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Pentoxifylline reduces the inflammatory process
in diabetic rats: relationship with decreases of
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oxide synthase
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Abstract

Studies suggest that inflammation is a key factor in the pathogenesis of diabetes mellitus. Pro-inflammatory cytokines,
such as IL-6 and TNF-alpha, are produced by adipose tissue in large quantities, in obese and especially in diabetic
individuals. Pentoxifylline (PTX) is a non-selective phosphodiesterase inhibitor with anti-inflammatory and antioxidant
actions that may contribute to alleviate diabetes side effects, as neuropathy, retinopathy and nephropathy. This study
aims to investigate PTX anti-inflammatory effects on the carrageenan-induced paw edema model, in alloxan-induced
diabetic rats. Diabetic animals (male Wistar rats, 200–250 g) were daily treated with PTX (25, 50, 100 mg/kg, p.o.),
glibenclamide (GLI, 5 mg/kg, p.o., as reference) or water, for 5 days. Afterwards, carrageenan-treated paws were
dissected, their skin removed and the tissue used for preparation of homogenates and measurements of IL-6 and
TNF-alpha by Elisa. Serum levels of nitrite were also determined and paw slices used for iNOS immunohistochemistry
assays. We showed that diabetic rats presented an amplification of the inflammatory response, as related to non-diabetic
rats, what was evident 48 h after the edema-induction. The PTX-treatment of diabetic rats reduced glycemia (as related to
untreated-diabetic ones) and the paw edema. It also brought edema volumes to values similar to those of non-diabetic
rats, at the same observation time. The increased TNF-alpha and IL-6 levels in paws of untreated-diabetic rats were
reduced in diabetic animals after PTX treatments. Besides, the increased levels of nitrite in the serum of diabetic rats
were also decreased by PTX. Furthermore, a higher number of iNOS immunostained cells was demonstrated in paw
tissues from untreated-diabetic rats, as related to those of PTX-treated diabetic animals. Our results show that PTX
reduces inflammatory parameters, as pro-inflammatory cytokines and iNOS expression, indicating the potential benefit
of the drug for the treatment of diabetes and related pathologic conditions.
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Introduction
There is increasing evidence that diabetes is associated
with an enhanced inflammatory state and that inflamma-
tory cells contribute to atherosclerotic lesion initiation
and disruption. Furthermore, data support the important
role of inflammation in atherosclerosis associated with
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type 1 and type 2 diabetes and insulin resistance, as well.
Thus, Navarro and Mora, 2005 [1] showed that inflamma-
tion and more specifically pro-inflammatory cytokines
play a determinant role in the development of micro-
vascular diabetic complications. For instance, diabetic
neuropathy develops as the result of hyperglycemia-
induced metabolic, enzymatic and microvascular changes.
Pro-inflammatory cytokines are produced locally by

resident and infiltrating cells, and these molecules ex-
hibit pleiotropic effects on homeostasis of glia and neu-
rons, in the central, peripheral and autonomic nervous
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systems. In addition, changes induced by chronic hyper-
glycemia lead to dysregulation of these cytokines. Ex-
perimental investigations have demonstrated that mRNA
expression for TNF-alpha increases significantly in kid-
neys from diabetic rats, as related to those from normal
animals [1,2]. This cytokine is cytotoxic to glomerular,
mesangial and epithelial cells and may induce significant
renal damage [3].
Furthermore, clinical and experimental studies have

shown that hyperglycemia results in advanced glycation
end-products (AGE) accumulation in tissues from dia-
betic patients, binding to the cellular receptor RAGE.
This AGE/RAGE interaction initiates a signaling cas-
cade, involving an increase of the nuclear transcription
factor (NF-κB). Consequently, an additional increase in
oxidative stress and production of pro-inflammatory cy-
tokines occur [4]. In the beginning, the inflammatory re-
action results in increased levels of TNF-alpha, IL-1beta
and IL-6 that interact with acute phase proteins [5].
With the disease development, the persistence of in-
creased abnormal levels of these proteins leads to a state
of mild chronic inflammation what could be a factor re-
sponsible for the accelerated atherosclerosis of the dia-
betic population [6]. Thus, a subclinical inflammation
precedes diabetes and, for that, pro-inflammatory cyto-
kines play an important role.
Moreover, intervention studies confirm the role of in-

