3.2. Strong and A-converge results

Now, we obtain the strong and A-convergence results of (3.1). To obtain these results, we will use

the following lemmas.

Lemma 3.3. Let D and B be same as defined in Theorem 3.2 and Let M : D — D be a mapping
enriched with the condition (E) such that F(M) # 0. Suppose {f,} is the sequence iteratively generated

by (3.1). Then, }im d(fi, w) exists for all w € F(M).

Proof. Assume that w € F(M). From Proposition 2.7 and (3.1), we have

d(Qk, W) = d((W(ﬁC’ Mfk7 6/()’ W)
< (1 =6d(fi, w) + 6d(Mfi, w)
< (1 =6)d(fi, w) + 6rd(fi, w)
= d(fka W)
From (3.15) and (3.1), we have
dve,w) = dMqi,w)
= dMM)gi, w)
< d(MQk’ W)
< d(Qk, W)
< d(fi,w).
Using (3.16) and (3.1), we get
d(h,w) = dMvi,w)
= dMM)vi, w)
< dMvg,w)
< d(v,w)
< d(fi,w).

Finally, (3.17) and (3.1), we obtain

d(fer1, W) d(W(h, Mhy, my), w)

< (1 - mk)d(hk, W) + 5kd(th, W)

(3.15)

(3.16)

(3.17)

AIMS Mathematics Volume 8, Issue 7, 14919-14950.
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IA

(I = m)d(hy, w) + myd(hy, w)
= d(hy,w). (3.18)

This shows that {d( f, w)} is a non-increasing sequence which is bounded below. Thus, I}im d(fi,w)
exists for each w € F(M). O

Lemma 3.4. Let D, B and M be same as defined in Lemma 3.3. Let {fi} be the sequence defined by
(3.1). Then, F(M) # 0 if and only if { f;} is bounded and I}im d(fi, Mfi) = 0.

Proof. Assume that { f;} is a bounded sequence with ]}im d(fi, Mfi) = 0. Let w € A(D,{fi}). By the
definition of asymptotic radius, we have

r(Mw, {fi}) = lim sup d(fi, Mw).

k—o0

Since M is a mapping which satisfies condition (E), we obtain

r(Mw, {fi}) = limsupd(fi, Mw)
k—o0
< wlimsupd(Mfi, f) + lim sup d(fi, w)
k—o0 k—00
= rw, {fi})-

Recalling the uniqueness of the asymptotic center of { f;}, we get Mw = w.
Conversely, let F(M) # 0 and w € F(M). Then by Lemma 3.3, ]}im d(fi, w) exists. Now, suppose

]}im d(fi,w) = c. (3.19)

From (3.15), (3.16) and (3.19), it follows that

lim sup d(vi, w) < c, (3.20)
k—o0
lim sup d(gq;, w) < c. (3.21)
k—o0
Using Proposition 2.7, we get
lim sup d(Mfi, w) < limsup d(fi, w) = c. (3.22)
k—o0 k— 00

By Lemma 3.3 and (3.1), one obtains

d(fis1,w) = dW(fi, My, my), p)
< (1 = m)d(fi, w) + md(Mhy, w)
< (1 —md(fe, w) + mpd(hy, w)
= (1 = m)d(fio w) + med (M, w)
= (1 —m)d(fi, w) + md(MM)vi, w)
< (1 =m)d(fr, w) + md(Mvi, w)
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(I = mpd( fi, w) + myd (v, w)
(1 = m)d(fie, w) + md(MP g, w)
(I = md(fi, w) + med(M(M)gqr, w)

< (1= md(foow) + med Mgz w)
< (I = mp)d(fi, w) + mid(gg, w).
From (3.23), it follows that
d(fi1,w) —d(fr,
(o) — d(foow) < Wit ZdGW) e aihw.

niy

Thus,
c < liin inf d(gy, w).

From (3.21) and (3.25), we get
c= l}im d(qi, w).

Using (3.1) and (3.26), we have

¢ = lim d(gy, w) = lim d(W(fi, Mfi, 610, w)-

So, from Lemma 2.4 we have
/}im d(fi, Mfi) = 0.

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

O

Now, we show the A-convergence result of the iteration process (3.1) for class of mappings enriched

with condition (E).

Theorem 3.5. Let D, B and M be same as in Theorem 3.4 such that F(M) # 0. Let {f} is the

sequence defined by (3.1). Then, {f;} A-converges to a fixed point of M.

