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Abstract

Today, we witness a merger between Web ser-
vices and grid technology towards an open
grid service infrastructure that especially sat-
isfies the demands of complex computations
on huge volumes of data. Such applications
are specified as combinations of services and
are executed as workflow processes. While
transactional support was neglected for (busi-
ness) workflows, in the grid domain we observe
not only a more general usage of workflow
technology but also a stronger awareness of
transactional guarantees. The rigid database
notions of atomicity and isolation are how-
ever not suited for composite services in grid
applications because of their complexity and
duration. Beyond, the level of abstraction in
the grid is far above database pages such that
two-phase commit combined with two-phase
locking as the state-of-the-art for distributed
transactions is not adequate. Rather, com-
pensation of services, restarting services, and
invoking alternative services are needed. In
this context many questions are open. How
does the infrastructure detect and handle con-
flicts? What happens if a service is unavail-
able? Can we locally decide whether a dis-
tributed execution of transactions is globally
correct? In this paper, we tackle some of
these questions and sketch an approach to en-
suring globally correct executions of transac-
tional processes without a global coordinator.

∗Papers on “Transactions” are no longer desired in our main-
stream conferences. Nevertheless, we are convinced that much
work is still needed and useful, especially with respect to newer
computing paradigms.
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1 Introduction

Motivated by many e-science and e-business applica-
tions that operate on massive amounts of data and run
very complex computations anytime and anywhere,
many new distributed computing paradigms have been
emerged in the recent years with the goal to provide a
common infrastructure with nearly unlimited storage
and computational capabilities. These main trends are
“Web Services”, “Grid Infrastructures”, and “Peer-to-
Peer Computing”.

Web services provide a set of standard technologies,
such as WSDL (Web Service Description Language)
[35], UDDI (Uniform Description Discovery and Inte-
gration) [2], and SOAP (Simple Object Access Proto-
col) [27], to describe, discover, and invoke any kind of
services in a networked environment. The platform-
independent definitions of these technologies simplify
the composition of services to offer new value-added
services [24]. The service-oriented architecture allows
services to be integrated into an overall architecture
as a service with a well-defined interface contract.
BPEL4WS (Business Process Execution Language for
Web Services) [5] is used to specify such compound
services. Workflow management systems like IBM’s
MQSeries [20] support the integration of Web service
calls into workflow processes. Since these systems fol-
low a centralized architecture consisting of dedicated
workflow engine(s), their scalability is limited. Mod-
ern process management systems like IBM’s Process
Choreographer [30] still rely on a central database for
process instances.

Grid systems, such as the Globus Toolkit [14], pro-
vide a wide support for effective resource management
and load balancing. Essentially, these systems main-
tain the available resources of a grid and assign tasks to
the least loaded peers. In addition, it is even possible
to install new services on the grid in case a bottleneck
is detected. However, these systems lack a sophisti-
cated support for combining several service calls into
processes. This is because they act more like a UDDI
repository focusing on optimal routing of service re-
quests.



Peer-to-peer systems like Gnutella [15] support a
higher degree of autonomy and control over the ser-
vices the peers utilize. Each participating peer acts
both as a client and as a server depending on the se-
mantics of the application. Each peer can initiate re-
quests and can respond to requests from other peers in
the network. The ability to directly communicate with
other peers avoids central servers, and thus provides
the basis for optimal scalability.

Today, we witness the merger of these technolo-
gies towards an open grid services infrastructure/-
architecture (OGSI/OGSA) [11], which allows for dy-
namically sharing and amplifying any kind of com-
puting resources. Many efforts are underway in the
Global Grid Forum (GGF) [13] to document “best
practices”, implementation guidelines and standards
for these technologies, which are subsumed under la-
bel “The Grid” [10]. Moreover with the merger, we
observe a shift towards a more general and especially
commercial usage of the grid to build highly-scalable
virtual organizations [12].1 A number of international
projects have been initiated in this direction. EGEE
(Enabling Grids for E-science in Europe) [8], for exam-
ple, is a large ongoing European project with the goal
to develop a new grid infrastructure for “all” applica-
tions, from digital libraries to e-health and e-science.
Other examples are US GRIDS Center [29], UK Grid
Support Centre [28], D-Grid (German Initiative) [7],
NAREGI (Japanese Initiative) [21], to name just a few.

With the more general and particularly commercial
usage of the grid, a lot of questions arise. In this paper,
we focus on the aspect of correct concurrent execution
of grid applications:

• How do transactions fit into grid environments?

• How does the grid infrastructure decide what to
do if dependencies to other concurrent transac-
tions exist?

• What information will lead to a decision for a
compensation of a previously executed service and
what is the right compensation?

• Does partial rollback make sense?

• Can we locally decide whether a distributed exe-
cution of transactional workflows is globally cor-
rect?

• What happens if a service or more generally a peer
that provides services is unavailable?

