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ON THE GROWTH OF LOGARITHMIC DIFFERENCES,
DIFFERENCE QUOTIENTS AND LOGARITHMIC DERIVATIVES
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Dedicated to the eightieth birthday of Walter K. Hayman

ABSTRACT. A crucial ingredient in the recent discovery by Ablowitz, Halburd,
Herbst and Korhonen (2000, 2007) that a connection exists between discrete
Painlevé equations and (finite order) Nevanlinna theory is an estimate of the
integrated average of log™ |f(z 4+ 1)/f(z)| on |z| = r. We obtained essentially
the same estimate in our previous paper (2008) independent of Halburd et al.
(2006). We continue our study in this paper by establishing complete asymp-
totic relations amongst the logarithmic differences, difference quotients and
logarithmic derivatives for finite order meromorphic functions. In addition to
the potential applications of our new estimates in integrable systems, they are
also of independent interest. In particular, our findings show that there are
marked differences between the growth of meromorphic functions with Nevan-
linna order less than and greater than one. We have established a “difference”
analogue of the classical Wiman-Valiron type estimates for meromorphic func-
tions with order less than one, which allow us to prove that all entire solutions
of linear difference equations (with polynomial coefficients) of order less than
one must have positive rational order of growth. We have also established that
any entire solution to a first order algebraic difference equation (with polyno-
mial coefficients) must have a positive order of growth, which is a “difference”
analogue of a classical result of Pélya.

1. INTRODUCTION

We first set up some notation. Let 1 be a fixed, non-zero complex number,
Af(z) = f(z+mn) — f(2), and A" f(z) = A(A" 1 f(2)) for each integer n > 2. In
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order to simplify our notation, we shall use the same notation A for both a general
n and when = 1. The context will make clear which quantity is under discus-
sion. Equations written with the above difference operators A™ f(z) are difference
equations. Let E be a subset on the positive real axis. We define the logarithmic
measure of E to be

(1.1) Im(E) :/E dr.

N(l,00) T

A set E € (1,00) is said to have finite logarithmic measure if Im(E) < co. We
adopt a more flexible interpretation on the Bachmann-Landau“big-O” notation
[38, p. 11] so that for a complex function f(z), f(z) = O(v(r)) is interpreted
throughout this paper to mean that there is an ro > 0 such that |f(z)/¥(r)] < K
holds for some K > 0 and for all » = |z| > rg. Recently, there has been a
renewed interest in difference and g¢-difference equations in the complex plane C
(I2-[6], [8)-[10], [T4]-[18], [21], [23]-[24], [26], [35], [36]), and in particular, Ablowitz,
Halburd and Herbst [2] proposed to use the Nevanlinna order [19] as a detector of
integrability (i.e., solvability) of non-linear second order difference equations in C
(see [2], [15], [I7], [9]; see also [33]—[34] and [1I, pp. 261-266]). Their theory
is in close spirit with the classical Painlevé ODE test in which the solutions to
ordinary differential equations obtained from known integrable non-linear PDEs
via similarity reduction have particularly “good” singularity structure in C. That
is, “good” singularity structure of solutions to ODEs in C can be regarded as a
manifestation of the integrability of certain non-linear PDEs (see [1], pp. 98-100).
There are also some works that focus more on the function theoretic aspects of
difference operators. Halburd and Korhonen established a version of Nevanlinna
theory based on difference operators [16], Bergweiler and Langley [6] considered
zeros of difference operators, and Ishizaki and Yanagihara [26] developed a difference
version of Wiman-Valiron theory for entire functions of small growth. Halburd and
Korhonen [T4] and the authors [8] studied the growth of f(z+n)/f(z) independently.
The growth of f(z+n)/f(2) is crucial in the theory ([I5]) of using the Nevanlinna
order as a detector of integrability of non-linear second order difference equations.
In particular, the authors obtained, in [§], that for any finite order meromorphic
function f(z) of order o, then for each & > 0,

(1.2) o—bte)

‘f(z +n)‘ < exp(r
f(z)

holds for all r outside a set of finite logarithmic measure. The result was shown to

be best possible in a certain sense (see [8 e.g. 2.8]). Inequality ([2)) is in direct

analogy with the classical logarithmic derivative estimate by Gundersen [12],

(13) < [of7 e

for all |z| sufficiently large and outside a set of finite logarithmic measure, which
has countless applications (see e.g. [27]). In this paper we shall establish some
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estimates that compare the growths of the logarithmic difference log f(z+n)/f(2),
the difference quotient Af/f and that of f'/f, and their applications to difference
equations. These results are extended to higher order differences and higher order
derivatives. In addition, we shall also exhibit examples of meromorphic functions
showing that our estimates are best possible when interpreted in an appropriate
sense.

We shall establish, as our first main result, that for any finite order meromorphic
function of order o, then for any given € > 0,

fletn) _ F()
[ORN®

2min.., + log +0(r?*),

or its equivalent form

=TT

(1.4) 78 e ,
holds outside a set of |z| = r of finite logarithmic measure, n, , is an integer that
depends on both z and n, 3 < A—1 when A < 1and f < A—1 when A > 1, where
A is the exponent of convergence of the zeros and poles of f (Theorem 21]). The
above result holds for all finite order meromorphic functions. In particular, it is
easy to see that inequality (I2)) (J8]) mentioned above follows easily from (4.

Our second main result shows that if the order o is less than one, then one can
“remove” the exponential function on the right side of (IL4]). More precisely, we
have

AFf(z) _ kf(k)(z) pEtD(@=1)+e
(1) TN TE R )

which holds outside a set of |z| = r of finite logarithmic measure. Equation (L) is
a consequence of the repeated applications of itself when £ = 1 and the following
estimate:

(16) < |Z‘k07k+a

)

‘A’“f (2)
f(2)

which again holds for any € > 0 and for z outside a set of finite logarithmic measure.
We note that our (L)) is in direct analogy with Gundersen’s (I3]). Our method of
proof depends heavily on the Poisson-Jensen formula.