Proof. By Lemma 3.3, we know that {f;} is a bounded sequence. It follows that { f;} has a A-convergent
sub-sequence. Now, we show that every A-convergent sub-sequence of {f;} has a unique A-limit in
F(M). Let y and z stand for the A-limits of the subsequences {f,} and {f;;} of {fi}, respectively.
Recalling Lemma 2.3, we have A(D, {f;,}) = {y} and A(D, {f;,;}) = {z}. From Lemma 3.4, it follows
that llirg d(fi,» Mfi,) = 0 and }Lrglo d(fi,» Mfi;) = 0. We assume that w € F(M). Again, we know that

r({ fi.}, Mw) = lim sup d(fi,, My).

i—oo

Since M is a mapping which satisfies condition (E), we obtain

r({ fi.}, My) lim sup d(f,, My)

plimsup d(Mfy, fi,) + limsup d(f;;, y)

lim sup d(fi,,y) = r(y, {fi.})-

i—o0

IA

IA
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From the uniqueness of the asymptotic center, we know that Mw = w. Now, it is left to prove that
w = z. We claim that w # z and then from the uniqueness of asymptotic center, it follows that

lim sup d(fy,y) limsup d(f.,y) < limsup d(fs,, z)

k—o0 i— i—
= limsup d(f,z) = limsup d(fy;,2)
k—o0 Jj—o
< limsupd(fy;,y) = limsupd(fz,y),
jooo k—o0
which is clearly a contradiction. Therefore, y = z and hence, {f;} A-converges to a point of M. O

Next, prove some strong convergence theorems as follows:

Theorem 3.6. Let D, B and M be same as in Theorem 3.4 such that F(M) # 0. If {fi} is the
sequence iteratively generated by (3.1). Then, { fi} converges strongly to a fixed point of M if and only
iflikm inf dist(fi, F(M)) = 0, where dist(fi, F(M)) = inf{d(f;,w) : w € F(M)}.

Proof. If likm inf dist(fi, F(M)) = 0. By Lemma 3.3, it follows that likm inf d(fi, F(M)). Thus,
gim d(fi, FIM)) = 0. (3.28)

From (3.28), a sub-sequence {f;,} of {fi} exists with d(f;,t;) < zi for all i > 1, where {¢;} is a
sequence in F(M). In view of Lemma 3.3, we obtain

d(fi.,» 1) < d(fi, ;) < % (3.29)

Using (3.29), we have
dti, ;) < d(tisr, fro,,) +d(fi,,» 1) (3.30)
2i1+1 +% < % (3.31)

It follows clearly that {f;} is a Cauchy sequence in D. Since D is a closed subset of B, ]}im fi=1z2

for some z € D. Now, we prove that z is a fixed point of M. Since M is a mapping which satisfies
condition (E), we have

d(fi- Mz) < pd(fi, Mfi) + d(fi: 2).

Letting k — oo, then by Lemma 3.5 we have d(fi, Mfi) = 0 and then it follows that d(z, Mz) = 0.
So, z is a fixed point of M. Thus, {f;} converges strongly to a point in F(M).
]

Theorem 3.7. Let D, B and M be same as in Theorem 3.4 such that F(M) # 0. If { f} is the sequence
defined by (3.1) and M satisfies condition (I). Then, {f;} convergences strongly to an element in F(M).

Proof. Using Lemma 3.4, We have

lim inf d(Mf. fo) = 0. (3.32)
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Since M fulfills condition (1), we get d(Mfy, fi) = o(dist(fi, F(M))). From (3.32), we obtain
likrn inf o(dist(fi, F(M))) =0

Again, since the function g : [0, c0) — [0, c0) is non-decreasing such that o(0) = 0 and o(r) > 0O for
all r € (0, 00), then we have
likm inf dist(f, F(M)) =0

Thus, all the conditions of Theorem 3.6 are performed. Hence, {f;} converges strongly to a fixed
point of M. O

Now, we give the following example to authenticate Theorem 3.7.

Example 3.8. Let B = R with the metric d(f, h) = |f—h| and D = [-3, ). Define W : 8°x[0,1] —» B
by W(f,h,a) = af + (1 —a)hforall f,h € Band a € [0, 1]. Then (B, d, W) is a complete uniformly
Hyperbolic space with monotone modulus of convexity and D is a nonempty closed convex subset of
B. Let M : D — D be defined by

Loif fe[-3,11,
Mf =

NTES

if fe (L, o00).

Since M is not continuous at f = % and owing to the fact every nonexpansive mapping is

continuous, then it implies that M is not a nonexpansive mapping. Next, we show that M is enriched
with condition (E). To see this, we consider the following cases:

Case I: Let f,h € [-3, 1], then we have

amm = Jr-g
- f——+———‘
< f——‘ L

36
= 35dU M) +d(f.h).

Case II: Let f,h € (3, o), the we have

d(f Mh) = f—?]
I P N
= 717 7‘
< r=Z|+ 217 -
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36|, f
36
= A M) +d(f.h).

Case III: Let f € [-3, %] and h € (%, 00), then we obtain

h
ar, My = |r-2

SR

< |r=Z+2ir-n
oo

< f—€+g—7 +|f—h|

I PA LN A P
- (- L)+ (=)<

- y-euen

+

36
= 35AU M) +d(f.h).

Case IV: Let f € (1,00) and /1 € [-3, 1], then we get

-4
h
- [-5+% 4

f 1
< =L 2ir-m

< f—];+];—]é +|f — A

fo-4)-5-

- Sp-ouen

d(f, Mh)

+1f = Al

IA

36|, f

AR
36

= (M) +d(fh.