In this paper, we provide answers to some of these
questions. Specifically, we present protocols for con-
current transactional processes that ensure globally

1“Grids Deployed in the Enterprise” is the title of the twelfth
GGF, which was held in Brussels, Belgium during 20-23 Sep-
tember 2004. This title emphasizes the mentioned shift towards
commercializing the grid.

correct executions without involving a global coordi-
nator. A key assumption in these protocols is that
they sit on top of database transactions. We do not
touch database transactions but rather use them as
basic service. We try to exploit the service semantics
and in this aspect we keep our tradition and follow the
directions of nested and composite transactions [33, 1].
We also adapt old ideas from serialization graph test-
ing and distributed deadlock detection [22] to the new
environment.

The considerations presented in this paper belong to
the hyperdatabase2 project and concentrate on decen-
tralized concurrency control. The main idea of our ap-
proach is that dependencies between transactions are
managed by the transactions themselves. A core as-
pect is that globally correct executions can be achieved
even in case of incomplete knowledge by communica-
tion among dependent transactions and the peers they
have accessed. The proposed protocol relies on a de-
centralized serialization graph, where each peer and
each transaction maintain a local serialization graph.
While the serialization graph of a peer reflects the de-
pendencies among the transactions that invoked ser-
vices on that peer, the serialization graph of a trans-
action includes the dependencies in which the transac-
tion is involved.

The rest of the paper is organized as follows: Sec-
tion 2 discusses the notion of a transaction within the
grid context. Section 3 sketches our decentralized ap-
proach to concurrency control and recovery in grid sys-
tems and discusses its basic assumptions and limita-
tions. Section 4 concludes the paper with an outlook
on open research problems.

2 Towards Grid Transactions

Database systems ensure correct executions of applica-
tions under concurrency and failures situations using
the concept of a transaction. A transaction consists
of a sequence of operations working on database ob-
jects like tables. Traditionally, a database transaction
is associated with the ACID properties [16] which pro-
vide a set of well-understood and established execution
guarantees. The acronym ACID stands for atomicity,
consistency, isolation, and durability. Atomicity re-
quires that all or none of operations of a transaction
are executed. Consistency states that the execution
of a transaction leads from consistent to another con-
sistent database state. Isolation demands that con-
current transactions execute as if they were executed

2The concept of a hyperdatabase combines the best concepts
of the three distributing computing directions, i.e., Web ser-
vices, grid computing and peer-to-peer networks, to provide a
highly-scalable and efficient infrastructure that especially sup-
ports transactional guarantees at the level of processes. For
more details about the vision of hyperdatabases and some spe-
cial issues like peer-to-peer execution of processes, we refer to
[23, 26].



in isolation. Durability requests that the effect of the
execution of a transaction persists.

These ACID requirements however seem to be un-
necessarily rigid for grid environments. Grid transac-
tions differ from traditional database transactions in
the following ways:

• Grid transactions are composed of service calls.
As depicted in Figure 1, these service calls can be
executed by different peers of the grid. In con-
trast to the operations of database transactions,
services provide a much higher-level of abstrac-
tion such that their semantics can be exploited,
for instance, to increase the degree of parallelism
by performing semantic concurrency control [31].
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Figure 1: Transaction over the Grid

• A large number of grid transactions consist of
operations that represent long-running complex
computations on huge data volumes. Hence, ac-
cording to the atomicity criterion, a failure in
the computation would lead to the rollback and
restart of many computation steps. Here, a more
flexible way of recovery is needed which avoids
such complete rollbacks.

The health sector in all western societies faces the
problem of exploding costs. One approach is to reduce
costs by automatic business processes. Since there is
no single, uniform information system in the health
sector, process technology only becomes beneficial if
processes are supported which span over activities pro-
vided by different peers. In reality, processes consist
of computationally expensive activities like computer-
aided diagnosis, large-scale knowledge discovery, and
biological simulation. Besides, processes might include
long-running activities like patient-customized analy-
sis or accurate therapy planning. All these activities
are often combined with rather short activities like
payments of doctor or health insurance bills. Using

process technology in the health sector requires that
the underlying data is neither corrupted nor incon-
sistent. Otherwise, life and health of patients is in
danger. Thus, transactional execution guarantees are
required.

Another example for the application of transactions
in the grid environment is the parallelization of numer-
ical algorithms under multi-level transaction control.
As shown in [9], some algorithms allow a higher degree
of parallelism.

State-of-the-art process management systems like
IBM Websphere Process Choreographer [30] provide
transactional guarantees with an important restriction
based on the type of the processes:

• Short-running processes are realized by distrib-
uted database transactions.

• Long-running processes run as a set of decoupled
local transactions.

While the atomicity of short-running processes is
enforced by blocking protocols like the two-phase-
commit (2PC) protocol, the atomicity of long-running
processes is guaranteed by executing compensating
transactions. In case a step of a short-running process
fails, the WebSphere Application Server rolls back the
entire distributed transaction. In case of long-running
processes, a failure of a step is handled by semanti-
cally undoing the previously committed steps of that
process. In this case, the WebSphere Process Chore-
ographer runs compensation transactions on the cor-
responding databases.