If we assume that f(z) is an entire function, then we can establish, as a direct
consequence of (LX), a difference Wiman-Valiron estimate

AFf(z) v(r, f)\* o k—yte
(1.7) = k( ) + O(rko—h=rtey

which holds again outside an exceptional set of finite logarithmic measure, and
where 7 is a small positive constant which will be made clear later. The notation
v(r, f) in (1) denotes the usual central index (see §8 [39] and [32]) of f(z).
Although the remainder of our (7)) differs from that of the classical estimate that
involves the derivatives instead of the differences of f(z), it is sufficient for most of
our applications to difference equations in {7l
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Ishizaki and Yanagihara [20] established a “difference” version of Wiman-Valiron
theory by expanding the entire function not in terms of the usual basis {2"}, but in
terms of factorial series, that is, series written in terms of the basis {(z),} (where
(2)n = 2(z+ 1) - (2 4+ k —1)). In particular, their results are stated in terms of
the central index v*(r, f) with respect to {(z),} instead of the usual central index
v(r, f). Thus they need to impose a strong restriction that f(z) has order strictly
less than 1/2. Since our assumption of f only requires o(f) < 1, so our results
have a greater flexibility. When the entire function is of order larger than one, the
relation (7)) can no longer hold since one has the relation (L)) instead. Thus the
order assumption of our result is best possible. Our (7)) has an added advantage
that it only involves the usual central index v(r, f) instead of the v*(r, f) which
could be more difficult to calculate.

Bergweiler and Langley investigated the zero distribution of A*f(z) for entire
functions of order o(f) < 1 in [6]. They obtain the relation [0, Lemma 4.2

(1.8) A f(z) ~ f8(z),

outside some exceptional set. Although in close scrutiny one could derive the error
estimate as in our (LX) from some of their estimates, no explicit error bound is
given in their paper In fact, it is clear that both the objectives and methods
of approach between Bergweiler and Langley’s paper and ours are very different.
In addition, we exhibit examples showing that the major estimates in this paper,
including equation (3], are the best possible in some sense (see Example [£.2]).
Moreover, our “logarithmic differences” approach is natural from the Nevanlinna
value distribution theory viewpoint where the corresponding error bounds are also
crucial in our applications to difference equations as will be discussed in the next
paragraph.

Both of the estimates ([L6]) and (7)) allow us to estimate the growth of solutions
in C of linear difference equations,

(1.9) Pa(2)A"f(2) + -+ P1(2)Af(2) + Po(2) f(2) = 0,

where P;, j = 0,--- ,n are polynomials, as in the classical case of linear differential
equations with polynomial coefficients (see [39], Chap. IV). In particular, we show
that if the orders of growth of entire solutions to (9] are strictly less than one,
then they are equal to a set of positive rational numbers, which can be obtained
from the gradients of the Newton-Puisseux diagram of the associated algebraic
equations. Besides, we shall also show that any entire solution f to the first order
algebraic difference equation

(1.10) Q(z, f(2), Af(z)) =0

with polynomial coefficients must have a positive order of growth. This result is in
close analogy with a corresponding result of Pdlya [31] when Af is replaced by f
and with the same conclusion.

1When J. K. Langley showed us their manuscript of [6] after our presentation during the CMFT
meeting in June, 2005, as noted in a footnote on our page 1, we had already obtained the main
results presented in this paper.
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This paper is organized as follows. The main result on logarithmic differences
will be stated in §2] and proved in §31 The result for first order difference and
those of higher order differences will be stated and proved in §4] and g5l respectively.
In addition, examples will be constructed in both of §2l and §4] showing that the
corresponding main results there are best possible in a certain sense. We shall
formulate difference Wiman-Valiron type estimates in 6l Applications of our main
results to linear and first order algebraic difference equations will be discussed in
g7l Finally, we shall discuss different aspects of the main results obtained in this

paper in §8

2. A LOGARITHMIC DIFFERENCE RESULT

Theorem 2.1. Let f(z) be a meromorphic function of order o = o(f) < oo, and
let X and N be, respectively, the exponent of convergence of the zeros and poles
of f. Then for any given € > 0, there exists a set E C (1,00) of |z| = r of finite
logarithmic measure, so that

flz+mn) fl(z)+0(r5+€),

(2.1) 2min, , + log O 7 75

or equivalently,

fetm) _ e 4o +0(Tﬁ+5)’
f(z)

holds for r ¢ EU[0,1], where n., in 1)) is an integer depending on both z and

n, 8 = max{oc — 2,2\ — 2} if A < 1 and f = max{c — 2, A\ — 1} if A > 1 and

A = max{\, \"}.

(2.2)

Remark 2.1. Since 20 —2 < 0 —1 when ¢ < 1 and max{oc —2, A—1} < o —1 when

o > 1, so we can easily deduce the estimate (I.2) obtained in [8] as a consequence
of our Theorem 211

We shall construct an example here showing that the remainder in ([2.2]) is best
possible when A = max{\', \"} < 1.