Clearly, from the cases shown above, M satisfies the condition (E) with u = % and the fixed point
is w = 0. Hence, F(M) = {0}. Now, we consider a function o(f) = {Ic, where f € (0, 00), then o is
non-decreasing with o(0) = 0 and o(f) > O for all f € (0, 00).

Observe that

dist(f, FOM) = inf d(f,w)
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inf d(f, 0)

{o, if fe[-3,1],
3, if fe(3,0).

{0, if fe[-3,1],

Loif fed, ).

= o(dist(f, F(M)))

Finally, we consider the following cases:
Case 1. Let f € [-3, %], then we obtain

5
ﬂﬁAU):V—éﬁ:aﬂ20:mmWﬁFmo»

Case 2. Let f € (1, o), then we obtain

6 1
ﬂﬁMﬂ=V—ﬂ:¢ﬂz—=@@Mﬁan.

12
Thus, the above considered cases proves that

d(f, Mf) = o(dist(f, F(M))).

Therefore, the mapping M satisfies the condition (/). Clearly, all the hypothesis of Theorem (3.7)
are fulfilled. Thus, using Theorem (3.7), it follows that the sequence {f;} defined by (3.1) converges

strongly to the fixed point w = 0 of M.

3.3. Numerical analysis

In this section, we construct a mapping enriched with condition (E), but does not satisfies
condition (C). Then, using this example we will illustrate that the modified AH iterative algorithm

(3.1) converges faster than several known methods.

Example 3.9. Let 8 = R and D = [-1, 1] with the usual metric, that is d(f,h) = |f — h|. Define

M:—> D - Dby

Mf=1{0, if f=-1,
ZLif fe,11.

If f=-1landh = —%, we have

%d(h, Mh) = - M(——)' ===

But,
dMf Mh)y=1> % =d(f,y).

= d(f,)’)
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Thus, the mapping M does not satisfy condition (C). Next, we show that M is a mapping which
satisfies condition (E). For this, the following cases will be considered:
Case a: When f, i € [-1,0]\{1}, we have

d(f, Mh) d(f, Mf) + dMf, Mh)

d(f, Mf) +d(f, h).

IAIA

Case b: When f,h € (0, 1], we have

IA

d(f, Mn) d(f, Mf) + dMf, Mh)

h
v
< d(f M) +If = h
= d(f, Mf) +d(f,h).

Case c: When f € [-1,0]\{1} and h € (0, 1], we have

IA

d(f,Mh) < d(f, Mf)+dMf, Mh)
h
A M+ |-+
< d(f, Mf) +|—f +hl(as f < 0,h> 0)
=AM+,

Case d: When f € [—1,0]\{%} and h = —%, we have

IA

1
df, Miy = If] < 2If|+‘f+§'
— AU, M) + d(f h).

Case e: When f € (0,1]and h = —%, we have

6 1
df, Miy = If] < §|f|+]f+§]
— A M) + d(f. h).

Thus, M satisfies the condition (E) with u > 1.

In this work, we will be using MATLAB R2015a to obtain our numerical results.

Now, we will study the influence of the control parameters my, 6, and initial value on AH iteration
process (3.1).
Case I: Here, we will examine the convergence behavior of (3.1) for different choices of control
parameters with the same initial value. For this, we consider the following set of parameters and initial
value:

(1) m =0.70, 6, = 0.30 forall k € N and f; = 0.8,
(2) my = 0.65, 6, =0.35forall k € Nand f; = 0.8,
(3) my =0.55, 6, =0.35 forall k e Nand f; =0.8.
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We obtain the following Table 1 and Figure 1 for an initial of 0.8.

0.8%

0.7

0.6

0.5

0.4

0.3

Value of fk

0.2

0.1

-0.1

-0.2

Table 1. Tabular values of AH iteration (3.1) for Case 1.

Step  Parameter 1 Parameter 2 Parameter 3
1 0.8000000000  0.8000000000  0.8000000000
2 -0.1280000000 -0.0720000000 -0.0240000000
3 0.0204800000  0.0064800000  0.0007200000
4 -0.0032768000 -0.0005832000 -0.0000216000
5 0.0005242880  0.0000524880  0.0000006480
6  -0.0000838861 -0.0000047239 -0.0000000194
7 0.0000134218  0.0000004252  0.0000000006
8  -0.0000021475 -0.0000000383 -0.0000000000
9 0.0000003436  0.0000000034  0.0000000000
10 -0.0000000550 -0.0000000003 -0.0000000000
11 0.0000000088  0.0000000000  0.0000000000
12 -0.0000000014 -0.0000000000 -0.0000000000
13 0.0000000002  0.0000000000  0.0000000000
14 -0.0000000000 -0.0000000000 -0.0000000000

Parameter 3
Parameter 2 | 4

=—3¢— Parameter 1

Iteration Number

1
12

14

Figure 1. Graph corresponding to Table 1.

Table 2. Number of iteration and CPU time for Case 1.

Parameter 1

Parameter 2 Parameter 3

No of Iter. 14

Sec.