In case of short-running processes, isolation is im-
plicitly handled by mapping the processes onto dis-
tributed database transactions. These distributed
transactions are processed by the underlying J2EE
infrastructure of the WebSphere Application Server.
The isolation of concurrent long-running processes,
however, is not supported by the WebSphere Process
Choreographer since the distributed locking protocol
of the underlying infrastructure would block the sys-
tem for a significantly long period. Therefore, the task
of ensuring isolation is left to the application level, and
thus it is not supported.

The durability of a process execution is achieved by
using persistent queues and storage. Consistency relies
on the correct specification of the processes. This can
be supported by verification of the correctness of the
process at deployment time.

During transaction processing every pessimistic
protocol intercepts the execution of a transaction in
order to perform a global checking. In case of a locking
protocol, such as the two-phase locking (2PL) proto-
col, the underlying infrastructure requests a lock for a
transaction and waits until it has received the lock. In
a loosely-coupled environment like in the grid domain,
such a global checking will force a synchronous com-
munication between the corresponding peer and the



other peers or a central component, respectively. The
application of a pessimistic locking protocol is there-
fore much more expensive than using an optimistic
variant of the serialization graph testing protocol. The
latter performs the global (cycle) checking at the end
of each transaction. Clearly, this checking procedure
has a linear run-time complexity. Albeit this is too ex-
pensive in traditional database settings, in the context
of long-running processes in grid networks, the cycle
checking is no longer expensive compared to the oper-
ation execution cost. Interestingly, previous research
has not seen this fact. Serialization graph testing has
been used only in theory to demonstrate serializability
theory. Moreover, note that a synchronous checking
has to be performed only once per transaction. Using
incremental conflict replication, necessary graph data
will be available at commit time. In this way, typically
no further synchronization will be needed at commit
time.

3 Decentralized Concurrency Control
and Recovery for Grid Transactions

Before we present our proposal for a completely dis-
tributed, peer-to-peer style processing of transactions
over the grid, we first summarize the basic assumptions
of our simple grid system model and briefly introduce
our transaction model.

3.1 The Grid System Model

We start our considerations with the following basic
grid system model, which provides a general distrib-
uted computing environment:

• The grid consists of peers that are able to directly
communicate with (all) other peers of the grid.

• As depicted in Figure 2, which zooms into a single
peer, each peer provides a set of services. These
services can be invoked using the service interface
of the corresponding peer. These services are ex-
ecuted as local database transactions.

• To ease the discussion, we assume that the peers
are independent in the sense that conflicts can
only appear among service invocations on the
same peer. In particular, services are not repli-
cated on different peers. We later discuss in Sub-
section 3.6 how to overcome these restrictions.

• When a new service is registered at a peer, con-
flicts to other services at this peer must be stated
in this registration step. As in semantic concur-
rency control [31], conflicts are defined based on
the semantics of the services. Usually, these con-
flicts are stored in a service-level conflict matrix.
As a refinement, as done in the notions of back-
ward and forward commutativity [31], the defini-
tion of a conflict may also take the arguments and

return values of service invocations as well as the
current state of the underlying data(base) values
into account.

• A grid transaction is a multi-level transaction, as
already sketched in Figure 1. The leaves of a grid
transaction correspond to invocations of basic ser-
vices. Thus, a grid transaction can be seen as a
compound service with transactional guarantees.

To perform semantic concurrency control and recovery
for grid transactions, compensation of services must
be defined beside the definition of conflicts between
services. In addition, conflicts must be detected and
solved to ensure serializable executions. And finally,
in case of necessary rollbacks compensation must be
initiated to ensure semantic atomicity.
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Figure 2: Basic Grid System Model

The question is how to include these extensions into
the grid system model sketched above. A straight-
forward — but not convincing — approach would be
to introduce dedicated peers with special grid services.
One dedicated peer could act as a central coordina-
tor which performs concurrency control and recovery
based on complete global knowledge, for instance, in
form of a global lock table or a global serialization
graph. Each peer would contact this coordinator for
each service invocation. Using its complete knowledge
about global conflicts, the coordinator would deter-
mine whether the execution of this service invocation
would cause a non-serializable schedule.

In large-scale grids with thousands of peers, the cen-
tral coordinator will become very soon the bottleneck
of the system. Moreover, it will be a single point of
failure. Therefore, this approach is not suited for grid
systems. In Subsection 3.3, we sketch a more promis-
ing and innovative approach which completely distrib-
utes the task of global coordination in a peer-to-peer
style over the grid.