Example 2.2. Let A < 1 be a positive number and define

(2.3) fz) = e ﬁ (1 - #)

n=1

If A =0, then we choose f(z) = e*". The function f has order k when k£ > 1, and
it has order A when k = 0, and the exponent of convergence of the zeros of f is .
Let

—_
[\

w
w

o0
(2.4) F= U [n% + —n%*l, nx + —n%*l].
n=1
It can be seen that F' has infinite logarithmic measure on the positive real axis.
Let us consider x € F'. Then there exists an integer m such that

(2.5) mx + ém%*l <z <m>+ %m%fl.
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We have
1 1
(2.6) —3m!™x < — <0,
mx —x
1
(2.7) 0< 1 <3m'™ %,
(m+1)x —x
and
Y
2.8 > (—) .
(28) m> (3
One can find positive constants  and ¢ so that
(2.9) log(1 +w) — w > cw?

holds for all w € [—4, 6]. We consider = € F large enough such that 3ml=x < 6.
Then it follows from (2.6) and (2.7) that

(2.10) < <6

nx —x

holds for all n € N. We now apply (2.9) and (2.8) to get for x large enough and in
F

)

g 1D F@)

— (2 ko gk k1
) faw ety g

> 1 1
tog (1= ——)

n%—x

E(k—1) 4 o > 1
> —x 140(1)) +c P E——
> == (+o)+ed s

E(k—1) ,_,
1)
- 2
K1)
- 2

(2.11)

9
(1+0(1)) + Zcm2—§
(1 + 0(1)) + 2022_2)‘90”‘_2.
We can see from the above example that Theorem 2] is best possible when

A < 1, in the sense that the exponents ¢ — 2 = k — 2 and 2A — 2 in (1) are
attained, and hence they cannot be improved.

3. PROOF OF THEOREM [2.1]

3.1. Preliminary results.
Lemma 3.1. Let us define

(3.1) logw = log |w| + i argw, —r<argw <



GROWTH OF DIFFERENCE QUOTIENTS 3773

to be the principal branch of the logarithmic function in the complex plane. Then
we have

(3.2) log(1 + w) = O(|w])

and

(3.3) log(1 +w) —w = O(|w|?),

forjw+1] > 1.

Proof. We shall omit their elementary proofs. O

Remark 3.1. We note that it is clear that (B3] remains valid when we define the
principal branch by logw = log |w| 4+ i argw, —7 < argw < 7 instead.

We shall apply the above lemma to prove

Lemma 3.2. Let us assume that we choose the principal branch as in Lemma Bl
Then we have

(3.4) log(1 + w) = O(|w|) + O(‘HLM )
and
(3.5) log(1 +w) — w = O(|jw|?) + 0(’1%} 2)

hold for all w in C.

Proof. If |w+ 1| > 1, then [B4) easily follows from (B2). If, however, |w + 1| < 1,
then

—w | 1
Ttwl [Ttw

(3.6) ‘1 + 1.

Thus we have

1 1 w

: log(1+w) = —1 —o(j1- =) =o(|=—=])-
(87) og(1 +w) Og1+w O( 1+w) O(1+w)
This proves ([B.4) for all w € C.

Similarly, if |w + 1| > 1 we easily see that (8.0)) follows from ([B.3). On the other
hand, if |w + 1| < 1, then ([29) holds, and (B3] implies that

w —w —w
log(l—l—w)——:—[log(l—l- )—( )}

1+w 1+w 1+w

w12
-o(l=l )

1+w
We note that we have used a slightly different definition of the principal logarithm
as mentioned in Remark Bl in order to handle the right hand sides of ([B.1) and

B8) above.

On the other hand, we have

(3.8)

I B
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Thus we obtain, from combining (3.8) and 33),

10g(1+w)—w:10g(1+w)+[—(1$w>+(1fw)—w}

w

= o) + 0| ).

14w
which holds for all w € C. ([

Lemma 3.3 ([30], p. 163). Let f(z) be a meromorphic function in the complex
plane, not identically zero. Let (a,)ven and (by)ucn, be the sequence of zeros and
poles, with due account of multiplicity, of f(z) respectively. Then for |z] < R < oo,

1 [ v R + 2 R*—a,z
log £(2) = 5 | logF(Re)| g o~ 3 log
0

27 Re'® — 2 loloR R(z —a,)

(3.10) y - Y

+ Z lo B bz +iC

& R(z —by) ’
[b.|<R
where
R R

(3.11) C =arg f(0) — bzlgRarg ( - E) + | zlgRarg ( - a) +2m, .

Remark 3.2. We recover the classical Poisson-Jensen formula by taking the real
parts on both sides of (BI0). Note that m, € N in [BI1]) depends on the choice of
branch of the logarithm functions of both sides of ([B.I0), and so it may depend on
z (but being piecewise continuous).

We also require the following classical Cartan lemma.

Lemma 3.4 ([7]; see also [29]). Let z1, 22, - - , 2p be any finite collection of complex
numbers, and let B > 0 be any given positive number. Then there exists a finite
collection of closed disks D1, Ds,--- , Dy with corresponding radii r1,72,- - , 74 that
satisfy

ri+ro4 41y =28,
such that if z ¢ D; for j = 1,2,--- ,q, then there is a permutation of the points
21,22, 7, Zp, SAY, 21,22, , Zp, thatl satisfies

l
|z_2l|>B_a l:1727"'7pa
p
where the permutation may depend on z.
3.2. Proof of Theorem 2.71

Proof. For n # 0, let R > |z| 4+ |n|. Then we have by (810) and (3I1) that
(3.12)

1 [ . Re 4+ 241 R? —a,(z+n)
1 = — 1 Re')| ————Ld¢p — E log —————=
ng(Z—I—T]) 27T/0 Og‘f( € >| RGW*Z*?] ¢ S 0g R(Z*I»??*a,,)

R —b,(2+1n) .
log ———#\= = 1/
+ Z 0g R(Z—FT]—bM) +ZC777
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where

(3.13) C, = arg f(0 Z arg ( - —) Z arg ( ) +2m, 7.