40.4460

11
37.5415

8
30.9468

Case II: Here, we will show again the convergence behavior of our iterative method (3.1) for three
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different starting points with the same parameter. We consider the following set of parameters:

(a) my = 0.53, 6, = 0.40 for all k €e N and f; = 0.2,
(b) my = 0.53, 6; = 0.40 for all k € N and f; = —0.6,
(c) my =0.53, 6, = 0.40 for all k € N and f; = —0.9.

For the three initial values, we have the following Table 3 and Figure 2, respectively.

Table 3. Tabular values of AH iteration (3.1) for Case II.

-0.2

-0.4

Value of fk

-0.6 -

-0.8

Step Initial Value 1  Initial Value 2  Initial Value 3
1 0.2000000000  -0.6000000000 -0.9000000000
2 -0.0193200000 0.0579600000  0.0869400000
3 0.0018663120 -0.0055989360 -0.0083984040
4 -0.0001802857 0.0005408572  0.0008112858
5 0.0000174156  -0.0000522468 -0.0000783702
6  -0.0000016823 0.0000050470  0.0000075706
7 0.0000001625 -0.0000004875 -0.0000007313
8 -0.0000000157 0.0000000471  0.0000000706
9  0.0000000015 -0.0000000045 -0.0000000068
10 -0.0000000001  0.0000000004  0.0000000007
11 0.0000000000 -0.0000000000 -0.0000000001
12 -0.0000000000  0.0000000000  0.0000000000

&—a—a—a—8—8—a—8—=0

=36 |nitial Value 1
Initial Value 2 |
=8 Initial Value 3

-1.2

AIMS Mathematics

6

Iteration Number

10 12

Figure 2. Graph corresponding to Table 3.

Table 4. Number of iteration and CPU time for Case II.

Initial Value 1

Initial Value 2 Initial Value 3

No of Iter. 11

Sec.

35.5363

11
36.7645

12
38.4356
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Next, with the aid of Example 3.8, we will show that the AH iterative method (3.1) enjoys better
speed of convergence than many known iterative scheme. We take m; = 0.51, §; = 0.40, 6; = 0.30 and
f1 = 0.4. In the following Tables 5—7 and Figures 3 and 4, it is clear that AH iteration process (3.1)
converges faster to w = 0 than Noor [32], S [3] Abbas [1], Picard-S [22], M [48] and JK [4] iteration
processes.

Table 5. Comparison of convergence behavior of AH iteration process (3.1) with Noor, S,
Abbas iteration processes.

0.4

0.3

0.2

0.1

Value of fk

-0.1

-0.2

-0.3

AIMS Mathematics

Step Noor S Abbas AH
1 0.40000000 0.40000000 0.40000000 0.40000000
2 0.10624000 -0.23680000 0.06736000 -0.00160000
3 0.02821734 0.14018560 0.01134342 0.00000640
4 0.00749453 -0.08298988 0.00191023 -0.00000003
5 0.00199055 0.04913001 0.00032168 0.00000000
6  0.00052869 -0.02908496 0.00005417 -0.00000000
7 0.00014042 0.01721830 0.00000912  0.00000000
8 0.00003730 -0.01019323 0.00000154 -0.00000000
9 0.00000991 0.00603439 0.00000026 0.00000000
10 0.00000263 -0.00357236 0.00000004 -0.00000000
11 0.00000070 0.00211484 0.00000001 0.00000000
12 0.00000019 -0.00125198 0.00000000 -0.00000000
13 0.00000005 0.00074117  0.00000000 0.00000000
14 0.00000001 -0.00043878 0.00000000 -0.00000000
15 0.00000000 0.00025975 0.00000000 0.00000000

Figure 3.

Iteration Number

10

15

Graph corresponding to Table 5.
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Table 6. Number of iteration and CPU time for various iterative methods.

Noor S Abbas AH
No of Iter. 15 40 12 5
Sec. 46.7935 89.1234 31.4352 15.2456

Table 7. Comparison of convergence behavior of AH iteration process (3.1) with Picard-S,
M, JK iteration processes.

Value of fk

AIMS Mathematics

-0.05

Step  Picard-S M JK AH
1 0.40000000 0.40000000  0.40000000  0.40000000
2 0.23680000 -0.00800000 -0.01600000 -0.00160000
3 0.14018560 0.00016000  0.00064000  0.00000640
4 0.08298988 -0.00000320 -0.00002560 -0.00000003
5 0.04913001 0.00000006  0.00000102  0.00000000
6  0.02908496 -0.00000000 -0.00000004 -0.00000000
7 0.01721830 0.00000000  0.00000000  0.00000000
8 0.01019323 -0.00000000 -0.00000000 -0.00000000
9  0.00603439 0.00000000  0.00000000  0.00000000
10 0.00357236 -0.00000000 -0.00000000 -0.00000000
11 0.00211484 0.00000000  0.00000000  0.00000000
12 0.00125198 -0.00000000 -0.00000000 -0.00000000
13 0.00074117 0.00000000  0.00000000  0.00000000
14 0.00043878 -0.00000000 -0.00000000 -0.00000000
15 0.00025975 0.00000000  0.00000000  0.00000000

0.4 % T T

0.35 - ‘, Picard-S | |
\ —¥—M
0.3 \ K 4
= &% = AH

0.25 -

0.2

0.1

0.05 -

- W= - - = W R — = - - -

|

5

10

Iteration number

Figure 4. Graph corresponding to Table 7.