3.2 Grid Transactions as Transactional
Processes

We use transactional processes [25] to execute trans-
actions over the grid. The model of transactional
processes generalizes traditional database transactions
especially with respect to the demand for more flex-
ibility and a higher level of abstraction. A transac-
tional process comprises a set of service invocations
which are executed in a specified order. Every trans-
actional process can be used in a more complex trans-
actional process as a single service invocation. In this
sense, every transactional process represents a com-
pound service. Besides sequential execution of ser-
vice invocation, transactional processes allow paral-
lel execution and alternative execution paths. Based
on the structural constraints of the model of transac-
tional processes, every transactional process is guar-
anteed to terminate in the well-defined final state. In
other words, there is always an execution path that
eventually terminates. In the remainder of this paper,
we will use the term “transaction” as short-hand for
“transactional processes”.

The notion of a schedule is fundamental for defin-
ing a correctness criterion for concurrent executions of
transactions. A schedule reflects the temporal order in
which the services of the transactions were executed.
It also specifies the order of all conflicting services that
appear in it.

Usually, correctness is defined based on the notion
of serializability [3]. A schedule is serializable (correct)
if and only if there is a serial execution of same trans-
actions in which the same conflicts occur. Since serial
executions of transactions are correct per definition,
serializable schedules are correct, too. In theory, seri-
alizability of a schedule is checked using a serialization
graph. The nodes of the graph correspond to trans-
actions of the schedule, while the edges correspond to
conflicts between these transactions. A schedule is se-
rializable if and only if its serialization graph is acyclic
[3]. Multi-level serializability [32] provides us a cor-
rectness criterion for semantic concurrent control over
composite transactions.

3.3 Ensuring Global Serializability without a
Global Coordinator

In the following, we present an approach that enforces
globally serializable schedules in a completely distrib-
uted way without relying on a central coordinator that
has complete global knowledge. The proposed ap-
proach treats all peers of the grid in a uniform way,
i.e., it does not assume any dedicated peers.

The first question we have to answer is how to pro-
duce globally serializable schedules without complete
global knowledge. For this, consider the following fun-
damental commit rule: A transaction is not allowed to
commit if it is dependent on another active transac-
tion. A global coordinator who knows about all trans-

actions in the system would be able to delay or reject
the commit request of a transaction if this transaction
depends on another active one.

However, we can enforce the commit rule in a com-
pletely decentralized way if all the transactions in the
system can decide on their own whether or not they are
allowed to commit [18]. For this decision, the trans-
actions do not require full global knowledge about all
conflicts in the system. Rather, it is sufficient that
at commit time the corresponding transaction knows
about all conflicts it is involved in. If the transaction
depends on any other transaction, it has to delay its
commit until all these transactions have committed.

The next question is how can a transaction get all
the necessary information. For this, a transaction
must collaborate with peers and other transactions.
At service invocation time, a peer determines the lo-
cal conflicts using its local log and returns the infor-
mation about conflicts to the transaction together with
the result of the service invocation. In this way, each
transaction knows exactly about the transactions it
depends on.

Before we present the protocol, we summarize the
necessary extensions of the basic grid system model we
have introduced before:

• Since we assume that conflicts cannot occur be-
tween services of different peers, the conflict in-
formation can be partitioned over the peers. Each
peer maintains a conflict matrix indicating which
service invocations cause conflicts. Conflicts are
defined by the peer (service provider) based on the
semantics and invocation parameters of the ser-
vices. Using its conflict matrix, each peer is able
to autonomously detect conflicts between service
invocations of different transactions.

• Each peer provides a compensation service for
each of its services to perform compensation of
local service invocations. The operations of the
compensation services strongly depend on the se-
mantics of the original service. The compensation
might also be a “do nothing” service.

• Each peer contains a local log where it stores in-
formation about the invocation of local services.
Using this information, a peer can derive conflicts
between transactions that have invoked services
on this peer.

• Each transaction manages its own serialization
graph which comprises the conflicts in which the
transaction is involved in. Essentially, the graph
contains at least all conflicts that cause the trans-
action to be dependent on other transactions.
This partial knowledge is sufficient for a trans-
action to be able to decide whether it is allowed
to commit.



• Each peer provides a transaction execution envi-
ronment which allows for invoking services within
grid transactions on any peer of the grid.

Figure 3 illustrates the constitutes of a grid peer, which
we have explained above.
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Figure 3: Constitutes of a Grid Peer

Since the envisioned protocol requires collaboration
among transactions and peers, it consists of two parts:
One part is running on each peer, the other part for
each transaction. The peer part of the protocol per-
forms the following:

1. In case of a service invocation, the peer logs the
service invocation, executes the service, and de-
termines all conflicts (if any) using the local log
and the local conflict matrix. Finally, it sends
back the result of the service invocation to the in-
voking transaction together with a complete list of
conflicts that have occurred. This list of conflicts
contains all service invocations of other transac-
tions at this peer that are in conflict with the
current invocation.

2. In case of a commit message from a transaction,
the peer provides a list with all transactions that
are dependent on this committing transaction.
This information is needed to inform the depen-
dent transactions about the commit of this trans-
action. The dependent transactions might already
wait for the commit of this committing transac-
tion in order to commit themselves.

