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METHODOLOGIC PERSPECTIVES

Multivariate Classification of Blood Oxygen Level–Dependent
fMRI Data with Diagnostic Intention: A Clinical Perspective

B. Sundermann, D. Herr, W. Schwindt, and B. Pfleiderer

ABSTRACT

SUMMARY: There has been a recent upsurge of reports about applications of pattern-recognition techniques from the field of machine
learning to functional MR imaging data as a diagnostic tool for systemic brain disease or psychiatric disorders. Entities studied include
depression, schizophrenia, attention deficit hyperactivity disorder, and neurodegenerative disorders like Alzheimer dementia. We review
these recent studies which— despite the optimism from some articles—predominantly constitute explorative efforts at the proof-of-
concept level. There is some evidence that, in particular, support vector machines seem to be promising. However, the field is still far from
real clinical application, and much work has to be done regarding data preprocessing, model optimization, and validation. Reporting
standards are proposed to facilitate future meta-analyses or systematic reviews.

ABBREVIATIONS: ADHD � attention deficit hyperactivity disorder; CV � cross-validation; LDA � linear discriminant analysis; MVPA � multivariate pattern
analysis; SVM � support vector machine

Functional MR imaging based on blood oxygen level– depen-

dent signal changes that are measured by using fast T2*-sensi-

tive echo-planar imaging techniques provides an indirect mea-

sure of neural activity in the brain. It has an enormous impact on

basic research in the field of cognitive neurosciences1 and has

been applied in numerous group studies with the aim of clarifying

disease mechanisms in psychiatric and neurologic disorders,

some of which do not exhibit obvious structural alterations (eg,

Zhang and Raichle2 and Chen et al3). However, the applicability

of fMRI to single subjects in clinical settings has been limited to a

few indications, mainly in the context of surgery planning.4,5

Although there has been a substantial effort to identify neuro-

imaging biomarkers for psychiatric disorders6,7 (eg, schizophre-

nia,8 depression,9 and neurodegenerative disorders like Alzhei-

mer dementia10 with the goal of including biomarkers in official

diagnostic criteria,11), to date capturing functional aspects in di-

agnostic imaging is almost limited to tracer studies in certain

kinds of neurodegeneration.6,12,13 In clinical practice, neurora-

diologic MR imaging examinations are broadly confined to the

exclusion of gross structural abnormalities, but normally, actual

disease mechanisms are not used as further information in a ma-

jority of these individuals. Voxel-based morphometry, DTI, and

fMRI have been proposed as potential MR imaging biomarkers

that might help overcome this shortcoming in the future.7,8

A prime drawback of fMRI is the rather high inter- and intra-

individual variability of measures in conventional analyses, even

in healthy individuals,14-16 that foils many such attempts. Con-

ventional fMRI methods mainly comprise univariate activation

or cofluctuation (functional-connectivity) analyses based on av-

eraged signals in a few regions of interest or mass-univariate anal-

yses across the whole brain,1 which come along with high require-

ments to control for multiple comparisons.17

Overview of Machine-Learning-Based Classification
Techniques for fMRI
In the case of intertrial variability in individual subjects, the prob-

lem of differentiating single trials has been overcome in recent

years by the rise of multivariate supervised learning methods de-

rived from the fields of machine learning and pattern recognition.

Such methods, often termed multivariate or multivoxel pattern

analyses (MVPAs), are increasingly adopted in psychologically

motivated fMRI studies. The concept of such analyses is that at

first an algorithm is used to derive a decision rule (classifier) on

the basis of a set of labeled training data (eg, comprising �2 class-

es; eg, different stimuli categories or tasks). This rule is applied to

classifying an independent set of test data as belonging to one of

these classes in a second step. A general overview of this approach
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Gebäude A1, 48149 Münster, Germany; e-mail: benedikt.sundermann@ukmuenster.de

Indicates article with supplemental on-line tables

http://dx.doi.org/10.3174/ajnr.A3713

848 Sundermann May 2014 www.ajnr.org



is shown in Fig 1. In contrast to conventional analyses, these tech-

niques are based on patterns of brain activation or connections

not on individual regions or voxels.18-20 Recently this concept has

been extended to classifying individual subjects with a diagnostic

purpose (for earlier, methodologically oriented reviews see Klop-

pel et al21 and Orrù et al22). This article gives a comprehensive

overview of MVPA applications to fMRI from a more clinical,

particularly neuroradiologic, point of view.