15
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Table 8. Number of iteration and CPU time for various iterative methods.
Picard-S M JK AH

No of Iter. 37 6 7 5
Sec. 46.7638 17.6372 18.5637 15.2456

3.4. Application to nonlinear integral equation

Integral equations (IEs) are equations in which the unknown functions appear under one or more
integral signs [49]. Delay integral equations (DIEs) are those IEs in which the solution of the unknown
function is given in the previous time interval [8]. DIEs are further classified into two main types:
Fredhom DIEs and Volterra DIEs on the basis of the limits of integration. Fredhom DIEs are those IEs
in which limits of the integration are constant, while in Volterra DIEs, one of the limits of the integration
is a constant and the other is a variable. A Volterra-Fredhom DIEs consist of disjoint Volterra and
Fredhom IEs [49]. The DIEs play an important role in mathematics [51]. These equations are used
for modelling of various phenomena such as modelling of systems with memory [6], mathematical
modelling, electric circuits, and mechanical systems [9, 50]. Several researchers are trying to find out
the numerical solution of delay IEs [35-39, 54,55].

In this article, our interest is to approximate the solution of the following nonlinear integral equation
with two delays via of new iterative method (3.1):

x(z) =g (z, x(2), x(a(2)), f p(z, 4, x(19), x(ﬂ(ﬂ)))dﬁ) (3.33)

where m, n are fixed real numbers, g : [m,n] X CXCXxC — Cand p : [m,n] X [m,n] x CxC — C are
continuous function, and a,f : [m,n] — [m, n] are continuous delay functions which further satisfies
a() < 9 and B(¥) < for all & € [m, n].

Let I = [m,n] (m < n) be a fixed finite interval and @ : I — (0, o) a nondecreasing function. We
will consider the space C(I) of continuous functions, f : I — C, endowed with the Bielecki metric

d(f,h) = sup M

3.34
zel @ (2) ( )

It is well known that (C(1), d) is a complete metric space [15] and hence, it is a hyperbolic space.
The following result regarding the existence of solution for the problem (3.12) was proved by Castro
and Simoes [16].

Theorem 3.10. Let o, : I — I be continuous delay function with a(d) < d and p(d) < d for all
d e [m,n]and @ : I — (0, 1) a nondecreasing function. Moreover, if there exists n € R such that

f " w(3)dY < nw(z),

for each z € I. In addition, assume that g : I X CX C x C — C is a continuous function which satisfies
the Lipschitz condition:

8z, f(2), f(a(2)), p(2)) = &(z, h(2), h(a(2)), p(2)] < Af(2) = h(2)| + | f(a(2) = M) + |o(z) — @)D,
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where A > 0 and the kernel p : I X I X C X C — C is continuous kernel function which fulfills the
Lipschitz condition:

Ip(z, 3, f(D), F(BWD))) — p(z, &, h(F), W(BM))| < LIfF(B(P)) — h(B)), (3.35)
where L > 0. If A2 + Ln) < 1, then the unique solution of the problem (3.33) existsn, say, w € C(I).

Next, we will prove that our new iteration process converges strongly to the unique solution of
nonlinear integral equation (3.33). For this, we give our main result in this section as follows:

Theorem 3.11. Let C(I) be a hyperbolic space with the Bielecki metric. Assume that M : C(I) — C(I)
is the mapping defined by

Mf)(2) =g(z,f (2), f(a(2)), f p(z. 9, f(D), fB))d |, (3.36)

forall z € I and f € C(I). Suppose all the assumptions in Theorem 3.10 are performed and if {fi} is
the sequence defined by (3.1), then { fi} converges to the unique solution, say w € C(I) of the problem
(3.33).

Proof. By Theorem 3.10, it is shown that (3.33) has a unique solution, so let us assume that w is the
fixed point of M. We now show that f; — w as k — co. Now, using (3.1), (3.36) and under the present
assumptions with respect to the metric (3.34), we have

d(ge,w) = d(W(f Mfi, 66),w) (3.37)
< (1 =6pd(fi, w) + 6dMfi, w)
= (1= 80d(fuw) + ¢ sup |((Mfi)(@) = Mw)()
zel ZU(Z)
1 7
= (1 - 6k)d(ﬁc7 W) + 6/( Sulp % 8 (Z7 f}C(Z)7 f}c(a(Z))’ f p(Z’ ﬁ’ j}C(ﬂ)’ ﬁ(ﬁ(ﬁ)))dﬂ
—8 (Z, w(z), w(a(2)), f Pz, 3, w(d), W(ﬁ(ﬂ)))dﬁ)‘
1
< (1 =60d(fi, w) + dxd sup ——{|fi(z) — w(2)| + |fi(a(2)) — w(a(z)l+
el @(2)
f P9, fi(@), il BN)dY — p(z, P, w(d), W(B(ﬁ)))dﬂ'}
1
< (1 =6d(fi, w) + dpd sup —— {|fi(z) — w(2)| + |fi(a(2)) — w(e(2))l+
el @(2)
f Ip(z, 3, fil(D), il BWD))) — p(z, &, w(P), w(B(M)))| dﬂ}
1
< (1 =60)d(fi, w) + 6xdsup —— {1 fi(2) = w(2)| + | fi(a(2)) — w(a(2))|

zel W(Z)