[bu|<R lay|<R

We subtract (B10) from ([3I12) and keep in mind that the integers m. ,, m. in each
step of the calculations below depend on the choice of the logarithms as mentioned
in Remark This yields

(3.14)
flz+mn) 1 / o - 2nRe’®
1 = 1 i : : d
o8 f(z) 27 Jo o | f(Fe™?)| (Re'® — z — n)(Re™® — 2) ¢
ayz R? —ay(z+1)
+ Z {log — log
oR —ay) R(z+n—ay)
bu(z+mn) R? — b,z .
+ Z {log —log +2m(m,, —m;)i
booR z+n—b) R(z—b,
2nRe'?®

1 27 ;
:g/ 10g|f(Re ¢)|(R€l¢—2—77)(R61¢—2) de

- Y (e (2]

la,|<R
R2 _} (z+mn) - '
' |bz<:1:¢log |:< R2 ﬁ EMZ ) <z + Mb#>:| + Qﬂ(mz)n —m,)i

1 [ ; 2nRe'?
- 1 i . :
2m / og | f(1e™?)| (Re“ls —z—n)(Ret? — z) d¢

-y log(lf ) 3 1og(1+—)

|lay|<R lay|<R
77 Ui
+ 3 g (1- ) = X s (14 )
[bu|<R w |bu|<R ®

+2r (M., —m.)i.

Differentiating the Poisson-Jensen formula (3I0) yields

/ 2m i
re_ L /O log|f<ReZ¢>\ﬂd¢

flz) 2« (Ret? — z2)2
b
(3.15) + Z R2—a Z R2—1D 2
lay|<R vz lbu|<R w
1
+ Z z—a, Z z—b,
lay|<R [bp|<R
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We multiply the left hand side of (BI%])
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by n and subtract the product from the

left hand side of (B.I4]) with the assumption |z| =r < R — |n|. This gives

(3.16)

flz+n) 2

)

log

27
/0 log | f(Re™®)|

Re'®
(Re'® — z — n)(Re*® — z)

7 d¢

s (1= )+ |
o (1 ) +
s (142 2
o (14 1) -

+21(m, ,, —m,)i.

We distinguish two cases depending on the exponent of convergence of the ze-
ros and poles of f(z) in the rest of the proof. We first consider the case A =

max{\,\'} < 1.
We may now choose the branches of

the logarithms on the right hand side of

BI6) as in Lemma Therefore we obtain

(3.17)
ontme i+ og P 8 < U s [ e
0| ¥ (2l e mat=anl)
lay|<R ) B
> (75l )
+Q§R( z—nal, 2 ‘z—any—knr)
o (RO |

We first note that

27 )
(3.18) /O | log | f(Re'?)|| do =

2r(m(R, f) +m(R,1/f)).
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We next estimate the remaining terms in ([BI7). We have

(3.19)
O (i B B
la,|<R R2_ELVZ R2_@u2—du77
2[n|* R? 2|2
= - n(R,1/f
Iaulz<R (R? = Rr—Rn[)?  (R—r—n[)? (R,1/f)
and
B 2 E 9
> (e i)
bul<R B2 —byz R%? — b,z —b,n
(320) |#|<

2[n|* R? 2[nl?
< = n(R, f).
o TR EP R TP

On the other hand, it is elementary that when R’ > R > 1, we have

vtz [ DO g
(3.21) > n(R, f) /RR/ % —n(0, f) /RRI % + (0, f) log R’
> (R, )
Then for R > 1, we have
(3.22) n(R, f) <2N (2R, f),
and similarly
(3.23) n(R,1/f) < 2N(2R,1/f).

We may now combine B.I7)-B20), B22)) and 23] to get

: fle+n) ()
om0 Sy 1|
R
ZOLRﬂumWQMRﬁ+m@JUD
(3.24) 1

+ 2R, f) + N(2R,1/f))

@—r =

> (|z—1ck.|2+ 1 )}

o o= ex+ P
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where (cx)ren = (av)ven U (by)uen- Let 7 > max{[n|, 3} and R = 3r. Then it
follows from (B3:24]) and the finite order o assumption on f that

flz+n)  f'(2)

2m(m, —m. )i + log 1B 7 )

1 1

= O 7‘0’72+E —|— O< + )

(3.29) SRS DI Fon: Al PR

1

_ o—2+¢€

=0(r )+O< E |z—dk|2>’

‘dk|<47'

where (d)ren = (ck)ren U (ck — Mken-
We now estimate the second summand in (320 via the Cartan lemma in the
spirit in [I2]. Let n(t) denote the number of the points dj, that lie in |z| < t. Then

(3.26) n(t) < nt+nl, f) +n(t+nl.1/f).
We suppose that h is any fixed positive integer and that z is confined to the annulus
(3.27) 4P <zl = r < 4L
Set p = n(4"*2), B = i—};, and apply Lemma [B.4] to the points dy,ds, - ,d,, to
conclude that there exists a finite collection of closed disks D1, Do, -+, Dg, whose
radii has a total sum equal to 2B, such that if z ¢ D; for j =1,2,--- , ¢, then there
is a permutation of the points dy,ds, - - ,dp, say, di,da, - ,d,, that satisfies

“ k
(3.28) |z —di| > B—, k=1,2,---.,p

p

We note here that ¢ and Dy, Ds, -+, D, depend on p and then depend on h. Hence
if z¢ D; for j =1,2,---,¢q, we have from [B.27) and (3.28) that

Z#<f#—f¥
F P T AP A

‘dk|<47“ k=1 k=1
p 2 o 1
(3.29) Z B2k2 — B2 k_
k=1
16[n(16r) ]21og 1
2 Zﬁ
T 1og 4 Pt

We deduce from (320) and (329) that

(3.30) > p%

y ‘2 _ O(TQ)\_2+E) _'_O(TZA/—Q—&-E).
k
‘dk‘<4T

It remains to consider the exceptional sets arising from the discs in the Cartan
lemma. For each h, we define (it has been mentioned that ¢ and Dy, Ds,---, D,
depend on h)

a

(3.31) Yi={r: z€ U D; such that |z| =71}
j=1

and

(3.32) Ej, =Y, N [4" 4"+,
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Then
gh+1
(3.33) / 1d:v§/ ldx <4B = —.
En Yn h
Set
(3.34) E={JE:}Nn(1,00).

