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Abstract. Taking into account all available data on the mass sector, we ob-
tain unitary rotation matrices that diagonalize the quark matrices by using a
specific parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix. In
this way, we find mass matrices for the up- and down-quark sectors of a specific,
symmetric form, with traces of a democratic texture.

PACS codes: 12.15.Hh

1 Introduction

The Standard Model of particle physics is flawed by the large number of free
parameters, for which there is at present no explanation.

Most of these free parameters reside in flavour space, the structure of which is
determined by the fermion mass matrices, i.e. by the form that the mass matrices
take in the “weak basis” where mixed fermion states interact weakly. This basis
differs from the mass bases, where the mass matrices are diagonal, with entries
corresponding to the masses of the physical fermions.

The information content of a matrix is contained in its matrix invariants, which
in the case of aN×N matrixM are theN sums and products of the eigenvalues
λj , such as traceM , detM ,

I1 =
∑

j
λj = λ1 + λ2 + λ3 + · · ·

I2 =
∑

jk
λjλk = λ1λ2 + λ1λ3 + λ1λ4 + · · ·

I3 =
∑

jkl
λjλkλl = λ1λ2λ3 + λ1λ2λ4 + · · ·

...
IN =λ1λ2 · · ·λN .

(1)

The search for the “right” mass matrices is based on the assumption that even if
the information content of a matrix is contained in its invariants, the form of a
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matrix also carries important information. The hope is that the form of the mass
matrices in the “weak basis” can give some hint about the origin of the fermion
masses.

The crux is that we don’t know which of the flavour space bases is the weak
basis, we consequently don’t know what form of the mass matrices have in this
unknown basis. The different mass matrix ansätze found in the literature corre-
spond to different choices, based on different assumptions, as to which flavour
space basis is the weak basis.

2 Phenomenology

The Standard Model might not be a fundamental theory, but it certainly is an
very successful model. In our approach, we follow the phenomenlogical track,
and scrutinize all available data that are relevant for the mass sector.

In addition to numerical mass values, there is also the mixing matrix V that
appears in the flavour changing charged current Lagrangian

Lcc = − g

2
√

2
f̄Lγ

µV f ′LWµ + h.c. (2)

where as before f and f ′ are fermion fields with charges Q and Q − 1, cor-
respondingly. In the case of the quarks, the mixing matrix is the Cabbibo-
Kobayashi-Maskawa (CKM) [1] mixing matrix.

That V 6= 1 implies that the up-sector mass basis is different from the down-
sector mass basis, the CKM matrix being the bridge between the two mass bases.
As we go from the weak basis to the two different mass bases by rotating the
matrices by the unitary matrices U and U ′, respectively,

M → UMU† = D = diag(mu,mc,mt)

M ′ → U ′M ′U ′† = D′ = diag(md,ms,mb)
(3)
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we have that V = UU
′†. A given choice of the weak basis - i.e. of the mass

matrices, thus corresponds to choosing a factorization of the mixing matrix, and
since U = U(M) and U ′ = U ′(M ′), V = U(M)U ′†(M ′) = V (M,M ′).

The charged current Lagrangian (2) can be interpreted as describing the interac-
tion between the physical up-sector particles ψ̄L = (ū, c̄, t̄)L with the mixed
down-sector states, or equivalently as the interaction between the up-sector
mixed states and the down-sector mass states ψ̄′L = (d̄, s̄, b̄)L.

If we take the definition of the CKM matrix at face value, V = UU ′†, it is
however more natural to perceive the charged current interactions as taking place
between mixed up-sector states and mixed down-sector states,

Lcc = − g√
2
ψ̄Lγ

µV ψ′LWµ + h.c. = − g√
2
ϕ̄Lγ

µϕ′LWµ + h.c. (4)

where

ϕ = U†

uc
t

 and ϕ′ = U ′†

ds
b


are the fermion fields in the weak basis in flavour space, and ψ and ψ′ are the
corresponding mass eigenstates.

