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Abstract

Quantifying the complexity of physiologic time series

has been of considerable interest. Several entropy-

based measures have been proposed, although there is

no straightforward correspondence between entropy and

complexity. These traditional algorithms may generate

misleading results because an increase in system entropy

is not always associated with an increase in its complexity,

and because the algorithms are based on single time scales.

Recently, we introduced a new method, multiscale

entropy (MSE) analysis, to calculate entropy over a

wide range of scales. In this study, we sought to

determine whether loss of complexity due to aging could

be distinguished from that due to major cardiac pathology.

We analyzed RR time series from young subjects (n=26),

elderly subjects (n=46) and subjects with congestive heart

failure (n=43).

The mean MSE measures of each of the three groups

revealed characteristic curves, suggesting that they capture

fundamental changes in the heart rate dynamics due to

age and disease. We used Fisher’s linear discriminant

to evaluate the use of MSE features for classification. In

discriminant tests on the training data, we found that MSE

features could separate elderly, young and heart failure

subjects with 92% accuracy and that older healthy subjects

(mean age=65.9) could be separated from subjects with

heart failure (mean age=55.5) with 94% accuracy. Also,

we discriminated data from heart failure subjects and

elderly healthy subjects with a positive predictivity of 76%

and a specificity of 83% using only the MSE features.

Larger databases will be needed to confirm if automatic

classification results can match separation results.

We conclude that MSE features capture differences

in complexity due to aging and heart failure. These

differences have implications for modeling neuroautonomic

perturbations in health and disease.

1. Introduction

Heart rate variability is the output of multiple physiologic

control mechanisms that operate over a wide range of time

scales. As a result, cardiac interbeat interval (RR) time

series under healthy conditions have a complex temporal

structure with multiscale correlations [1, 2]. Our working

hypothesis is that aging and disease result in a loss of

complexity. The RR time series from elderly subjects

and those with heart disease should represent the output

of simpler dynamical systems, and therefore, will be

anticipated to have less complex temporal structures than

those of young healthy subjects.

Classical entropy and physiologic complexity concepts

do not have a straightforward correspondence [3, 4].

Entropy is related to the degree of ”randomness” of a

time series and it is maximum for completely uncorrelated

random signals. Complexity is related to the underlying

structure of a time series and its information content. An

increase of the entropy assigned to a time series usually, but

not always, corresponds to an increase of underlying system

complexity.

Entropy-based algorithms [5, 6] for measuring the

complexity of physiologic time series have been widely

used. They have proved to be useful in discriminating

between healthy and disease states [7, 8], although some

results may generate misleading conclusions. For example,

the entropy that these algorithms assign to time series

derived from the ventricular response in atrial fibrillation

(AF) is higher than that assigned to sinus rhythm time series

derived from healthy subjects. However, healthy systems

generate much more complex outputs than diseased ones.

Traditional algorithms are single-scale based and, therefore,

fail to account for the multiple time scales inherent in

physiologic systems. We have developed a novel method

[9] to calculate multiscale entropy (MSE) from complex

signals.

In 1991, Zhang [10, 11] proposed a new complexity

measure that applies to physical systems. His measure,
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defined as a weighted sum of scale-dependent entropies,

has the advantage of yielding higher values for correlated

noises than for uncorrelated ones. However, since it is

based on Shannon’s definition of entropy, it requires a large

number of almost noise-free data points [12]. Therefore,

the possibility of applying Zhang’s measure to real world

time series is very limited. In contrast, our method is based

on the Approximate Entropy (ApEn) family of parameters,

which have been widely applied to physiologic and medical

time series analysis [5].

In previous work [9], the MSE method has been applied

to heart rate time series from healthy subjects and subjects

with AF and congestive heart failure (CHF). The resulting

MSE curves for these groups have shown distinct patterns.

This led us to question whether MSE could be used in an

automatic algorithm to classify individual RR time series

according to pathology. In previous work, we found that

AF was easily distinguished. In this new work we address

the greater challenge of distinguishing the effects of aging

and CHF. We applied the MSE method to an expanded

dataset of elderly and young healthy subjects and subjects

with CHF. MSE profile curves were created for each subject

(n=115). These profile curves were then used as features in

Fisher’s linear discriminant and classified into three groups.

Following the initial separation results, the “leave one out

and test” method was used to simulate how the classifier

would respond to non-training set data [13].