We deduce, by combining ([B.23]) and (330]), that
flz+m) _f'(2) e
= 0
e TRe PO

holds for all z satisfying |z| = r ¢ [0,1] U E. The sizes of the exceptional sets can
be calculated from B32)-B33). We have

/ dt<2/ —dt<4Z—<oo

that is, F has finite logarithmic measure. This completes the proof when \ < 1.

We now consider the remaining case when A = max{\’, \"} > 1. We shall appeal
directly to (BI6) with » = |z|] < R—|n|. This together with (3.4]) and (BI8) yields,
as in the case above when A < 1,

(3.36)

(3.35) 2m(m, —m; )i+ log

2m(ms = men)i+log =z 3= =0 (R—7—1nl)?

Cul Cul
tog (1 - 2= )|+ | |
‘ o R? — ¢,z + R? — ¢,z

|
: Ulog<1+:%>\+!z;w

(<Rﬁ+mmlﬁﬁ]

fern 1@ O[R(m(R’f)er(R’l/f))]
g

)?

\
=l
2—cuz R? — ¢,z — ¢un

U D
o \<R z—cﬂ z—l—n—cu

We then choose R = 3r, » > max{|n|,1/3}. We also choose |z| as in ([B.27),
p = n(4"*2). Hence

Cull ‘ ’ Cul ‘ < ‘%‘
2. <’R2—cuz * RZ—CMZ—CMU>_ 2 (4r)? — dyz

leu|<R |d,.|<4r

l |77| A—1+e
< .
Z 4r —r 3r =0(r )

\ u\<R

(3.37)
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We apply the Cartan argument similar to (B.27)—(B3.29) as in the previous case when
A < 1 to obtain

(3.38)
n n n
)3 . )ED>
CH|<R(‘Z—CM‘ ‘z—i—n—cul ‘du|<4"4 z—d,
pl
|77|Z . — s | <In |ZE;
W1 4n(167) /log T2
<o Y- < il 02 (2E0) g a16r) = O 1+9)
="
Combining (330), (B37) and B38)) yields
(3.39) 7
_ , fG+n)  f'(2) o—2+e dyun
2r(m. —my)i+log = ot~ gy | < OO ol 2 I )
n
JFO( Z ‘z—dul)
|dy|<4r

< O(rof2+a) + O(’I‘A71+E),

which holds outside a set of finite logarithmic measure. This completes the proof
for the case when A > 1 and hence that of the theorem. O

4. FIRST ORDER DIFFERENCE QUOTIENTS ESTIMATES
4.1. Main results.

Theorem 4.1. Let f be a meromorphic function of order o(f) = o < 1, and let
1 be a fized, non-zero number. Then for any e > 0, there exists a set E C (1,00)
that depends on [ and has finite logarithmic measure, such that for all z satisfying
|z| =r ¢ EU0,1], we have

Af(z) _ flz+m)—f(z) _ [(2) 202
4.1 = =7 + O(r?7-2%¢),
4 7@ () flo T
Remark 4.1. We note that when n = 1, then (@) assumes the form

A 1) — !
) FE)_fEt D)= fE) PG e

f(2) f(2) f(z)
This estimate will be extended to higher order difference quotients in the next

section.

We next consider an example f(z) showing that when o(f) = 1/2, then the
exponent “2c — 2 = —1” that appears in the error term of [@I]) is best possible.

Example 4.2. Let
(4.3) f(z) = cos vz,

which is clearly an entire function of order 1/2. Then there is a set F' of positive
real numbers of infinite logarithmic measure, such that for all x € F', we have

Afx) R
o) —(1+0(1).

(4.4)
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We first compute the numerators on the left hand side of ([@4) by using trigono-
metric identities. This gives

(4.5) |
Af() = f(z) = cosVa+1—cosv/z+ = ff
i (L ()
_sinﬁ_ ! sin<\/m+\/g)+ L sin(\/H—l+\/z)
Ve 2vE 2 Ve 2
— 2sin (M) sin (M)
2 2
= i\/_ -2 cos (\/@) sin (\/E_Z@)
2\/z 2 9
i ‘/27 i . \/27* z
+sin ( +;+\/—)[2\1/5_28m(+2\/_)}
1 Vz+ 1432\ . 1
:—ﬁcos< 1 )Sm(4(\/z+—1+\/2))
+s1n( +;+\/_)[2\1/5251n(mn.
We now consider z =z > 0 and let x — +o00. This yields
Af(a) = f'(a) = =z cos (VLTI ¢ ;;él»
+sin(\/m+‘/§)[ 1 _ 1
2 2vz (Vo 1+ )
1 3
(4.6) +O(m) }
:,é Ccos (—W) (1+0(1))
+sin(\/$7+;+\/5)[2ﬁ(\/gﬁll+ﬁ)2 +O(a:73/2>}

= _8% (14 0(1)) cos (W) + O(x_S/Q).

We now let the subset I’ of R be in the form

(4.7) F =] [@mn—n/3)% (2mn+7/3)],

n=1

which clearly has infinite logarithmic measure. We notice that for x € F' the
function cos /7 satisfies the inequality

(4.8) < cosvz < 1.
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Combining ([£6]) and (L8] yields, when x € F and = — oo,

(4.9)

< —é(l + 0(1)) cos (W) + O<x73/2).

It remains to consider the leading term on the right hand side of [@3]). We further
notice that

(4.10)

o (m+ 3\/5) VaTlsve |\ /y VaIlisve _\ /p
4

— cosy/x = —2sin (f) sin (f)
. 1
= 0O(1) - sin (m)
= o(1).