flammation in the pathogenesis of diabetes and vascular
complications, and their association to inflammatory
processes opens new clinical perspectives for diabetes
diagnosis and treatment. Commonly, type 1 and type 2
diabetes are considered inflammation-associated dis-
eases, as there is an increase in pro-inflammatory cyto-
kines in the blood of affected patients [1,7,8]. Diabetic
individuals show elevated plasma concentrations of pro-
inflammatory cytokines and serum amyloid acute phase
protein A [9]. These cytokines and proteins are produced
by adipose tissues, in part originated from leukocytes and
T cells. Such patients show a constant subclinical inflam-
matory state that is directly correlated to chronic compli-
cations of the disease [8,10-12].
In the 90s, a number of lines of research raised the con-

cept that diabetes was associated to the activation of the
immune system and subsequent inflammation. One of
those related obesity to the secretion of pro-inflammatory
cytokines and proteins, as TNF-alpha, IL-6, leptin and
adiponectin. Others indicated that pro-inflammatory cyto-
kines, as IL-6 and TNF-alpha, affected the secretion and
efficiency of insulin [13-17].
Pentoxifylline (PTX) is a nonselective phosphodies-

terase inhibitor and a methylxanthine derivative known
for its anti-inflammatory and immunomodulator effects
[18]. This drug is able to inhibit TNF-alpha production
in macrophage, monocytes and T lymphocytes, in vitro
and in vivo [19-21]. In some studies, the use of PTX is
based on its capacity for inhibiting pro-inflammatory cy-
tokines production, present in diabetes since the begin-
ning of the disease [22]. However, this is not a matter of
consensus, since it was demonstrated [23] that, despite
lowering TNF-alpha levels, PTX did not improve the
vascular function in either conduit or resistance vessels,
in a group of type II diabetic subjects. Others [24] also
observed that PTX did not improve the ocular blood
flow in healthy subjects.
On the other hand, PTX treatments were shown to

confer neurovascular benefits, in experimental diabetic
neuropathy linked, at least partly, to cyclooxygenase-
mediated metabolism [25]. Previously [26], a group of 10
diabetic atherosclerotic patients demonstrated a signifi-
cant increase in exercise tolerance, after PTX treatment,
and 8 of them also presented a significant increase in
arterial blood flow. Others [27] showed that PTX treat-
ment of diabetic patients increased retinal capillary blood
flow velocity. These alterations in blood flow could also
contribute to edema volume and inflammation. Further-
more, increasing evidences [28] show that oxidative stress
is associated with the pathogenesis of several diseases in-
cluding diabetes and others inflammation-related diseases
contributing to the concept that oxidative stress is the
final common pathway by which risk factors exert their
deleterious effects.
In the present study, PTX effects were compared to

those of glibenclamide (GLI), a sulfonylurea largely used
in clinics to T2 diabetes. It is a second generation sulfo-
nylurea that lowers blood glucose by increasing insulin
secretion from pancreatic beta cells. It also has other
extra-pancreatic hypoglycemic actions that are impor-
tant in case of prolonged therapy.
The objectives of the present work were to evaluate

PTX effects on the inflammatory response of diabetic
rats, in the model of alloxan-induced diabetes as related
to that of GLI used as a reference drug, attempting to
related this effect to the reduction of pro-inflammatory
cytokines induced by the drug. Thus, measurements of
IL-6 and TNF-alpha, in paws and sera from untreated-
diabetic or diabetic rats after PTX or GLI treatments
were performed. Furthermore, serum levels of nitrite
and IL-6, as well as, immunohistochemistry assays for
iNOS in diabetic rat paws were also carried out.

Methods
Drugs and reagents
Pentoxifylline (Trental) was purchased from Sanofi-
Aventis Laboratory, São Paulo, Brazil. Glibenclamide was
from EMS S/A Laboratory, São Paulo, Brazil. Alloxan and
carrageenan type IV were from Sigma-Aldrich (Saint
Louis, MO, USA). Cytokine kits were from eBioscience
(San Diego, CA, USA), and BD Bioscience (São Paulo,
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Brazil) for TNF-alpha and IL-6, respectively. All other
drugs and reagents were of analytical grade.