The part of the protocol that runs for each transaction
consists of three phases:

1. Service execution phase: Following its specifica-
tion, the transaction invokes services on certain
peers in an optimistic manner without request-
ing any locks. As described in the peer proto-
col above, the corresponding peers execute the re-
quested service invocations, detect conflicts, and

return them back to the transaction with the re-
sults of the service invocations.

2. Validation phase: As soon as the transaction has
executed all of its specified services, it validates
whether or not it is allowed to commit by check-
ing its local serialization graph. If there is no
incoming edge to the corresponding node, i.e., if
the transaction does not depend on any other ac-
tive transaction, then it enters the commit phase.
Otherwise, it waits until the corresponding active
transaction have committed, i.e., the correspond-
ing edges have disappeared from the local serial-
ization graph.

3. Commit phase: The transaction commits and in-
forms the peers on which it has invoked services
about its commit. According to the peer protocol,
the peers determine the conflicts with all transac-
tions that depend on this committing transaction
and send the information back to the committing
transaction. The latter inserts these conflicts into
its local serialization graph and informs the de-
pendent transactions about its commit. This is
necessary because these transactions might wait
for this commit in order to safely commit as well
subsequently. The deletion of nodes and edges
from the local serialization graphs in case of a
commit of another transaction is handled by an
independent thread of the protocol which is trig-
gered by an incoming commit message from a
committing transaction.

To sum up, transactions invoke services without de-
termining on the spot the corresponding effects on the
serialization graph. Nevertheless, at least prior to the
commit, a validation is performed that checks whether
the transaction has been executed correctly and is
therefore allowed to commit. This is closely related
to well-established optimistic concurrency control pro-
tocols like backward-oriented concurrency control [19]
as well as to serialization graph testing protocols as
proposed in [6].

The protocol incorporates some nice characteristics
that boost its performance: It allows a decoupled prop-
agation of conflicts such that the transaction knows
about the dependencies as soon as possible. At commit
time, the transaction has the necessary information to
perform or delay its commit. In contrast to a two-
phase commit protocol, the transaction need not to
initiate a communication with all other transactions.
It simply checks its local serialization graph and per-
forms a commit if there is no active transaction on
which it depends on. Otherwise, if there is such a
transaction, the transaction will wait until it receives a
commit message from the corresponding transaction.
In this way, the communication overhead needed at
commit time is reduced dramatically.
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Figure 4: Peer-to-Peer Processing of Transactions over the Grid

Furthermore, the protocol allows a peer-to-peer
processing of grid transactions. As sketched in Fig-
ure 4, a transaction moves with its context from peer
to peer until it has executed all its specified services.
In the depicted example, the transaction T1 has al-
ready executed a service s1 on any peer of the grid.
The execution of this service did not cause a conflict.
Therefore, the local serialization graph of T1 still has
no edges. In the second step, T1 arrives at a peer
where it invokes service s2. Let this invocation lead
to a conflict with another transaction T2. The peer
detects this conflict based on its local log and informs
T1 about it. T1 updates its local serialization graph
and goes over to execute the next service according to
the process definition.

Of course, the protocol could also be implemented
in traditional way such that the transactions do not
move from peer to peer. Rather, they remotely invoke
services at the corresponding peers.

3.4 Distributed Cycle Detection

Besides guaranteeing that a transaction only commits
if it is not dependent on any other active transaction,
the protocol has to detect and solve cyclic dependency
situations: In case of cyclic dependencies transactions
hinder each other to commit. This will not change
without intervention. Since cyclic dependencies might
be caused by conflicts among two or more transactions
that are executed on different peers, neither a single
peer nor a single transaction can detect cycles by only
relying on their incomplete local knowledge.

Two main directions of approaches known from the
area of distributed deadlock detection can adapted to
solve the isolation problem mentioned above:

1. Timeout approaches: A transaction, which wants

to commit but is hindered by one or more transac-
tions on which it depends, sets a timeout interval.
Within this time period, the transaction must be
able to commit. Otherwise, the transaction as-
sumes to be involved in a cyclic dependency and
hence aborts. In this way, cycles are eventually
broken. However, the timeout approach comes to
the price of unnecessary delays and many unnec-
essary aborts.

2. Graph exchange approaches: Both problems of
the timeout approach can be avoided by exchang-
ing the serialization graph information among the
transactions:

(a) Full replication: Every change in a local seri-
alization graph is propagated to all transac-
tions. This implies that all transactions have
full knowledge, and thus will detect only ex-
isting cycles. Clearly, replicating the whole
serialization graph results in a huge number
of messages, and moreover distributes a lot
of information that is not needed to fulfill
the given task.

(b) Partial replication: A more sophisticated ap-
proach is based on the idea to propagate only
the part of the local serialization graphs that
is actually needed for a certain transaction
to detect existing cycles. Again, two differ-
ent approaches can be used to distribute this
information:

i. A transaction sends its local serializa-
tion graph only to those transactions
that are included in its graph. From
a global point of view, the virtual
global serialization graph is partitioned



into disconnected subgraphs (partitions)
such that each subgraph contains all the
necessary information to detect existing
cycles.

ii. Following the path-pushing approach
[22], the communication overhead can
be reduced further if the transactions
only propagate changes in the local seri-
alization graph to transactions on which
they depend. These changes will then
be transitively distributed following the
dependency paths.