+L f Iﬁ(ﬂ(ﬂ))—W(ﬂ(ﬂ))ldﬁ}
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IA

= (I =60d(fi,w) + 64

IA

(I = 60)d(fio w) + 6,242

(1 — 6k)d(ﬁ(,W) + 6](/1

up BO= N psup—— [ o - W(ﬂ(ﬁ))ldﬂ}
@(2) :

{ |fk(z) Wl o L f oy LB ~ (B dﬁ}
zel W(Z)

s @(0)
up R =Wy RO —w@l f " W(ﬁ)dﬂ}
zel w(z) m

o) el @ ()

< (1 =6)d(fi, w) + 5, {Zd( foow) + Ld(fo, w) sup (Z)}
= (1 =0o)d(fi,w) + 6, A2 + Ln)d(fi, w)

z€l w( )

= [1 -0 -2+ Ln)oi)d(fr,w). (3.38)
dve,w) = dMq,w)
= dM(M)g, w)
_ I(MM)g)(2) — Mw)(2)|
zel W(Z)
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IA

IA

IA

IA

IA

IA

1 A
e g (Z,qu(z),qu(a(Z)), f P(Z,ﬁ,qu(ﬂ),qu(ﬂ(ﬁ)))dﬁ)

—g(Z,W(Z),W(a(Z)), f p(z,ﬁ,W(ﬁ),W(ﬁ(ﬂ)))dﬁ)|

1
Asup —— {IMgi(2) — w(2)| + IMgi((2)) — wla(2))l+

el @(2)

f Pz, 9, Maqi(9), Mqu(B(@)dd — p(z, 9, w(®), W(B(ﬂ)))dﬂ‘}

1
ﬂSU?T{Iqu(Z) w(2)| + IMgi(a(2)) — wla(2))l+

f |P(Z, ﬂa qu(ﬁ)’ qu(ﬁ(ﬂ))) - p(Z7 ﬂa W(ﬂ)’ W(B(ﬂ)))l dﬁ}

1
Pl suP pooe {IMaqi(z) — w@)| + IMgi(a(z)) — w(a(2))|

) f Iqu(ﬁ(ﬂ))—W(ﬁ(ﬂ))ldﬂ}

1{2 sup MBD W@ oy 1 f " MauB) - W(B(ﬁ))ldﬁ}

zel ’(D’(Z) zel W Z) m

. {2sup Mg =@l 1 f iy MaBO) — (B ﬂ}
el @ (2) el (2 w(?)

. {ZSup Mg =0, M) =@l f o) dﬂ}
zel W(Z) del w(ﬁ) zel TD’(Z) m

pl {2d(qu, w) + Ld(Mgy, w) sup ”W(Z)}
el M@ (2)

A2 + Lp)d(Mgy, w). (3.39)
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d(Mgg,w) = sup (Mgi)(2) = Mw))|

zel @ (2)
1 n
= sup——|g (Z,qk(Z),Clk(a(Z)), f P(Z,ﬂ,qk(ﬂ),qk(ﬁ(ﬂ)))dﬁ)
zel W(Z) m

—8 (Z,W(Z),W(Q(Z)), f p(Z,ﬁ,W(ﬁ),W(ﬂ(ﬂ)))dﬂ)|

1
Asup —{lgi(z) — w(@)| + |qi(a(2)) — w(a(2)|+
zel W(Z)

f P 3, gu(@), qr(B))dS = p(z, F, w(®), W(ﬁ(ﬁ)))dﬂ'}

IA

1
Asup —{lgi(2) = w(@)| + lgi(a(z)) — wla(2)|+
el @(2)

f 1p(z, D, (), qi(B(D))) = p(z, D, w(), w(B()))l dﬂ}

IA

1
Asup — {lgi(z) — w(@)| + |gr(a(z)) — w(a(z))|
el @(2)

+L f qu(ﬁ(ﬁ))—W(ﬁ(ﬂ))ldﬁ}

A {2 su? M + Lsup L fn lgr(B(D)) — w(ﬁ(ﬁ))ldﬂ}

@ (z) el @(2)
. {2 qup QW@ 1 f oy BB ~ WO ﬁ}
zel @ (2) el @(2) Jn ()

lgi(z) — w(z)l lgi(9) — w(D)| 1 f " }
2 —_—— + L
/1{ Szl;? @ (2) i S{;ilz) @ () Szlg) @(2) Im w(B)dd

A {Zd(qk, w) + Ld(qi, w) sup nw(z)}
el M@ (2)

= A2+ Lnp)d(gi, w). (3.40)

IA

IA

IA

IA

dh,w) = d(MPv,w)

= dMM)vi, w)
up [(MMPI@) = Mw)E)|

zel W(Z)