Animals
Male Wistar rats (200–250 g) from the Animal House of
the Faculty of Medicine Estácio of Juazeiro do Norte
were maintained under a 12 h/12 h light/dark cycle and
with food and water ad libitum. Experiments were ap-
proved by the Ethical Committee on Animals Research,
of the Faculty of Medicine of the Federal University of
Ceará, under the number 01⁄2011 and performed accor-
ding to ethical principles established in the Guide for
the Care and Use of Laboratory Animals, USA, 1986.

Carrageenan-induced paw edema in diabetic rats
Carrageenan-induced inflammation in the rat paw is a
classical model of edema formation and hyperalgesia,
largely used in studies of drugs with anti-inflammatory
activity [29]. Diabetes was induced by an alloxan injec-
tion (40 mg/kg) into the penial vein. After 48 h, blood
was collected for glucose measurements and only ani-
mals with glycemia equal or higher than 250 mg/dL
were used. The animals were divided into the following
groups: untreated-diabetic and diabetic treated with
PTX (25, 50, 100 mg/kg, p.o.) or glibenclamide (GLI,
5 mg/kg, p.o., as reference). Whenever needed, a normal
control group (non-diabetic animals) was included for
comparison. Treatments started 48 h after the alloxan
injection and continued for 5 days, when the animals
were subjected to carrageen-induced paw edema, 1 h
after the drug last administration. The edema was in-
duced by the injection of 40 μL 1% carrageenan solution
into the animal’s right hind paw. Measurements of the
paw volume were done by means of a plethysmometer
(Ugo Basile, Italy), immediately prior to the carrageenan
injection (zero time) and at 1, 2, 3, 4 and 48 h after. The
paw edema volume was determined by the difference be-
tween the final and initial volumes.

Cytokine measurements (TNF-alpha and IL-6) in paws and
sera from diabetic rats
After edema measurements, the animals were eutha-
nized and sections from their carrageenan-treated paws
or sera were homogenized in PBS solution and cen-
trifuged (7000 rpm, 5 min). The supernatants were used
for cytokine determinations, following the manufacturers’
instructions. Briefly, 48 μL primary antibody (anti-TNF-
alpha or anti-IL-6 fom DBioscience) were diluted in
12 mL coating buffer solution. Then, the mixture 100 μL
were plated in 96-well plates and, after overnight incuba-
tion at 4°C, the primary antibody was removed by aspi-
ration and the wells washed with PBS/Tween-20 solution.
After washes, the assay diluent 200 μL/well were added
and the mixture left at RT for 1 h. After new washes,
100 μL secondary antibody (48 μL stock solution in
12 mL assay diluent) were added and left standing, at RT
for 1 h. The washes were also carried out 1 h later,
followed by the addition of 100 μL avidin-HRP solution
(prepared as 48 μL avidin-HRP in 12 mL assay diluent).
The mixture was left standing at RT for 30 min, followed
by new washes and the addition of 100 μL substrate solu-
tion. After 15 min, a 10% H2SO4 solution (50 μL) was
added to the mixture, and the readings performed at
450 nm in a microplate reader. The standard curve was
carried out in a microplate reader with initial concen-
trations of 2000 pg/mL for TNF-alpha and 5000 pg/mL
for IL-6.

PTX effects on nitrite contents in diabetic rat serum
Nitrite determinations were carried out in sera from dia-
betic rats, before and after PTX treatments for 5 days
and, for that, the Griess method was used. Briefly, 50 μL
samples (supernatants from blood after centrifugation at
2000 rpm, 10 min) were plated in 96-well plates. The
standard curve was performed with a nitrite solution, at
several different concentrations (prepared from a 100 μM
stock solution). Fifty microliters Griess reagent were
added to the samples and the mixture was incubated for
10 min under light protection. After this time, measure-
ments were carried out in a microplate reader at 540 nm.
The results were expressed as pg/mL.