Clearly, synchronous updates of the local serial-
ization graphs are not appropriate for any kind
of distributed environment due to performance
reasons, as shown in [17]. Therefore, the update
propagation has to be performed in a decoupled
manner in either approach.

We run first experiments as a proof of concept on six
computers of our computer cluster. All cluster nodes
were IBM Blade Center HS20 equipped with Dual Intel
Xeon 3.2GHz, 2GB Ram, 1 Gigabit Fiber network and
Microsoft Windows 2003 Server. Five clients together
run 100 transactions in parallel. The clients were using
J2SE 1.3.1, IBM Classic VM with JITC. The clients
communicated with each other via Java-RMI. On the
sixth computer, we run IBM WebSphere Application
Server 5.1.1 as a service provider. This equipment al-
lowed to measure without considering load or band-
width problems.

We varied the conflict probability by changing the
number of services offered by the WebSphere host —
traditionally, this is done by varying the number of
data objects. The clients invoked the services via Web
services that were mapped to EJB session beans read-
ing and writing back a 16 MB data object. To simulate
long-running transactions, each of the transactions not
only consisted of 8 to 12 Web service invocations, but
additionally got a penalty of two additional seconds
waiting time on the server as well as on the client side.

Figure 5 shows the results for the following three
approaches:

1. 2PL/1PC with centralized deadlock detection as
an implementation of a traditional system in-
frastructure,

2. our path-pushing approach with partial rollback,
and finally

3. a conflict-free environment.

At a first glance, it is surprising that the throughput
decreases by increasing the number of services imply-
ing a decrease of the conflict probability. However, this
is a consequence of the fact that the application server
consumes more time to manage the increasing number

of entity beans. Thus, it is more interesting what hap-
pens with the curves of the S2PL and the path-pushing
approach. In case of many services (7000-10000), i.e.,
low conflict probability, the throughput all three ap-
proaches is practically identical. For higher conflict
probabilities, the path-pushing approach outperforms
the locking-based approach by far, for instance, by a
factor of 3.9 for 3000 Services and by a factor of 2.8
for 4000. More details and further experiments are
documented in [4].
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Figure 5: Throughput

3.5 Recovery based on Partial Rollback

Cascading aborts appear when a transaction has to
rollback due to the rollback of a transaction it de-
pends on. Not surprisingly, commercial database sys-
tems use locking-based protocols, which avoid cascad-
ing aborts. In case of a failure, a locking-based proto-
col rolls back only one transaction completely. Other
active transactions are not affected by this rollback.
Such approaches are suitable for short-living transac-
tions, as they usually appear in traditional databases
applications. Grid transactions, on the other hand,
usually are long-running. Undoing the entire trans-
action would mean to loose a lot of work, especially
due to the effect of cascading aborts, because at least
all transactions involved in the cycle have to be rolled
back. Therefore, workflow management systems and
process engines do not implement recovery strategies
for isolation failures.

However, we address this problem in this paper. We
combine our non-blocking serialization graph testing
approach with partial rollback. Partial rollback means
to rollback a transaction in case of isolation failures
by invoking compensation services only to a step at
which the cycle in the serialization graph disappears.
Then, the transaction resumes its execution at this
step. Hence, only one victim has to rollback until the



incoming and outgoing edges contributing to the cycle
cease to exist.

We illustrate this using the following sample sched-
ule (same services are assumed to be in conflict):

sT1
A , sT1

B , sT1
C , sT1

D , sT2
D︸ ︷︷ ︸

T1→T2

, sT2
E , sT1

E︸ ︷︷ ︸
T2→T1

In this schedule, the transactions T1 and T2 cause a
cycle. With complete rollback, all service invocations
of both transactions would be compensated because of
cascading aborts. In case of partial rollback, T2 could
be the victim. Besides T2’s own service invocations,
only sT1

E would have to be compensated.
Obviously, partial rollback is beneficial because it

minimizes the effects of cascading aborts and thus al-
lows for a higher throughput. Choosing the “proper”
victim by using graph information now becomes a pa-
rameter for further tuning.

Using partial rollback for grid transactions requires
orchestrating the recovery on the different peers of the
grid, because we do not want to rely on a centralized
component due to the disadvantages mentioned be-
fore. Basically, a grid transaction involved in the cycle
is selected as victim. This transaction then invokes
compensation services in the opposite ordering of the
invocation of the originally services. For invoking com-
pensation services, the transaction sends Compensate-
Service messages to the corresponding peers. The fol-
lowing rules sketch the interaction between transac-
tions and peers:

Peer behavior. A peer receiving a Compensate-
Service(su) message executes the compensation
service s−1

u only if there are no obstacles. An ob-
stacle so is a service executed after su which is in
conflict with s−1

u . The peer collects all obstacles
that have to be compensated before the service
su can be compensated; let S be this collection.
Finally, the peer sends an Obstacle(S) message
back to the transaction. However, to prevent that
in the following additional obstacles appear, the
peer will not execute services raising additional
obstacles with respect to s−1

u .