Although there are a large number of supervised machine-

learning techniques that can, in principle, be applied in this con-

text,23 2 groups of methodologies are of particular importance:

support vector machines (SVMs) and linear discriminant analy-

ses (LDAs). In SVMs, the classification problem is operationalized

as defining a hyperplane that best distinguishes groups of subjects.

The classifier is trained by using a kernel by maximizing the mar-

gin of separation between 2 groups on the basis of the examples

closest to the separating hyperplane.22-24 In a typical LDA variant,

all data points are projected to a 1D space with the aim of maxi-

mizing intergroup separation and minimizing intraclass varia-

tion.22,23 LDA and support vector machines are very heterogeneous

groups, depending on the actual operationalization or the kernel

used. Certain kinds of SVMs are mathematically very similar to cer-

tain types of LDAs, while there can be important differences between

different support vector machine formulations and parameter sets.23

The distinction made is, therefore, somewhat artificial.

fMRI datasets usually comprise several thousand nonindepen-

dent voxels. Yet the number of subjects is usually limited to doz-

ens. This difference poses a certain problem for MVPA because

most methods cannot deal with a high dimensionality of the data

compared with the number of samples. There is a high risk of

overfitting. This means that the classifier is perfectly trained to

separate the samples used for training

but has a poor ability to generalize to the

successful classification of new data. This

issue can be dealt with by the selection of

classification methods that are less sensi-

tive to a high dimensionality, such as

SVMs. In contrast, LDA is usually very

sensitive to this. Still, a strict dimension-

ality reduction is necessary: Primary data

are preprocessed to concatenate redun-

dant information by feature extraction,

and features that are decisive are identi-

fied before actual classifier training by

feature selection or weighting. Filter ap-

proaches, partially by using conventional

univariate statistics or wrapper-based ap-

proaches, are commonly applied for fea-

ture selection.19

An issue that has to be overcome in

diagnostic classification is interindividual

structural variability regarding the mor-

phology of the cerebral sulci and gyri as

well as their relation to histologically and

functionally relevant brain areas.25 With-

in-subject MVPA analyses often rely on

fine-grained patterns on a single-voxel

level.18,19 In contrast, most diagnostic MVPA studies reviewed

here focus on another spatial scale: larger functionally coherent

brain areas.

A specific feature present in the design of most MVPA-based

fMRI studies is that datasets are often small and that classification

performance is assessed through cross-validation (CV). Here, fea-

ture selection and classifier training are repeated several times.

Each time a different range of datasets, often exactly one in the

case of leave-one-out CV, is excluded and used as a test set.19

Recent Diagnostic fMRI Approaches Based on MVPA
There has recently been a remarkable upsurge of scientific articles

from the interdisciplinary functional neuroimaging community

reporting successful applications of MVPA on fMRI data to vari-

ous diagnostic problems, especially in the past 3 years. This con-

stitutes a paradigm shift from comparative univariate to discrim-

inative multivariate analyses of fMRI data. An exhaustive

overview of these previous studies by using either task-based26-63

or task-free55,64-97 fMRI is given in On-line Tables 1 and 2. An

overview of particularly reliable studies with above-average statis-

tical power is presented in Fig 2.

Although they are promising at first glance, there is a high

degree of methodologic heterogeneity of classification algorithms

and data-preprocessing steps in these studies. Some of the re-

ported results seem to be mostly add-ons to studies whose de-

signs were primarily aimed at clarifying disease mechanisms or

were focused on computational aspects, not primarily done with

the aim of developing a diagnostic tool. Until now, no single effort

in this field has provided sufficient large-scale validation and sys-

tematic optimization of methodologic choices leading to an ap-

plication in a real medical diagnostic setting. Due to this

feature extraction 
(preprocessing, dimensionality reduction)

fMRI training data (multiple subjects)

analogous features from
new clinical fMRI data diagnostic decision

or

feature 
weighting/selection 

(multivariate wrapper)
+ classifier training

feature 
weighting/selection 

(univariate filter)

classifier training

classifier (decision rule)

FIG 1. Illustration of the diagnostic workflow and data-processing pipeline proposed by most of
the studies reviewed here.
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heterogeneity and because strategies to assess the statistical

significance of diagnostic accuracy vary considerably between

studies, we did not perform a formal meta-analytical compar-

ison of these reports.