Immunohistochemistry assays for iNOS in diabetic
rat paws
For these, the streptavidin-biotin-peroxidase method
was used. Five days after PTX treatments of diabetic ani-
mals and 1 h after its last administration, the animals
were euthanized and sections (5 μm) of the carrageenan-
injected hind paw were immersed in 10% formalin for
24 h and inserted into paraffin blocks. The sections were
then deparaffinized, dehydrated in xylol and ethanol,
and immersed in 0.1 M citrate buffer (pH 6) under
microwave heating for 18 min, for antigen recovery.
After cooling at RT for 20 min, the sections were washed
in PBS, followed by a 15 min blockade of the endo-
genous peroxidase with a 3% H2O2 solution. The sections
were incubated overnight at 4°C with rabbit primary anti-
bodies (anti-iNOS, 1:200 dilutions) in PBS-BSA. At the
next day, the sections were washed in PBS and incubated
for 30 min with the secondary biotinylated rabbit antibody
(anti-IgG, 1:200 dilution) in PBS-BSA. After washing in
PBS, the sections were incubated for 30 min with the con-
jugated streptavidin peroxidase complex (ABC Vectastain®
complex, Vector Laboratories, Burlingame, CA, USA).
After another washing with PBS, the sections were stained
with 3,3′diaminobenzidine-peroxide (DAB) chromophore,
counter-stained with Mayer hematoxylin, dehydrated and
mounted in microscope slides for analyses.



Garcia et al. Journal of Inflammation  (2015) 12:33 Page 4 of 10
Statistical analyses
All results are presented as means ± SD. One-way ANOVA
followed by Tukey’s as the post hoc test were used, for
multiple comparisons, and the two-tailed paired Student’s t
test for comparison between two means. To determine if
there is a significant difference between two means with
equal sample sizes, the Tukey’s method uses a formula
which calculates the q value by taking the difference be-
tween two sample means and dividing it by the standard
error where q represents the “Studentized” range value.
The data were considered significant at p < 0.05.

Results
Evaluation of PTX effects on glycemia in alloxan-induced
diabetic rats
These experiments were carried out in untreated-diabetic
rats and diabetic animals treated with PTX (25, 50 and
100 mg/kg, p.o.) or GLI (5 mg/kg, p.o., as reference) for
five days (5 to 15 animals per group). Because of the short
treatment-time, decreases in glycemia ranged from 32
to 67% after PTX treatments and around 59% for the
GLI5 group, as related to each group before treatments
(Figure 1).

Anti-inflammatory effects of PTX on the
carrageenan-induced edema in diabetic rats
Increases of 1.3- and 5.7-fold in edema volumes of
untreated-diabetic rats were observed, at 3 and 48 h
Figure 1 Pentoxifylline (PTX, 25, 50 and 100 mg/kg) significantly
decreases glycemia in diabetic rats, after 5-day treatments. Each pair of
bars represents the same diabetic group 48 h after alloxan-induced
diabetes, without (untreated-diabetic rats) or with 5-day treatments
with PTX or glibenclamide (GLI, 5 mg/kg). The values are means ± SD
from 5 to 15 animals. a. p < 0.0002; b. p < 0.0001; c. p < 0.0313. All vs.
untreated-diabetic rats (paired, two-tailed Student’s t test).
after the carrageenan injection, as related to normal con-
trols (non-diabetic animals). Similar increases in edema
volumes were observed 3 h later in diabetic groups, after
PTX (50 and 100 mg/kg) or GLI (5 mg/kg) treatments,
as related to untreated-diabetic groups at the same
period. However, reductions of edema volumes, ranging
from 50 to 65% were demonstrated in diabetic groups,
after PTX50, PTX100 or GLI5 treatments, as related to
the untreated-diabetic group, 48 h after the carrageenan
administration. The edema volumes in treated-diabetic
groups, at this period, were still higher (1.9- to 2.9-fold)
when related to normal controls. These data suggest, as
expected, a longer edema duration in diabetic rats, as
compared to non-diabetic animals and, although treat-
ments with PTX or GLI change this pattern towards
normality, the edema was not completely dismissed
(Figure 2).