Transaction behavior/Obstacle message. When
a transaction asks a peer to compensate a service
invocation, the peer might reject this and return
a set of obstacles to the grid transaction. The
transaction then sends a Compensate-Obstacle
message to the grid transactions which executed
the obstacles and waits until all have done
so. Then, the grid transaction sends again a
Compensate-Service message. This time, the peer
can compensate su since all previously existing
obstacles are removed and new ones have been
prevented to appear.

Transaction behavior/Undo-Transaction message.
When a transaction receives such a message and

is not already in the recovery mode, it stops the
forward execution and compensates at least until
the step specified in the message. As soon as the
transaction compensated a service which is an
obstacle for another transaction, it informs the
latter.

To perform these tasks, the transactions and peer re-
quire certain information. The peers have to log all
service invocations and require a conflict matrix —
both are also needed for the concurrency control task.
In addition, a set of variables is needed for logging
all service invocations that the transactions intend to
compensate but cannot do up to now because of ob-
stacles. On the other side, transactions must know on
which peers they have invoked services, which steps
have to be compensated in case of a rollback, which
obstacles prevent to immediately compensate a ser-
vice, and, finally, which of its service invocations are
obstacles for other transactions.

Though first experiments show a high increase in
the transaction throughput based on partial rollback,
several questions are still open:

1. Compensating the victim grid transaction com-
pletely is a straight-forward approach, but how
can the “border” be determined as accurate as
possible to further reduce the number of compen-
sated services?

2. Under which circumstances emerges the starva-
tion problem [34] and how can we deal with it?

3. How can we optimize the victim selection by ex-
ploiting the various parameters of the grid, as the
load of the peers for example?

3.6 Transaction Processing in the Presence of
Peer-Spanning Conflicts

The approach presented up to now assumes that con-
flicts only occur between local services. Grid systems,
however, must be able to deal with replicated ser-
vices, as it is often the case for computational services.
Therefore, we generalize our approach in the following
such that it also supports concurrency control and re-
covery in case of services that are replicated over a
set of peers. We even go a step further in allowing
conflicts among services hosted on different peers.

Providing a correct execution in this generalized set-
ting does not require that all peers are aware of all
possible conflicts. In addition to all local conflicts, the
conflict matrix of each peer only has to be extended
by the conflicts involving a service provided locally.
Peer-spanning conflicts are determined and specified
by the administrators of the corresponding peers. To
detect a peer-spanning conflict sx → sy, the following
extensions are needed:



1. The conflict matrix of the peer that provides sy

must contain a corresponding entry that reflects
the conflict sx→sy.

2. Since conflicts are detected based on local log en-
tries, the local log of the peer that provides sy

must contain all occurrences of sx. That is, this
peer must be informed about such occurrences by
the peer that executes sx.

Consider Figure 6 which shows an example for a peer-
spanning conflict. Peer P1 provides the services s1,
s2, and s3, while peer P2 provides s4 and s5. The
matrices show the conflicts of the peer’s services. The
semantics of the matrices is as follows: Executing, for
example, s4 conflicts to a prior execution of s5. The
opposite execution order, in contrast, is allowed. In
this example, it is assumed that s4 conflicts to any
prior execution of s2.

s2 T2

P1

s1    
s2    
s3

s1
–
–

s2
–

–

s3

–

s4    
s5    

s4
–
–

s5 s2

–

s4 T1

Virtual
Peer

P2

Replication
s5 T1

s1 T1

s2 T2

s3 T1Log Log

– P2 –s4

Figure 6: Peer-spanning Conflict in a Virtual Peer

The white color for the column of the peer-spanning
conflict in P2’s conflict matrix is used only for illus-
tration purposes. In fact, the underlying conflict de-
tection routine does not distinguish between local and
peer-spanning conflicts. For each new local log entry,
it simply checks whether or not the corresponding ser-
vice invocation causes a conflict.

In contrast, the white row associated with P1’s con-
flict matrix has a different semantics. It belongs to an
additional data structure which stores the information
about the peers that must be informed when the cor-
responding service is invoked.

Both extensions depend on the current system con-
figuration. They have to be consistent even in case
of that the set of available services and peers changes
dynamically. This consistency can be ensured by the
meta-data replication functionality of the underlying
grid infrastructure, for example, by using a publish-
subscribe-based replication as presented in [26]. Sup-
pose the service s2 is no longer provided by peer P1,
then the corresponding column is eliminated from P2’s

conflict matrix (when there is no other replica of s2 in
the grid. Any update on the global configuration will
cause an update of such replicated information. In
this way, both peers P1 and P2 become aware of all
“peer-relevant” (global) conflicts.