Data Acquisition and Preprocessing. By now a majority of re-

ported approaches are based on conventional task-based

fMRI.26-63 This means that patients have to perform a specific,

mainly neuropsychological task in the MR imaging scanner. Sta-

tistical models are designed to evaluate the amount of variance in

the acquired EPI data caused by this task modification of brain

activity. This corresponds to “brain activation” in conventional

fMRI studies.1 An advantage of this approach is a rather straightfor-

ward functional interpretability of such data. Yet in addition to

mainly psychologically motivated studies in young healthy partici-

pants, patients’ adherence to task instructions constitutes an impor-

tant source of variability in real clinical settings and may even inter-

fere with diagnostic decision-making.

Recently, a significant number of studies55,64-97 have been

based on task-free fMRI acquisitions, so-called resting-state

fMRI, which focuses on the functional connectivity of distant

brain regions in terms of signal cofluctuations and therefore on

the integrity of large-scale brain networks.98,99 A potential benefit

of this method is that typical networks seem to be robustly iden-

tifiable in individual subjects. However, reports focusing on the

reliability of typical resting-state fMRI measures highlight the

problem that these are highly dependent on potentially con-

founding factors such as wakefulness or autonomic arousal.100,101

Although most resting-state fMRI findings in basic neuroscience

are based on short acquisitions of approximately 5 minutes,

which seem to be sufficient for network detection,102 there is re-

cent evidence that retest reliability can be significantly improved

by longer acquisitions.103 Only a minority of resting-state func-

tional connectivity– based MVPA approaches have used acquisi-

tions lasting at least 7 minutes.67,72,79,84,87,91

As a common analysis step on a single subject level, feature-

extraction methods are used to extract meaningful information

from and simultaneously reduce the high dimensionality of the

raw EPI time-series data. Prevailing approaches based on prior

knowledge are activation modeling, based on general linear models

for task-based acquisitions,1 and seed-to-voxel or region-of-interest

to region-of-interest correlation analyses for task-free acquisitions.

In addition, recently more complex graph-theoretic approaches have

been derived from the ROI–based methods. Another way of analyz-

ing task-based and task-free studies relies on data-driven approaches

such as independent component analyses.98,104

Recent further developments in diagnostic MVPA are not

solely based on one of these methods. For example, Du et al55

combined both task- and task-free fMRI in schizophrenia in a

small study. Additionally, combinations of fMRI measures with

volumetric data,41,48-50,63,76,78-81,86,89 DTI,46,49,92 as well as ge-

netics42 and behavioral data,40,41,50,76 have been used as features in

MVPA analyses. However, results reported so far do not allow veri-

fied statements about the benefit of such multimodal acquisitions.

Feature Selection, Classifier Training, and Assessment of Classifi-
cation Accuracy. Figure 2 and On-line Tables 1 and 2 contain

information about the multivariate classification methods in the

studies included in this review. They also contain information

about whether the selection of potentially decisive features was

FIG 2. Overview of MVPA-based diagnostic fMRI studies with an above-average statistical power to detect successful models (n � 25 in every
group of the training set; group size ratio � 1.2 as a prerequisite for comparing the overall classification accuracies reported).34,43,45,55,61,72,74,85,95

Symbol sizes represent average group sizes in the respective study. a, Only minimum and maximum classification accuracies are shown here. b,
Study of cross-validation findings also reports results in a smaller independent validation set. c, Only Gaussian process classifier overall accuracy
is shown here. d, High overlap with another study is not shown here. FS indicates feature selection. For a complete list of studies, see On-line
Tables 1 and 2.
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based on conventional univariate analyses or whether it was also

guided by multivariate information of distributed network

patterns.