Effects of PTX on TNF-alpha and IL-6 concentrations
in paws and sera from diabetic rats after
carrageenan-induced edema
Experiments were performed with homogenates from
diabetic rat paws or sera, after 5-day treatments with
PTX. The results showed increases of almost 3-fold
in TNF-alpha concentrations in paws from untreated-
diabetic rats (3 animals per group), as related to normal
controls (non-diabetic animals). TNF-alpha values de-
creased in a dose-dependent fashion in paws from diabetic
Figure 2 Pentoxifylline (PTX, 50 and 100 mg/kg) treatments for
5 days significantly decrease edema volumes in diabetic rats, 48 h
after the carrageenan injection. Glibenclamide (GLI, 5 mg/kg) and
normal controls (non-diabetic rats) were included for comparisons.
The values are means ± SD from 8 to 13 animals. a. vs. diabetic 3 h,
q = 9.519; b. vs. diabetic 48 h, q = 11.49; c. vs. diabetic + PTX100,
48 h, q = 5.659; d. vs. diabetic, 48 h, q = 16.47; e. vs. diabetic 48 h,
q = 12.90; f. vs. diabetic 48 h, q = 17.54; g. vs. normal 48 h, q = 6.049
(One-way ANOVA ans Tukey’s as the post hoc test).
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rats, after PTX treatments (49 and 71%, after 50 and
100 mg/kg, respectively), as related to the untreated-
diabetic group. Surprisingly, the decrease in diabetic
groups after GLI treatments was only 15% and the values
were significantly higher (more than 2-fold), as related to
those of normal controls. Although TNF-alpha concentra-
tions were close to normal ones in diabetic rats treated
with PTX, at the dose of 50 mg/kg, the decreases were
even higher than those from normal controls, at the PTX
dose of 100 mg/kg (Figure 3). A 3-fold increase was ob-
served in IL-6 concentrations in untreated-diabetic rat paws,
as related to normal controls. PTX (50 and 100 mg/kg)
treatments of diabetic rats decreased IL-6 concentrations
by more than 90%, as related to the untreated-diabetic
group. A similar result (90% decrease) was seen after
treatment of the diabetic group with GLI5 (Figure 4). Un-
likely GLI that reduced by 67% IL-6 contents in sera from
diabetic rats, changes were observed only after PTX treat-
ments at the higher dose (Figure 5).

PTX effects on nitrite concentrations in diabetic rat sera
Decreases of 51, 57 and 65% were demonstrated in
nitrite concentrations in sera from diabetic rats, after
5-day PTX treatments with the doses of 25, 50 and
100 mg/kg, respectively, as related to untreated-diabetic
rats (4 to 7 animals per group). A lower decrease (37%)
was observed in the diabetic group after GLI5 treat-
ments (Figure 6).

Immunohistochemistry for iNOS in diabetic rat paws
Figure 7 shows representative photomicrographs of
untreated-diabetic rats and diabetic rats treated with PTX
(50 and 100 mg/kg) or glibenclamide (GLI, 5 mg/kg, as
reference), for 5 days. The results presented higher im-
munoreactivity for iNOS in paw slices from untreated-
diabetic rats. The numbers of immunopositive cells were
lower in the diabetic group, mainly after the higher PTX
dose, as measured by the Image J software. The GLI5
Figure 3 Pentoxifylline (PTX, 50 and 100 mg/kg) treatments of diabetic rat
as related to untreated-diabetic animals and to normal controls (non-diabetic
Measurements were done in homogenates and the values are means ± SD fr
normal controls, q = 98.47; c. vs. untreated-diabetic group, q = 332.4; d. vs. nor
normal controls, q = 80.20; g. vs. untreated-diabetic group, q = 314.1 (One-wa
group also presented a lower immunoreactivity, as related
to the same group before treatments (untreated-diabetic
group).