Mass eigenstates are defined as “physical”, corresponding to particles with defi-
nite masses; while the weakly interacting mixings of mass states are referred to
as “flavour states”. Physical particles are thus identified as mass eigenstates. In
the case of neutrinos the situation is however somewhat different, since neutrino
mass eigenstates do not appear on stage, they merely propagate in free space.
In the realm of neutral leptons it is actually the flavour states νe, νµ, ντ that we
perceive as “physical”, since they are the only neutrinos that we “see”, as they
appear together with the charged leptons. As the charged leptons e, µ, τ are
assumed to be both weak eigenstates and mass eigenstates, the only mixing ma-
trix that appears in the lepton sector is the Pontecorvo-Maki-Nakagawa-Sakata
mixing matrix U [2], which only operates on neutrino states,νeνµ

ντ

 =

Ue1 Ue2 Ue3Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

ν1ν2
ν3

 ,

where (ν1, ν2, ν3) are mass eigenstates, and (νe, νµ, ντ ) are the weakly interact-
ing “flavour states”. In the lepton sector, the charged currents are thus interpreted
as charged lepton flavours (e, µ, τ) interacting with the neutrino “flavour states”
(νe, νµ, ντ ).

For quarks as well as leptons, the relation between the weakly interacting
fermion fields ϕ and the mass eigenstates ψ is determined by the unitary ro-
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tation matrix U which diagonalizes the mass matrix M ,

Lmass = ϕ̄Mϕ = ϕ̄U†(UMU†)Uϕ = ψ̄

m1

m2

m3

ψ,

in the quark sector the (physical) mass eigenstates thus are the fields ψ = Uϕ
and ψ′ = U ′ϕ′,

ψ =

uc
t

 and ψ′ =

ds
b

 .

The CKM matrix plays an important role in relating the mass matrices for the
up- and down-sectors, since once the form of the mass matrix of one of the
charge sectors is established, also the form of the mass matrix of the other charge
sector is determined, via the CKM mixing matrix. Once the form of the up-
sector mass matrix M is established,the unitary matrix U that diagonalizes M
is determined. And since V = UU ′†, this also determines U ′ = V †U , whereby
we have M ′ = U ′†diag(d, s, b)U ′. In this sense M and M ′ are determined
together.

3 Factorizing the Mixing Matrix

The Cabbibo-Kobayashi-Maskawa mixing matrix can of course be parametrized
and factorized in many different ways, and different factorizations correspond to
different rotation matrices U and U ′. The most obvious and “symmetric” factor-
ization of the CKM mixing matrix, following the “standard parametrization” [3]
with three Euler angles α, β, 2θ,

V =

 cβc2θ sβc2θ s2θe
−iδ

−cβsαs2θeiδ − sβcα −sβsαs2θeiδ + cβcα sαc2θ
−cβcαs2θeiδ + sβsα −sβcαs2θeiδ − cβsα cαc2θ

 = UU
′† (5)

is to take the diagonalizing rotation matrices for the up- and down-sectors as

U =

1 0 0
0 cosα sinα
0 − sinα cosα

e−iγ 1
eiγ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


=

 cθe
−iγ 0 sθe

−iγ

−sαsθeiγ cα sαcθe
iγ

−cαsθeiγ −sα cαcθeiγ

 (6)
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and

U ′ =

cosβ − sinβ 0
sinβ cosβ 0

0 0 1

e−iγ 1
eiγ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


=

cβcθe−iγ −sβ −cβsθe−iγsβcθe
−iγ cβ −sβsθe−iγ

sθe
iγ 0 cθe

iγ

 (7)

respectively, where α, β, θ and γ correspond to the parameters in the standard
parametrization, with γ = δ/2, δ = 1.2 ± 0.08 rad, and 2θ = 0.201 ± 0.011◦,
while α = 2.38 ± 0.06◦ and β = 13.04 ± 0.05◦. In this factorization scheme,
α and β are rotation angles operating in the up-sector and the down-sector, re-
spectively.