Apparently there are 2 groups of actual classification methods

that have been applied successfully repeatedly: variants of

LDA26,53,59,61,65-67,70,73,79,81,82,94 and support vector ma-

chines.35,36,38,40-49,51,52,54,58,60,62,67-71,74-78,80,81,83-85,88-90,92,93,95-97 Al-

though a certain number of articles report on conceptually different

machine-learningtechniques27-34,37,39,41,45,48,50,53-57,62,64,67,70,72,86-88,91

(eg, neural networks31,39,64,67,70 and decision tree– based ap-

proaches41,50,81,86,87,91), each has only been applied occasionally,

making reliable conclusions about their specific benefits and

drawbacks in this context practically impossible.

With a few exceptions,72,75-78,80,81,86,88,89,95 the small sample

sizes in most studies did not allow testing the classification accu-

racy in datasets completely independent of those used for classi-

fier training. As stated above, a trick makes approximative assess-

ments of classification accuracy of a set of trained classifiers

possible: Most studies use CV to show the generalizability of

strongly overlapping classifiers to new test data. This means that

in most reports only the diagnostic ability of 1 particular set of

dependent classifiers23 is proved. There is usually no formal test

that allows conclusions regarding the ability of whole MVPA ap-

proaches (acquisition � feature extraction � feature selection �

classifier training) to construct successful diagnostic tools in a

particular clinical setting because CV is only used to assess classi-

fication of new data but not reliable classifier training indepen-

dent from particular subjects. Additionally, setting up CV loops

that do not strictly keep the test set and training set apart is a

known source of error, leading to overoptimistic estimates of di-

agnostic accuracy. There is still some uncertainty regarding the

most appropriate test of significance to be applied in the CV

setting.19

Only a small subset of reports contains systematic compari-

sons and optimizations of larger sets of classification models

used.49,68,70,75-78,80,81,86,88,89,95

Potential Clinical Applications and Integration in
Diagnostic Workflows
To this point, most studies report applications to distinguish

healthy controls and patients with a specific disease. These are a

necessary step in developing and accessing diagnostic tools, but is

it currently really clinically desirable to strive for such a tool?

In the context of practically illness-defining brain alterations,

as in certain kinds of neurodegeneration, MVPA-fMRI methods

might compete with radioactive tracer studies in the future. Re-

garding psychiatric diseases, it seems, for example, desirable to

identify patients with a high risk of disease recurrence or progres-

sion. Especially in the case of major depressive disorders, there are

a number of patients who do not respond to standard pharmaco-

logic treatment; this outcome hints at potentially underlying di-

vergent biologic mechanisms. Prediction of treatment response to

a certain group of drugs seems to be a valuable objective as well.9

To date, some MVPA-fMRI studies have already attempted

to classify subjects regarding prognostically relevant sub-

groups.36,38,40,46,49,50,52,53,56,58 Another important but overlap-

ping clinical question may be how to distinguish patients with

neurobiologically different disease entities but with a similar initial

clinical presentation such as unipolar and bipolar depression. Such

differential diagnostic aspects have been addressed in a few recent

MVPA-fMRI studies as well.32,39,51,54,57,71,73,75,78,80,81,88,89,94,95

In this context, specific features of most psychiatric diseases

should be taken into account when discussing the results of these

analyses: The etiology and progression of disease are complex and

only partly attributable to biologic causes. The biopsychosocial

model of pathogenesis includes major influences of social and life

event–related factors105,106 that do not necessarily lead to corre-

lates that are approachable by biologic measures such as fMRI.107

Furthermore, many diagnostically relevant symptoms are, by def-

inition, subjective (eg, depressed mood).108 The burden of suffer-

ing is often decisive in terms of indications for treatment.109

Therefore, fMRI-MVPA– based measures should not be expected

to become the criterion standard in diagnostics and replace in-

depth history-taking. The accuracies of the studies reviewed here

support this theoretic argument. Still, imaging-based multivariate

tools might be able to provide clinically useful additional infor-

mation: When important information (eg, regarding prognosis)

is, by definition, not deducible from the course of disease, these

tools might provide the clinician with crucial hints,7 unraveling

the “biologic share” of disease.