Discussion
Pentoxifylline, a methylxanthine derivative and phospho-
diesterase inhibitor, is primarily used for the treatment of
peripheral arterial insufficiency. Data derived from human
studies and animal models provide a robust scientific basis
for PTX as an antiproteinuric agent. Available evidences
indicate that PTX may decrease proteinuria in patients
with diabetic nephropathy [30]. Furthermore, PTX appears
to have anti-inflammatory properties with demonstrated
efficacy in decreasing serum and urinary TNF-alpha levels,
in patients with diabetic nephropathy [31,32].
In the present work, we studied the effects of pen-

toxifylline (PTX) on the inflammatory response of dia-
betic rats, as evaluated by the carrageenan-induced paw
edema. In this classical model of acute inflammation, the
development of edema is described as a biphasic event
in which various mediators operate in sequence to pro-
duce the inflammatory response [33]. The initial phase
(0–1 h after the carrageenan injection) is attributed to
the release of histamine, 5-hydroxytriptamine and bra-
dykinin. In contrast, the second and accelerating phase
(1–6 h after the carrageenan injection) has been corre-
lated to the production of prostaglandins and attributed
to the induction of COX-2 in the hind paw [34]. Ad-
ditionally, local neutrophil infiltration contributes to the
carrageenan-induced inflammatory response, by produ-
cing oxygen-derived and hydroxyl free radicals [35-38].
Another important mediator, in acute and chronic in-

flammation is nitric oxide (NO). NO is a potent vaso-
dilator and its involvement in the inflammatory response
may be related to the ability to increase vascular perme-
ability and edema, through changes in the local blood
flow [39,40]. Other results [36] suggest that NO is in-
volved in the development of inflammation, at early time
s for 5 days significantly decrease IL-6 levels in rat paws, at both doses,
animals). Glibenclamide (GLI, 5 mg/kg) was included for comparisons.
om groups of three animals each. a. vs. normal controls, q = 233.9; b. vs.
mal controls, q = 92.99; e. vs. untreated-diabetic group, q = 326.9; f. vs.
y ANOVA followed by Tukey’s as the post hoc test).



Figure 5 Pentoxifylline (PTX, 25, 50 and 100 mg/kg) treatments of
diabetic rats for 5 days decrease serum IL-6 concentrations, as
related to untreated-diabetic animals. Glibenclamide (GLI, 5 mg/kg)
was included as reference. a. vs. untreated-diabetic group (control),
q = 4.365; b. vs. Control, q = 5.128; c. vs. PTX25, q = 4.676 (One-way
ANOVA and Tukey’s as the post hoc test).

Figure 6 Pentoxifylline (PTX, 25, 50 and 100 mg/kg) treatments of
diabetic rats for 5 days decrease serum nitrite concentrations, as
related to untreated-diabetic animals. Glibenclamide (GLI, 5 mg/kg)
was included as reference. The values are means ± SD from 4 to 7
animals per group. a. q = 4.749 vs. untreated-diabetic control rats
(One-way ANOVA and Tukey’s as the post hoc test).

Figure 4 Pentoxifylline (PTX, 50 and 100 mg/kg) treatments of
diabetic rats for 5 days significantly decrease TNF-alpha levels in rat
paws, at both doses, as related to untreated-diabetic animals and to
normal controls (non-diabetic rats). Measurements were done in
homogenates and the values are means ± SD from groups of three
animals each. Glibenclamide (GLI, 5 mg/kg) was used as reference.
a. vs. normal controls, q = 26.65; b. vs. normal controls, q = 6.476; c. vs.
untreated-diabetic group, q = 20.18; d. vs. untreated-diabetic group,
q = 29.09; e. vs. normal controls, q = 20.46; f. vs. untreated-diabetic
group, q = 6.194 (One-way ANOVA and Tukey’s as the post hoc test).
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points following carrageenan administration, and that
NO produced by iNOS is involved in the maintainance
of the inflammatory response, at later time points.
Numerous studies have shown that low-grade inflam-

mation is associated with the risk of developing type 2 dia-
betes [1,41,42]. Cytokines, as IL-6 and TNF-alpha, are
elevated in diabetic patients, suggesting that the pattern of
circulating inflammatory cytokines modifies the risk for
diabetes and is correlated with insulin resistance [7,12].
Two cellular processes affected by diabetes are inflam-