1 1
= sup—— g(z, Mvi(2), Mvi(a(z)), f p(z, 3, My (9), Mvi(B(9)))dd

el @(2)

—8 (Z,W(Z),W(Q(Z)), f P(Z,ﬂ,W(ﬁ),W(ﬂ(ﬂ)))dﬂ)|

1
Asup —— {IMv(2) = w(@)| + IMvi(e(2)) — w(a(2))l+
zel W(Z)

IA
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IA

IA

IA

IA

d(Mvi, w)

AIMS Mathematics

f Pz, &, Mvi(), Mv(B)))dD — p(z, I, w(), W(ﬁ(ﬁ)))dﬂ'}

1
Asup —— {IMv(2) = w(@)| + IMvi(e(2)) — w(a(2))l+
zel TD'(Z)

f lp(z, &, Mv(), Mv(B(3))) = p(z, §, w(@), w(B))) dﬁ}

1
Asup — {IMvi(z) — w(2)| + IMvi(a(z)) — w(a(2))]

el @(2)

+L f Ika(ﬁ(ﬁ))—W(ﬁ(ﬁ))ldﬁ}

Pl {2 sup M@ —w@l oo L f My (B)) - w(ﬁ(ﬁ))ldﬁ}
el @ (2) el @(2) I

A {2 sup M@ — wi) + Lsup 1 fn () IMv(B(P)) — W(ﬂ(ﬂ))ldﬁ}
z€el m

@ (2) el T2 @ (1)
A {2 sup IMn@) — w) + Lsup IMy(@) — w&) sup ! f ' w(ﬂ)dﬁ}
zel @ (2) del w (1) el @(2) m
A {Zd(ka, w) + Ld(Mvy, w) sup nw(z)}
1 Nw(2)
A2 + Ln)d(Mvy, w). (3.41)

|((Mvi)(z) = (Mw)(2)|
sup .
zel W(Z)

g (Z, Vi(2), vila(2)), f Pz, 3, (D), vk(ﬁ(ﬂ)))dﬁ)

m

1
= sup—
ze}3 w(2)

—8 (Z,W(Z),W(Q(Z)), f p(z, 3, W(ﬁ),W(ﬁ(ﬂ)))dﬁ)‘

1
Asup — {n(2) = w(@)| + i(a(z)) — wla(2)|+
1 @(2)

f p(z, D, vi(@), vi(B()))d D — p(z, 3, w(©P), W(ﬁ(ﬂ)))dﬁ‘}

IA

1
Asup —— {|[vi(2) — w(@)| + [vi(a(2)) — w(a(z))l+
el @(2)

f |p(Z’ ﬂ’ Vk(ﬁ)’ Vk(ﬂ(ﬂ))) - P(Za ﬂ’ W(ﬂ)’ W(ﬁ(ﬂ)))l dﬁ}

IA

1
Asup — {ni(2) = w@)| + ni(a(z)) — w(a(z))|
zel ’(D’(Z)

+L f Ivk(ﬁ(ﬂ))—W(ﬂ(ﬂ))ldﬁ}

IA
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|Vk(Z)_ w@l | f V(B®)) — w(ﬁ(ﬂ))ldﬂ}
’ZU() zel (Z) m

_ { o)~ M@= w@l o1 f”w(ﬂ)lvk(ﬂ(ﬁ)) W(B(®))| dﬂ}

IA

A

@(2) el @(Z @ ()
|Vk(Z) w(z)| vi() — w(d)| 1 "
= A ol +LS§;§ @ () Szlg) W(z)fm w(ﬁ)dﬂ}

< {2d(vk w) + Ld(v, w) sup (Z)}
el N@(2)

= A2+ Lp)d(vi, w). (3.42)

d(frs1,w) d(W (hy, Mhy, mi), w)
(1 — mp)d(hy, w) + mpd(Mhy, w)
(1 = mo)d(, w) + mg sup [((Mhy)(z) — (MW)(Z)|_

zel W(Z)

IA I

= (I =myd(hg, w) + my SU?T (z, hi(2), hi(a(2)), f p(z, 3, (D), hk(ﬁ(ﬂ)))dﬂ)

-8 (z, w(2), w(a(z)), f p(z, 9, w(®), W(ﬁ(ﬂ)))dﬁ)‘

IA

1
(1 = m)d(hi, w) + myd SUp =) {lh(z) = w(2)| + |hi(a(2)) — wla()l+

p(z, 9, hy(9), hi(B(9)))dd — p(z, 9, w(iP), W(ﬁ(ﬁ)))dﬂ‘}

1
(1 = myd(he, w) + my A SUp =5 {1h(2) = w@)| + hi(e(2)) = wle(2))|+

f 1Pz, &, (D), i (B(D))) = p(z, 3, w(), w(B()))| dﬁ}

m

IA

1
(1 = m)d(hi, w) + 6 SUp =) {I/fie(2) = w@)| + [h(a(z)) — w(a()l

+L f Ihk(ﬂ(ﬂ))—W(ﬁ(ﬂ))ldﬂ}
hi(z) = w(z)|

ZGI ZD'( )
|hi(z) — w(2)| 1 " I (B()) — wB))| J ﬁ}

= (1 =mdhg,w) + mAd {2 szlg) T + L szlg) % ; (1) o)