In nearly all fMRI-MVPA studies, there was a significant

amount of misclassifications (On-line Tables 1 and 2). Partially,

they may be attributable to inherent noise in the data and remain-

ing methodologic weaknesses in data analysis. However, misclas-

sification might also be based on biologically and medically mean-

ingful information like the effects of medication110 and age.69,85

Sex effects are a much-debated issue in fMRI as well.111,112 Fur-

ther investigation of misclassified subjects might even pose a start-

ing point to identify biologically different disease subgroups. Sup-

posedly, a practical problem is that the referring physician and the

radiologist cannot easily grasp what leads to a single diagnostic

decision by fMRI-MVPA. In comparison with other types of di-

agnostic imaging, it is therefore not directly possible to appreciate

the extent of potentially biasing features in a specific subject. Only

5 recent studies have tried to overcome this issue by introducing

individual confidence measures.39,48,54,56,57

As seen in Fig 2 and On-line Table 1, MVPA-fMRI

has already been applied to a larger number of psychiatric

disease entities. For depression,35,36,38,45,47,48,54,57,68,84 schizo-

phrenia,26,32-34,37,39,42-44,55,58,61,62,64,66,70,74,90,91,96 and Alz-

heimer dementia,26,27,41,50,53,65,71,73,79,82,94 there is now a

larger body of independent work.

The diversity of scientific backgrounds of recent studies is re-

flected by a striking heterogeneity of reported methodologic de-

tails, sample characteristics, validation strategies, and perfor-

mance measures. This heterogeneity limits effort to draw more

reliable quantitative conclusions about the clinical benefits of

MVPA-fMRI at this stage. More specifically designed studies with

a sufficiently high statistical power and confounding factors of a

real clinical setting in mind with a more standardized diagnostic

end point should be performed to facilitate meta-analytic com-

parisons in the future. As a stimulus for further debate, we pro-

pose reporting standards and standards of study design that, in

our opinion, may help overcome some of these issues. They are
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summarized in the Table. Before MVPA-fMRI could be applied in

real clinical settings, potential interscanner variability113 should

also be taken into account.

CONCLUSIONS
Approximately 70 studies at the proof-of-principle level that use

MVPA of fMRI data with a diagnostic intention have been re-

ported. However, there is wide range of different methodologic

decisions, from data-acquisition strategies through preprocessing

and feature selection to actual diagnostic classification algorithms

and parameter settings and, therefore, a high flexibility in study

design. Results reported as yet are mainly based on small sets of

subjects. Therefore, one has to be cautious in drawing reliable

conclusions on the basis of this literature. Published results may

just represent the tip of the iceberg, with a lot more unsuccessful

unpublished attempts to apply this methodology. Therefore,

there might be an important publication bias, and published re-

sults regarding the statistical significance of successful diagnostic

classification should be interpreted in the light of a potential need

to correct for multiple comparisons.114 Nevertheless, it can be

regarded meanwhile as an independently replicated finding that

building on task-based and resting-state fMRI as well support

vector machines as LDA approaches has the potential to differen-

tiate patients from healthy subjects in psychiatric disorders with

most repeated findings in dementia, schizophrenia, and

depression.

In contrast, there is apparently more uncertainty regarding

optimal strategies for data preprocessing and feature selection,

advisable steps to allow the classification algorithm to work de-

spite a very high dimensionality and noise level of the original

data. Many of these methods are derived from conventional fMRI

analysis methods. Hardly any effort seems to have been made to

systematically compare and evaluate the influence of these differ-

ent approaches and parameter-setting selections on diagnostic

accuracy.

In conclusion, here is some evidence that MVPA-fMRI is

promising for overcoming long-known reliability issues in fMRI

and providing clinically important prognostic and differential di-

agnostic information in psychiatric disorders beyond pure exclu-

sion of gross structural alterations. Despite the optimism coming

from the recent discussion in the interdisciplinary functional neu-

roimaging community, this method is still rather new, and work

has to be done to validate methodologic choices and identify those

specific clinical settings that really allow a beneficial application.

Moreover, a conceivable integration of MVPA-based fMRI into

clinical workflow will depend critically on tackling diagnostic

problems with a real clinical benefit and effects on therapeutic

decision-making.
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