Thus we deduce from ([@I0), for all z € F', that

(4.11) =cosv/z +o(1) >

cos (W) +o(1).

We can easily see that ([@4]) follows from ([@IT]) and (£3).

4.2. Proof of Theorem [4.Il We require the classical estimate of Gundersen men-
tioned in the Introduction.

Lemma 4.1 ([12]). Let f be a meromorphic function of finite order o(f) = o.
Then for any € > 0, there exists a set E C (1,00) that depends on f and has finite
logarithmic measure, such that for all z satisfying |z| = r ¢ EU[0,1], we have

(4.12) ’J;((ZZ;‘ < |g|o e

Proof. Given an arbitrary e such that 0 < € < 1 — o, Theorem 2.J] and Lemma
[Tl imply that there exists a set F' C (1,00) that depends only on f and has finite
logarithmic measure, such that for all z satisfying |z| =r ¢ F U [0, 1],

(4.13) onami+log LET _ oo-1+e) Z o(1).
f(z)

Then there exists a constant A > 0, such that for all z satisfying |z| = r ¢ FU[0, 4],
, f(z+n)

4.14 2n,mi 4+ log ———=| < 1.

. )

Since

(4.15) e’ —1=w+ O(w?), lw| < 1,
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we therefore deduce from (LI13), (£14), (EI5) and ([Z2) that for all z satisfying
2| =r ¢ FUI0, A],

f(Z + 77) - f(Z) _ ean‘n’i—Hog %‘:;’)

R !

flz+m)
f(2)

+ O(T20—2+6) + O((,ro—l—i-a)Z)

, fz+m)\?
= 2n,mi + log ) )
f'(z)
f(2)
/

_ L@

f(2)
Now let E = F' U[1,A]. Then E has finite logarithmic measure and hence (£.1])
holds for all z satisfying |z| =r ¢ E U0, 1]. O

+ 0 (2nz7ri + log
(4.16)

=1

4 O(T20—2+26).

5. HIGHER ORDER DIFFERENCE QUOTIENTS ESTIMATES
5.1. Main results.

Theorem 5.1. Let f be a meromorphic function of order o(f) = o < 1. Then
for each given € > 0, and integers 0 < j < k, there exists a set E C (1,00) that
depends on f, and it has finite logarithmic measure, such that for all z satisfying
|z| =r ¢ EUI0,1], we have

A*f(2) :
5.1 | < Ja e
(51) NclEl
We deduce the following consequence from (5.I]). This is a higher order extension
of Theorem 1]

Theorem 5.2. Let f be a meromorphic function of order o(f) = o < 1, and let
n be a fived, non-zero number. Then for any € > 0, k € N, there exists a set
E C (1,00) that depends on f and has finite logarithmic measure, such that for all
z satisfying |z| = r ¢ EU|0,1], we have

Abf(z) L fM(2) P D) (o 1)+e
2 o e PO !

We need the following elementary lemma to prove the theorems.

Lemma 5.1. Let f be a finite order meromorphic function. Then for each k € N,
(5-3) a(A*f) < a(f).

Proof. Let o = o(f). It is sufficient to prove the case when k = 1. We recall that
the authors prove

(5.4) T(r7 flz+ 77)) ~ T(r, f(z)) + O(TU_HE) + O(logr)

in ([8), Thm. 1]). Thus, we see immediately from (&4]) that o(f(z+ 1)) = o(f(2))
holds. Hence

(5.5) o(Af(2)) =o(f(z+1) = f(2)) < max{o(f(z +1)),0(f(2))} = o (f(2)).
Repeating the above argument k — 1 times would yield (E3). |

Remark 5.1. It is easy to see that the inequality o(f) < o(AFf) does not hold for
general meromorphic functions. For example, one can take g(z) = I'V(2)/T'(z).
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5.2. Proof of Theorem [5.11

Proof. Let j be a non-negative integer amongst the set {0, 1, --- ,k—1}. We deduce
from [@I)), @I2) and (53) that for each such j, there exists a set E; C (1, 00) that
depends on f and has finite logarithmic measure, such that for all z satisfying
‘Z| =r¢ E;u [07 1}7

ANITLf(2

o;—14¢ o— 1+5
(5.6) A7 y < a7 <
where 0; = o(A7f). Now let E = Ul’C ! E;, which clearly has finite logarithmic

measure. Hence, we have, after applymg (IEI) repeatedly, that

AFf(z)  ARUf(z)  Af(z
‘ ‘ ’A’f Uf(z) AF2f(z)  f(z
holds for all z satisfying |z| = r ¢ E U [0,1]. Since € is arbitrary, this completes
the proof of (B.I) when j = 0. Let G = AJf(j < k). Then Lemma [5.1] implies
that 0(G) < o(f). Thus (51) asserts that there is an exceptional set E of finite
logarithmic measure such that for all z satisfying |z| = r € E, we have

5] ot

‘ |Z|J 1+s)k < |Z‘kafk+ks

(5.7

‘<| ‘k: j)(o— 1)+a
AJf

This completes the proof of the theorem. O
5.3. Proof of Theorem

Proof. The case when k = 1 is just equation ([4I) in Theorem Il We shall
prove (52) by induction on k. We assume that (52)) is true for all k, & < j. We
deduce from Theorem [, Lemma [Tl Theorem (Il Lemma [5.1] and the fact that
o(f") = o(f), that there exists a set E C (1,00) that depends on f, which has finite
logarithmic measure, such that for all z satisfying |z| =r ¢ E U0, 1],