mation and apoptosis. In particular, dysregulation of
TNF-alpha and the formation of advanced glycation
products, both of which occur at higher levels in diabetic
humans and animal models, potentiate inflammatory re-
sponses [43]. Although it is accepted that chronic sub-
clinical inflammation is part of the insulin resistance
syndrome [44], the mechanisms by which it evokes dia-
betes are not clear. The adipose tissue can synthesize
and release pro-inflammatory cytokines, as TNF-alpha,
IL-1 and IL-6, and these inflammatory markers are asso-
ciated with body fat mass and involved in multiple
metabolic pathways relevant to insulin resistance [45].
Evidences [46] indicate that hyperglycemia increases cir-
culating IL-6 and TNF-alpha levels, by an oxidative me-
chanism, and this effect is more pronounced in subjects
with impaired glucose tolerance, suggesting a causal role
for hyperglycemia in the immune activation of diabetes.
Furthermore, experimental investigations have demon-

strated that mRNA expression for TNF-alpha is increased
in kidneys from diabetic rats, as compared with kidneys



Figure 7 Representative photomicrographs of immunohistochemistry assays for iNOS (x400) showing that pentoxifylline (PTX, 50 mg/kg) or
glibenclamide (GLI, 5 mg/kg) 5-day treatments decrease the immunoreactivity for iNOS in paws from diabetic rats, as related to those from the
same group before treatments (48 h after diabetes induction). The histograms show the relative optical density (means ± SD) determined from
5–9 fields, by the Image J software. a. vs. the same diabetic group at 48 h, q = 9.106; b. vs. the untreated 5-day diabetic group, q = 5.868; c. vs. the
same diabetic group at 48 h, q = 6.746; d. vs. the untreated 5-day diabetic group, q = 4.842 (One-way ANOVA and Tukey’s as the post hoc test).
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from normal rats. This cytokine is cytotoxic to glomerular,
mesangial and epithelial cells and may induce significant
renal damage [3]. PTX has been shown to inhibit the ac-
cumulation of TNF-alpha mRNA and the transcription of
the TNF-alpha gene, suppressing the production of this
cytokine. This indicates the efficacy of PTX in different
models of renal diseases [47,48].
We showed that the inflammatory response, as evalua-

ted by the acute model of carrageenan-induced edema,
decreases in intensity and duration in diabetic rats, after
PTX treatments. This result is probably related to re-
duced cytokine levels, as TNF-alpha and IL-6, induced
by PTX in the diabetic rat paws, as related to paws from
untreated-diabetic rats. Studies by Gonzalez et al., 2012
[49] suggest that hyperglycemia downregulates CD33 ex-
pression (membrane receptor, expressed by monocytes)
and triggers the spontaneous secretion of TNF-alpha by
peripheral monocytes, involving the generation of ROS
and the upregulation of the suppressor of cytokine sig-
naling protein-3. According to these authors, these data
support the importance of blood glucose control for
innate immune function and suggest the participation
of CD33 in the inflammatory profile associated with
diabetes.
Evidences [50] indicated increases in TNF-alpha and

IL-6 levels, in rat paws subjected to carrageenan-induced
edema, results that are similar to ours. The hypoglycemic
activity of PTX, as observed in the present work, is also
probably involved with the different profile of the inflam-
matory response of PTX-treated diabetic rats, as related to
untreated diabetic rats. Although we observed decreases
in TNF-alpha and IL-6 concentrations in diabetic rat
paws, after PTX treatments, changes in IL-6 in diabetic
rat sera were observed only after GLI or PTX100 treat-
ments, that significantly reduced this cytokine level as re-
lated to untreated diabetic rats.
PTX may exert a number of renoprotective effects, be-

sides its role in attenuating nephropathy, by decreasing
malondialdehyde levels [51] and simultaneously restor-
ing intracellular glutathione and the oxidative injury to
the kidneys. The drug benefits kidneys by stabilizing the
renal function and glomerular filtration rate. Concurrent
decreases in inflammatory markers, such as TNF-alpha,
IL-6 and high-sensitivity C-reactive protein reflect the
attenuation of inflammatory damage to the kidneys [18].
By virtue of its antioxidant properties, PTX also miti-