Now, with the rotation matrices U and U ′, we obtain the the up- and down-sector
mass matrices

M = U†diag(mu,mc,mt)U and M′ = U′†diag(md,ms,mb)U′,

such that

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 =

 Xc2θ + Y s2θ −Zsθ e−iγ (X − Y )cθsθ
−Zsθ eiγ Y + 2Z cot 2α Zcθ e

iγ

(X − Y )cθsθ Zcθ e
−iγ Xs2θ + Y c2θ

 ,

(8)
where X = mu, Z = (mc − mt) sinα cosα and Y = mt + Z tanα =
mc sin2 α+mt cos2 α, and

M ′=

M ′11 M ′12 M ′13M ′21 M
′
22 M

′
23

M ′31 M
′
32 M

′
33

=

 X ′s2θ + Y ′c2θ Z ′cθ e
iγ (X ′ − Y ′)cθsθ

Z ′cθ e
−iγ Y ′ + 2Z ′ cot 2β −Z ′sθ e−iγ

(X ′ − Y ′)cθsθ −Z ′sθ eiγ X ′c2θ + Y ′s2θ

 ,

(9)
where X ′ = mb, Z ′ = (ms − md) sinβ cosβ and Y ′ = md + Z ′ tanβ =
md cos2 β +ms sin2 β.

The two mass matrices thus have similar textures, or forms, and there is even a
relational equality,

M32/M12 = M ′12/M
′
32 = − cot θ ,

which is independent of the quark masses.

From Y = mc sin2 α + mt cos2 α, Z = (mc − mt) sinα cosα, Y ′ =
md cos2 β + ms sin2 β and Z ′ = (ms − md) sinβ cosβ, we moreover have

mu = X, mc = Y + Z cotα, mt = Y − Z tanα

md = Y ′ − Z ′ tanβ, ms = Y ′ + Z ′ cotβ, mb = X ′
(10)
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4 Numerical Matrices

Using the numerical values β = 13.04◦, α = 2.38◦, δ = 1.2 ± 0.08 rad,
and 2θ = 0.201 ± 0.011◦ for the the angles, and using the mass values (Jamin
2014) [4] for the up- and down-sectors,

mu(MZ) = 1.24 MeV mc(MZ) = 624 MeV
mt(MZ) = 171550 MeV md(MZ) = 2.69 MeV
ms(MZ) = 53.8 MeV mb(MZ) = 2850 MeV

(11)

we get the numerical values for the mass matrices (8) and (9)

M =

 1.767 12.439e−iγ −300.389
12.439eiγ 918.759 −7091.892eiγ

−300.389 −7091.892e−iγ 171254.714

 MeV (12)

and

M ′ =

 5.299 11.23eiγ 4.99
11.23e−iγ 51.18 −0.0197e−iγ

4.99 −0.0197eiγ 2849.99,

 MeV (13)

where in M ,

M11 = mu + σ, M22 = mc +Q− σ, M33 = mt −Q,
M22 +M33 = mc +mt − σ and |M33M12| ≈ |M13M32|,

with σ ' 0.53 MeV, Q ' 295.3 MeV.

Likewise, in M ′,

M ′11 = md +R, M ′22 = ms + η −R, M ′33 = mb − η,
M ′11 +M ′22 = md +ms + η, and |M ′33M ′32| ≈ |M ′13M ′12|,

with R ' 2.61 MeV, η ' 0.011 MeV.

5 Traces of a Democratic Structure

Our factorization of the Cabbibo-Kobayashi-Maskawa mixing matrix is only one
of many possible choices, in (5) we can moreover sandwich any number of uni-
tary matrices between U and U ′,

V = UU
′† = UO1O

†
1U

′† = UO1O2O
†
2O
†
1U

′† = ...

where Oj are unitary matrices such that each set of sandwiched OjO
†
j corre-

sponds to a new set of unitary matrices diagonalizing the mass matrices, and
thus to yet another type of mass matrix texture.
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In our first approach [9], the sandwich principle was used with the purpose of
investigating democratic mass matrix textures. In the democratic scenario, it is
assumed that both the up- and down-sector mass matrices have an initial struc-
ture of the type M0 = kN and M ′0 = k′N where

N =

1 1 1
1 1 1
1 1 1

 ,

with the mass spectra (0, 0, 3k), (0, 0, 3k′), and a mixing matrix equal to unity
(i.e. no CP-violation). The flavour symmetry displayed by the matrices M0

and M ′0 is subsequently broken, whereby both mass spectra contain the three
observed non-zero values, and the mixing matrix becomes the CKM matrix (with
a CP-violating phase).