In addition to the conflict matrix, which depends on
the relatively static system configuration, a complete
service invocation log has to be provided at each peer.
Beside all information about local service invocations,
this log now has to include also the invocations of con-
flicting services on other peers. In the example above,
the log of peer P2 must replicate all invocations of s2

on peer P1, since a local execution of s4 conflicts with
a prior execution of s2. The update of the two invoca-
tion logs must be synchronized. This can be realized
by either a blocking synchronous communication, or
again by an optimistic protocol.

An alternative approach would be to define a vir-
tual peer. A virtual peer subsumes a set of peers that
share at least one common conflict. No service within
a virtual peer conflicts to any other service outside the
virtual peer. In this way, a virtual peer can be seen
as a single peer with respect to concurrency control
and recovery. Beside the synchronization of the in-
vocation logs, a virtual peer can also be realized by
defining a single peer. In this way, the coordination
for the virtual peer is centralized, and the virtual peer
conceptually degrades to a usual peer.

3.7 Transaction Processing in Disconnected
Networks

The complete distribution of the transaction execu-
tion moreover allows to run transactions on discon-
nected partitions of the grid network (see Figure 7).
In contrast to a centralized coordination, this is possi-
ble since the protocol for distributed concurrency con-
trol primarily relies on local peer information. How-
ever, the propagation of serialization graphs requires
that transactions are connected to each other if they
are involved in a conflict. Thus, if no transaction mi-
grates from one partition to another, concurrency con-
trol works in spite of disconnection.

If a transaction migrates from one partition to the
next, the partitions have to be connected during the
migration of the transaction. Furthermore, a connec-
tion must be established at least at commit time while
resolving dependencies if there are any conflicts with
services from peers of a different partition. For in-
stance if in the example in Figure 7 T2 would depend
on T1, the commit of T2 would be deferred until the
corresponding partitions are connected again.
This blocking situation can only be omitted by relax-
ing the isolation level: The transaction can commit
with an option to later compensate or reconcile the
complete transaction. However, correctness can no
longer be guaranteed in case of such cascading depen-
dencies.
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Figure 7: Disconnected Transaction Processing on a
Partitioned Grid

While transactions can run on disconnected parti-
tions, a virtual peer should reside completely within
one partition, because the local invocation logs have
to be updated synchronously. Therefore no services
are allowed to be executed while the members of a
virtual peer are disconnected.

4 Conclusions and Outlook

The merger of service-oriented and grid technologies
opens the possibility to develop infrastructures that
provide nearly unlimited computation and storage re-
sources. In this context, grid transactions are a key
concept for correct concurrent executions of grid ap-
plications that especially invoke data services. How-
ever, traditional database transaction processing tech-
niques cannot be applied directly to grid transactions,
because the latter usually are long-running and the
conflict probability is low in the grid. In this paper, we
presented a new approach to processing transactions
over the grid. Our approach is a unique combination
of known techniques used for a new purpose:

1. The recoverability criterion, which demands that
a transaction must not commit if it depends on an
active transaction, is used to allow transactions to
check with their local knowledge alone whether or
not they are allowed to commit.

2. Serialization graph testing as a concurrency con-
trol protocol was condemned for years, because it
imposes a high overhead, and thus it was seen as
useless in practice. However, for long-running grid
transactions, the overhead induced by a graph cy-
cle checking is no longer a hurdle because this
overhead is not significant anymore with respect
to the long running time of grid transactions.

3. Path-pushing approaches are known for years for
deadlock detection, but we now use it for serializa-

tion graph testing purposes. In this way, correct-
ness of global executions can be ensured without
maintaining a global serialization graph which re-
flects all conflicts that occur in the grid.

4. Partial rollback and repeatable activities are also
well-known concepts from the area of workflows.
Our innovation is to use it for isolation failures to
address the problem of cascading aborts.

Additionally, we sketched two important conceptual
extensions to this core model for grid transaction
processing. Firstly, replication of services and the un-
derlying data is important for the grid context, but
needs the concept of virtual peers or corresponding
replication of the conflict and log information. Sec-
ondly, large networks are never 100% stable and also
grid networks contain more and more mobile devices.
Thus, the aspect of disconnection was included into
our work.

Nevertheless many open questions are left for fur-
ther research: For example, the aspect of costs has to
be taken into consideration when compensating service
invocations. Also mixing different isolation levels is a
hot topic, especially since commercial systems support
this for database transactions (which are used in the
grid context to execute basic services). The best vic-
tim selection strategy is still an open problem, which
gets more exciting since the grid provides additional
tuning parameters. Another interesting topic is the
support of ad-hoc grid transactions, which represent
individualized processes that only run once or a few
times. For such kinds of transactions it seems to be
not reasonable to be pre-installed on the correspond-
ing peers of the grid. In general, a deeper investi-
gation of the effect of grid dynamics, such as discon-
nected peers/services and dynamically changing grid
partitions, on concurrency control and recovery is re-
quired.
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