ATHf(z) _ ATTf(2) AN f(2)  [(AV)(2) + o2 h-2+)] . AT f(z)

flz) Ajf() fz) L AIf(2) f(2)
_AI(f'(2)  ATf(2) (20(f)—2+e CATf(2)
16 5 O e
( (Z)) ((j+2)(o(f)71)+25)
Cfle)
AV (f'(2)) ) f'(z) P2 (o (f)=1)+2¢
ORNICI )
1(MY(2) G e(f)-D4er] I (2) P+2) (0 () —1)+2¢
= Tor )|y o )
_1UG) 1) o anemn-naey . TG L o Gren-nree
=T e fo )y T )
U (z)

_ O D128y
i T )

That is, the case k = j + 1 is true, and the proof is complete. Il
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6. DIFFERENCE WIMAN-VALIRON TYPE ESTIMATES

Let f(z) = >.,~5anz" be an entire function in the complex plane. If r > 0, we
define the maximum modulus M (r, f) and mazimal term u(r, f) of f by

M(r, f) = max|[f(z)]  and  pu(r, f) = max|an|r",
|zl=r n>0
respectively. The central index v(r, f) is the greatest exponent m such that

|am|r™ = pu(r, f)-

We note that v(r, f) is a real, non-decreasing function of 7.
We have the following fundamental result (see [27] and [32]) that relates the
finite order of f and its central index.

Lemma 6.1. If f # const. is an entire function of order o, then

1
(6.1) lim sup log v(r, f) =0
r—oo logr

We next quote the classical result of Wiman-Valiron (see also [20]) in the form

Lemma 6.2 (He and Xiao [22) pp. 28-30]). Let f be a transcendental entire
function. Let 0 < e < % and z be such that |z| =r and that

(6.2) ) > M, ) (v, )5

holds. Then there exists a set E C (1,00) of finite logarithmic measure, such that
B _ v £y

(6.3) o = (707) R,

(6.4) Ri(z) = O((v(r, £)+7)

holds for all k € N and all v ¢ E U0, 1].
We deduce from Theorem (5.2 (€3] and (64) in Lemma [6.2] the following.

Theorem 6.1. Let f be a transcendental entire function of order o(f) = o < 1,
let 0 <e < i and z be such that |z| = r, where

(6.5) 1£(2)] > M(r, f)(w(r, f))"5*e

holds. Then for each positive integer k, there exists a set E C (1,00) that has finite
logarithmic measure, such that for all v ¢ E'U[0,1],

Af(z) _ (vl )y ey i oo
66) S =0 (500) (10 ) E), i o=,
ASFE) e (IDNE L ke ki
(6.7) o :nk( - ) FO@rkRrre) i 0<o <1,

where v = min{zo,1 — o}.
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7. APPLICATIONS TO DIFFERENCE EQUATIONS

Theorem 7.1. Let Py(z), - -+, P.(2) be polynomials such that

(7.1) llg]agn{deg P;} < deg(Po).

Let f(z) be a meromorphic solution to the difference equation
(7.2) P,(2)A"f(2) 4+ -+ Pi(2)Af(2) + Po(2)f(2) = 0.
Then o(f) > 1.

Proof. Let us first assume that a meromorphic solution f has order o(f) < 1. We
now write equation (2] in the form

_ P2 ATG) P AS()

Bo(2)  f(2) Po(z) f(z)
and choose € such that 0 < € < 1 — o(f). Theorem [B.1] asserts that there exists a
set E C (1,+00) of finite logarithmic measure, such that for all |z| =r ¢ EU[0, 1],

(7.3) 1

A f(z)
7.4 2TV o),
(7.4 o)
for 1 <j <n. But
b;(2)
7.5 / =0(1),
(7.5) Po2) (1)
as |z| — oo, for 1 < j < n. Therefore, if we choose |z| =7 ¢ EUI0, 1] and |z| — oo,
then it follows from (T4 and (3] that we have a contradiction in (73)). O

We note that this generalizes our earlier result [8, Thm. 9.4], which we state as

Corollary 7.2. Let Qo(z), - - Qn(2) be polynomials such that there exists an inte-
ger£,0</{<n so that

(7.6) deg(Qr) > max {deg(Q;)}
J#L
holds. Suppose f(z) is a meromorphic solution to
(7.7) Qn(2)y(z +n) + -+ Q1(2)y(z + 1) + Qoy(z) = 0.

Then we have o(f) > 1.

This is because if there is a polynomial coefficient of highest degree amongst the
Qo(2), - Qn(z), then the relation

L
(7.8) y(z+ L) = Z (f) Aly(z), L=0,---,n,

j=0
implies that we can transform (7)) to (C2]). Then the corresponding Py obtained
in (T2)) has the highest degree. That is, (ZIl) holds. Therefore, the result of the

corollary follows from Theorem [T.11 O
It is well known that each entire solution of the linear differential equation
(7.9) Pu(2)f™(2) + -+ 4 Pu(2) f(2) + Po(2) f(2) = 0,

with polynomial coefficients, has order of growth equal to a rational number which
can be determined from the gradients of the corresponding Newton-Puisseux di-
agram [25]. This classical result can be proved from the Wiman-Valiron theory
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(Lemmas [6.1] and [62) (see also [39, pp. 106-111, Appendix A] and [13]). We shall
establish a corresponding result for the linear difference equation (Z.2]) but only for
entire solutions with order strictly less than one. Our method is based on our “dif-
ference” Wiman-Valiron Theorem Although the main idea of our argument of
using (677) follows closely that of the classical one for linear differential equations,
there are some details that require further justifications. The reason is due to the
different forms of the remainders between ([6.7]) in our Theorem [G.I]and the classical

one in (6.3]).

Theorem 7.3. Let ag(z), -+ ,a,(z) be polynomial coefficients of the difference
equation
(7.10) an(2)A"f(2) + -+ a1(2)Af(2) + ao(2) f(2) = 0.