Our sandwiching procedure started from the factorization V = UU ′†, with U
and U ′ as in (6) and (7), and the matrix

Udem =
1√
6

√3 −
√

3 0
1 1 −2√
2
√

2
√

2

 (14)

which diagonalizes the democratic matrix N. When Udem and its Hermitian
conjugate are put into the mixing matrix,

V = UU ′† ⇒ V = UUdemU
†
demU

′†

we obtain new rotation matrices UUdem and U ′Udem which indeed correspond
to mass matrices with democratic textures.

In simplest case (5), without any UdemU
†
dem or other matrices sandwiched be-

tween U and U ′ in V = UU ′†, there is however already some interesting,
democracy-like structure present, which is can be made visible by a slight re-
formulation of the matrices (8) and (9). Even though the matrix elements are
dominated by the hierarchical family structure, which does not look very “demo-
cratic”, rewriting the matrices by extracting the dimensional coefficients ρ and
µ unveils this structure:

M = ρ

 A Be−iγ −C
Beiγ H −BCeiγ
−C −BCe−iγ C2

 (15)

and

M ′ = µ

 A′ B′Ceiγ C
B′Ce−iγ H ′ −B′e−iγ

C −B′eiγ C2

 , (16)

99



Astri Kleppe

with

ρ = (Y −X)s2θ, A = (X cot2θ +Y )/(Y −X), B = Z/(Y −X)sθ,

H = (Y + 2Z cot 2α)/(Y −X)s2θ, C = cot θ

µ = (X ′ − Y ′)s2θ, A′ = (X ′ + Y ′ cot2θ)/(X
′ − Y ′), B′ = Z ′/(X ′ − Y ′)sθ

H ′ = (Y ′ + 2Z ′ cot 2β)/(X ′ − Y ′)s2θ

Numerically, with the mass values (11), this corresponds to

ρ = 0.5269 MeV, A = 3.3533, B = 23.608,

H = 1743.71, C = cot θ ' 570.1

µ = 0.00875 MeV, A′ = 605.6, B′ = 2.2514, H ′ = 5849.14,

where incidentally H ′ = AH . The up-sector mass matrix (15) can be rewritten
as as

M = ρ

1
Beiγ

−C

1 1 1
1 1 1
1 1 1

1
Be−iγ

−C

 + Λ

 = ρ
[
M̂ + Λ

]
,

(17)
where

Λ =

A− 1
H −B2

0

 . (18)

Noticing that the matrix

M̂ =

1
Beiγ

−C

1 1 1
1 1 1
1 1 1

1
Be−iγ

−C

 = DND∗ (19)

has only one non-zero eigenvalue, and that

N = D∗ M̂ D,

we can relate M̂ to the democratic matrix M0 = kN, by equating the one
non-zero eigenvalue of M̂ , 1 + B2 + C2 = trace(DD∗), to the one non-zero
eigenvalue 3k of the democratic matrix M0, which gives

3k = ρ(1 +B2 + C2),

i.e. k = 57181.4 MeV. Thus identifying the matrix M̂ as having a kind of
democratic texture, we determine the matrix Λ as the symmetry breaking term
which finally gives the mass spectrum with the three observed non-zero masses.
If we in this way interpret the mass matrix

M = ρ[DND∗ + Λ]
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as starting out as a democratic matrix M0 = kN, the first flavour symmetry
breaking is identified as

M0 ⇒ M̂ = DND∗

where M̂ has the same, one non-zero eigenvalue as M0, 3k = ρ(1 +B2 +C2),
but the flavour symmetry of the fields (ϕ1, ϕ2, ϕ3) in the weak basis is broken.
By adding Λ, with the two non-zero eigenvalues Λ1 and Λ2, we finally get the
full mass spectrum of M .

The down-sector can be treated in a similar fashion, though here the traces of
democracy are less transparent.

6 Conclusion

Without introducing any new assumptions, by just factorizing the “standard
parametrization” of the CKM weak mixing matrix in a specific way, we ob-
tain mass matrices with a specific type of democratic texture. This is a work
in progress, and the implications of this democratic structure remain to be ana-
lyzed.
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