gates and reduces renal damage in several associated
pathologic conditions [52,53]. Diabetes determines oxida-
tive stress in the liver, characterized by increased concen-
tration of ROS and reduction in antioxidant defenses.
Such oxidative unbalance in liver cells may play a relevant
role in the genesis of diabetic liver disease, as shown re-
cently [54]. PTX may attenuate oxidative stress, by induc-
tion of MnSOD and direct scavenging of free radicals and,
as a consequence, it inhibits the activities of NF-kB and
AP-1 transcription factors [18,55], effects regarded to be
crucial in inhibiting pro-inflammatory cytokines. Further-
more, oxidative stress plays a pivotal role in the deve-
lopment of diabetes complications, and overexpression of
SOD, in transgenic diabetic mice, prevents diabetic retin-
opathy, nephropathy and cardiomyopathy [56].
In the present work, we demonstrated that PTX de-

creased nitrite contents in sera of diabetic rats, as related
to those of untreated-diabetic animals. Accordingly,
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PTX also decreased immunoreactivity for iNOS. This in-
ducible enzyme has been implicated in many human dis-
eases associated with inflammation, and its deficiency
was shown to prevent high fat diet-induced insulin re-
sistance in skeletal muscle, but not in the liver. Earlier
results [57] suggest that iNOS plays a role in hypergly-
cemia and contributes to hepatic insulin resistance in
ob/ob mice. Other reports indicate that insulin can
down-regulate the iNOS pathway in vivo [58]. These re-
sults provide evidence that increased NO in diabetes is
not only a cause, but also an effect of beta-cell destruc-
tion, resulting probably from an immunomodulatory ac-
tivity of insulin. Besides, there is growing evidence that
excess generation of ROS, largely due to hyperglycemia,
causes oxidative stress, which further exacerbates the de-
velopment and progression of diabetes and its complica-
tions [59].
PTX also decreased the inflammatory response, as

evaluated in diabetic rats by the carrageenan-induced
acute model of inflammation. This effect was associated
with decreases in TNF-alpha and IL-6 levels in paws, as
well as by decreases in IL-6 and serum nitrite concentra-
tions. In addition, we also showed that PTX decreases
immunoreactivity for iNOS in paw tissues. We showed
anti-inflammatory and antioxidant effects of PTX that
improved the general conditions of diabetic rats and sig-
nificantly decreased the burden frequently associated
with diabetes.
A recent work [60] demonstrated that GLI, used in the

present work for comparison to PTX, decreased intracel-
lular ROS and mitochondrial activity in macrophages.
Glibenclamide or glyburide, is an antidiabetic second gen-
eration sulfonylurea was shown to present a potent anti-
inflammatory effect, as demonstrated by decreases in pro-
inflammatory cytokines and nitrite in paws and sera from
diabetic rats. Others [61] evidenced the anti-inflammatory
effect of GLI in an ex vivo model of human endotoxinae-
mia. Later [62-64], the anti-inflammatory-related effects of
GLI in several experimental models in vivo were also dem-
onstrated. Interestingly, this anti-inflammatory action was
shared by another sulfonylurea, chlorpropamide, in dia-
betic rats [65].
Previous clinical and experimental studies indicated

that PTX can improve cerebrovascular circulation and
reduce cerebral edema [66]. PTX mechanism of action
includes rheologic effects, as enhanced red cell defor-
mabilitry, alterations in leukocyte activation and mo-
dification of coagulation parameters, among others.
Later, another work [67] showed that PTX exerts an
anti-edematous effect and improves neurological motor
dysfunction, in a focal cerebral ischemia model in rats.
Furthermore, most likely PTX effects in diabetic rat paw
edema is associated, at least partly, with its rheological
properties.
Despite the cause for inflammation in diabetes being
still under investigation, ROS are a primary candidate.
Thus, targeting the cytokine signaling mechanism of
oxidative stress/inflammation processes could improve
therapeutic options for diabetes and its complications
[68]. Interestingly, several of PTX effects as seen in the
present study were shared by GLI, a second generation
antidiabetic sulfonylurea drug. Thus, in this context, by
reducing inflammatory markers and oxidative stress
[69,70], as well as by its other multiple effects, PTX may
be a useful drug in translation studies and clinical trials
for the treatment of diabetes.
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