(1 — md(hy, w) + md {2 sup M@ =Wy o @) =Wl f ' w(ﬁ)dﬂ}
zel @ (2) el @ (F) el @(2) Iy

< (1= m)d(h, w) + 6kﬂ{2d<hk W) + Ld(h, w) sup ”W(Z)}
zel UW(Z)

IA

IA

1 n
(1 = mp)d(h, w) + mid {2 + Lsup — f |hi(B()) — W(ﬁ(ﬂ))ldﬁ}
zel W(Z) m

IA

= (1 —mp)d(hg, w) + mpAQ2 + Ln)d(hg, w)
= [1 -1 - A2+ Ln)mld(hg, w). (3.43)
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Combining (3.38)—(3.43), we have
d(fis,w) S [A2 + LT*[1 = (1 = A2 + Lyp)&I[1 = (1 = A2 + Lp)Sild(fi, w). (3.44)
Since A2+ Ln) < 1,0 < 6, my < 1, it follows that [1 — (1 — A2 + Ln))d;] < land [1 — (1 — A2 +
Ln))m;] < 1. Thus, (3.44) reduces to
d(fir1, w) < d(fi, w). (3.45)
If we set d( fi, w) = €, then we obtain

Qk+1 < Qk, Y ke N.

Hence, {€} is a monotone decreasing sequence of real numbers. Furthermore, it is a bounded
sequence, so we have
lim Q; = inf{Q;} = 0.
k— o0

Therefore,
I}im d(fi,w) =0.

This ends the proof. O

Now, we present an example which validates all the conditions given in Theorem 3.11.

Example 3.12. Let x : [0, 1] — R be a continuous integral equation defined as follows:

6 Z3

_z 1 1 =
x(2) = 20" 10 +z+ gx(a(z)) + 1 j(; (= 2x(B(})))d?, z € [0,1]. (3.46)

Let w : [0,1] — (0,00) be a nondecreasing continuous function which is defined by w(z) =
0.0094z + 0.0006 and «, : [0, 1] — [0, 1] be a continuous delay functions defined by a(z) = z*> and
B(z) = 7%, respectively. We have all assumptions of Theorem 3.11 being fulfilled. In deed, it is not hard
for the reader to see that @ and 8 are continuous functions such that a(z) < z and 5(z) < z. Moreover,
for n = 0.63951 we have that @ : [0, 1] — (0, o) which is defined by @w(z) = 0.0094z + 0.0006 is a
continuous function satisfying

"z
f 0.00949 + 0.0006d9 < n(0.0094z + 0.0006) = 0.63951w(z), z € [0,1]. (3.47)
0

The function f : [0, 1]XCXxCxC — C defined by g(z, x(z), x(a(2)), p(2)) = % — f—; +z+ éx(a/(z)) +
}‘p(z) is a continuous function which satisfies

1
18z, /(2. f((2)). p(2)) = 8(2. 1), ha(2)), p(2))| < 7(1f (@) = ()] + |f(@(2)) — Ma@))] + |p(2) = @)D,

for all z € [0, 1]. Observe that A = ‘—1‘. Now, the kernel p : [0,1] X [0, 1] X C x C — C which is defined
by p(z, %, x(1}), x(B(1}))) = ((¢ — 2)x(B(:}))) is a continuous function satisfying the following condition

1Pz, 3, f(D), fB)) = p(z, P, h(@), (B)))| < LIF(B()) = h(B))I, & €[0,z], z€[0,1]. (3.48)

Clearly, we have that L = 1. Thus, A2 + L) = 32221 < 1. Therefore, we have shown above that all

the conditions of Theorem 3.11 hold. Hence, our results are applicable.
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Open Question

Is it possible to obtain the results in this article for iterative methods involving two or more mappings
in the setting of single-valued or multivalued mappings?

4. Conclusions

In this article, we have considered the modified version of AH iteration process as given in (3.1).
The data dependence result of the modified AH iteration process (3.1) for almost contraction mappings
has been studied. We proved several strong and A-convergence results of (3.1) for mappings enriched
with condition (E) in hyperbolic spaces. We provided two nontrivial examples of mappings which
satisfy condition (E). The first example was used to validate our assumptions in Theorem (3.7) and
the second was used to study the convergence behavior of AH iteration process (3.1) for different
control parameters and initial values. The second example was equally used to compare the speed of
convergence of AH iteration (3.1) with several existing iteration processes. It was observed that AH
iteration process (3.1) converges faster than Noor [32], S [3], Abbas [1], Picard-S [22], M [48] and
JK [4] iteration processes. Finally, we applied our main results to solve a nonlinear integral equation
with two delays. Since hyperbolic spaces are more general than Banach spaces and by Remark 1.4 the
class of mapping satisfying condition (£) are more general than those considered in Ahmad et al. [4, 5]
and Ofem et al. [33]. It follows that our results generalize and extend the results of Ahmad [4,5], Ofem
et al. [33] and several other related results in the existing literature.
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