Let f be a transcendental entire solution of (LI0) with o(f) < 1. Then we have
o(f) = o = x where x is a rational number which can be determined from a gradient
of the corresponding Newton-Puisseux diagram of equation (CIQ)). In particular,
x > 0.

Proof. Let f(z) be a transcendental entire solution of (I0) with order 0 < o < 1.
Lemma [6.] asserts that

1
(7.11) lim sup logv(r, f) =0
r—oo logr

This implies that for each § > 0, there exists a sequence r, — oo, such that

Tpi1 > rit0 and v(r,, f) > rg70.

We define
o0
(712) F= U [’I”n, Trlz+5]7
n=1

which is a union of non-intersecting intervals and clearly has infinite logarithmic
measure. We consider all those r that lie in

(7.13) Ty <7 <A

Then since v(r, f) is a non-decreasing function of r, so we have trivially

(7.14) v(r, f) > v(r,, f) >r2 =% > 58

We now choose ¢ and ¢ so small that the inequality

o—9
(7.15) ka—k—7+€<(m—l)kz
holds, where v is the constant in ([67)). Hence
ko—k—y+e _ I/(?”, f) ‘k
(7.16) r 0(} . ),

for r in F. Let z be such that (1) holds. Thus equation (G7) of Theorem
asserts that there exists a set F of finite logarithmic measure such that for all
|z| =r € F\{FU]I0,1]}, we have

AFf(2) v(r, f)

SV
(7.17) W:77’“(7) (14 o(1)).
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Substituting (ZI7) into (ZI0) yields

(7.18) > njafjgz/j(r, £z f(2) (1 +o(1)) =0,
=0

where A; = dega;(z), a;(z) = Zfio a,(g)zk.

Valiron [39, p. 108 and Appendix A] asserts that we have, for r € F\{EU[0,1]},
two real functions B(r) and £(r), where £(r) can only take values equal to the
gradients of the corresponding Newton-Puisseux diagram for equation (_I0) (which
is always positive), and B(r) also can only assume a finite number of positive values
such that

v f)
(7.19) A8 By !
In particular, since £(r) can only take a finite number of rational values and F\{EU
[0,1]} has infinite logarithmic measure, so there exists a rational x > 0 such that

the set

(7.20) {r:t(ry=x, re F\{EU[0,1]}}

is unbounded. We conclude from (C14)), (ZI1), (C19) and (Z20) that
oc—90 <y <o
1+6 =77

Hence o0 = x by letting § — 0.

It only remains to consider the case when o = 0. Since the remainder of our
“difference” Wiman-Valiron estimate (6.0 is the same as the classical one (G.3),
so we simply repeat the classical argument as in [39]. This also shows that o = 0
must be a gradient from the Newton-Puisseux diagram for equation (ZI0), which
is impossible. O

We now consider a general first order algebraic difference equation. Pdlya [31]
proved the following classical theorem.

Theorem 7.4. Let f(z) be an entire solution of the first order algebraic differential
equation

(7.21) Qz, f(2), f'(2)) =0,
with polynomial coefficients. Then o(f) > 0.

The proof utilizes the method of contradiction by assuming that if f(z) has order
zero, then the central index v(r, f) satisfies

(7.22) TANLAGE Vi

r—00 r

0

for every positive integer k and (6.3]). Since our (6.6) for the difference operator
resembles (6.3), so Pdlya’s argument applies verbatim to first order difference equa-
tions also with polynomial coefficients (see also [27, Chap. 11]). Thus we obtain

Theorem 7.5. Let f(z) be an entire solution of the first order algebraic difference
equation

Q(z, f(2), Af(2)) =0,
with polynomial coefficients. Then o(f) > 0.



GROWTH OF DIFFERENCE QUOTIENTS 3789

8. CONCLUDING REMARKS

Our method of proof of the main theorems depends heavily on the Poisson-Jensen
formula and is closely related to Nevanlinna theory. However, our results may be
better understood via the following formal approach to the difference quotients and
logarithmic derivatives. Let us denote by E, the operator E, f(z) = f(z +n), and
define D as Df(z) = f'(z). Then we may write Af(z) = (E, — 1)f(z). That is,
A = E, — 1 in the operator sense. Let us suppose in addition that we have the
expansion

2
B f(z) = fle+m)=FE) +uf () + 5 f" )+
= J(2)+nDf(z) + 5D f(2) + -
212 313
- <1+nD+n2I!) +7’31!7 +~~~>f(z)

(8.1) = (e")f(2).

That is, we have formally E, = e (see [28, p. 33]). Substituting A = E, — 1 into
it yields again formally

AF = ("D — 1)k

212 313
D=  n°D k
TR +)

.k
(8:2) =n"DF + % pPIDETL

= (nD—i—

Thus if we ignore the terms after the leading term in the last line in (82]), which
was vigorously justified in our argument in §3, we obtain

Akf _ kf(k)(z)
EANTe)

(8.3) + (small remainders),

which is formally the same as in (L3]).

The basic relations (I4) and (LA give rise to the different growth patterns of
finite order meromorphic functions of order greater than one and of order strictly
less than one respectively. While the relations in both categories deserve more
detailed study, the relation (4] for functions with order exactly one appears to be
the most difficult to handle. But this category of functions includes many important
functions, such as many classical special functions from mathematical physics.

Methods for solving linear difference equations have been investigated by math-
ematicians as far back as the end of the nineteenth century. For example, Milne-
Thomson [28, Chap. XIV] discussed methods for solving linear difference equations
in terms of factorial series via the operators “m” and “p” that would “converge
everywhere, or nowhere or converge in a half-plane in the right”. It appears that
the order estimates for the meromorphic solution of Theorem [Z.1] and those for the
entire solutions to the linear difference equations and first order non-linear differ-
ence equations in Theorem [(.3] and Theorem respectively are new. The topics
deserve further study.
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