2. Multiscale entropy (MSE) method

The MSE method is described in [9]. Given a time

series,
���������������	��
��������
�������

, we first construct consecutive

coarse-grained time series by averaging a successively

increasing number of data points in non-overlapping

windows. Each element of the coarse-gained time series,�������� , is calculated accordingly to the equation:
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where � represents the scale factor and �('*)+'-,.��/ . For

scale 1, the coarse-grained time series is simply the original

time series.

Next, we calculated Sample entropy (SampEn) [6], a

refinement of the original ApEn statistics [5], for each

coarse-grained time series plotted as a function of the of

scale factor � .

3. Data

We applied the MSE method to the cardiac interbeat

(RR) intervals time series derived from 24 hour ECG Holter

recordings from healthy subjects and subjects with CHF.

All data analyzed here are available at http://physionet.org

[14] and have been described in ref. [15].

The data for the normal control group were obtained from

24 hour Holter monitor recordings of 72 healthy subjects,

35 men and 37 women, aged 0�1 � 243 � 25�76 years (mean
3

SD,

range
698�:<;�=

years). ECG data were sampled at 128 Hz.

The data for the CHF group were obtained from 24 hour

Holter recordings of 43 subjects (28 men and 15 women)

aged 090 � 0 3 �9� � 1 years (mean
3

SD, range
6>6�:?;@=

years). All

datasets were filtered to exclude artifacts, missed detections

and isolated ectopic beats. Furthermore NN intervals less

than
6A� 8>B

and greater than
85�769B

were excluded if the interval

value differed by more than
6�8DC

from the mean of the forty

surrounding interval values.

4. MSE analysis

We note that, for scale one, which is the only scale

considered by traditional single-scale based methods, the

entropy assigned to the time series of healthy young

subjects and CHF subjects are not distinguishable, and

time series of elderly healthy subjects are assigned the

lowest entropy values. However, for all scales but the

first one, healthy young subjects are assigned the highest

entropy values, which shows that healthy dynamics are the

most complex, contradicting the results obtained using the

traditional SampEn or ApEn algorithms. The difference

between SampEn values for healthy elderly and CHF

subjects corresponding to scale 6 is statistically significant

( ' 85� 8 0 ). However, for larger time scales, the SampEn

values for these two groups considerable overlap. This

indicates that MSE features other than absolute values of

entropy may be necessary to discriminate between these

groups.

The difference between the patterns of the MSE curves

for healthy young, healthy elderly and CHF groups on small

time scales may be due to the fact that the respiratory

modulation of heart rate (respiratory sinus arrhythmia,

RSA) is stronger in healthy subjects than in both elderly

and CHF subjects. The RSA corresponds to a frequency

peak centered close to 0.2 Hz over the RR interval power

spectrum. Since entropy is a measure of regularity

(orderliness), a higher amplitude of RSA is likely to result

in a lower value of the entropy of the RR time series. The

coarse-graining procedure filters out RSA oscillations from

the RR time series, such that, for time scales larger than

the average respiratory cycle length, the power spectrum of

coarse-grained time series presents a ���9E decay over the

entire frequency domain. Therefore, coarse-grained time

series from healthy young subjects are likely more irregular

(and are assigned higher entropy values) than the original

time series.

For CHF patients, the entropy of coarse-grained time
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Figure 1. MSE analysis of interbeat interval time

series derived from healthy young subjects, healthy elderly

subjects and subjects with congestive heart failure (CHF).

Symbols represent mean values for each class. The

maximum standard error (SE) values are 0.059 for young,

0.043 for elderly, and 0.057 for CHF classes, respectively.

series decreases down to time scale 3 and then progressively

increases. This result suggests that for CHF patients the

control mechanisms regulating heart rate on relatively short

time scales are the most affected.

5. Fisher discriminant analysis

We then used a Fisher’s linear discriminant to determine

if MSE profile curves could automatically classify

individual subjects into the young healthy, elderly healthy

and CHF groups. The Fisher discriminant is a technique

used to reduce a high dimensional feature set,
�

, to a lower

dimensional feature set � , such that the classes can be more

easily separated in the lower dimensional space. The Fisher

discriminant seeks to find the projection matrix w such that

when the original features are projected onto the new space

according to

� ��� � � � (2)

the means of the projected classes are maximally separated

and the scatter within each class is minimized. This matrix

w is the linear function for which the criterion function:

��� ���4� � �	��
 �
� � �
� � (3)

is maximized. In this equation,
��


and
�
�

represent the

between class scatter and within class scatter, respectively.

This expression is well known in mathematical physics as

the generalized Rayleigh quotient. This equation can be

most intuitively understood in the two class case where is
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Figure 2. Projection of MSE features of the cardiac

interbeat time series derived from healthy young subjects,

healthy elderly and congestive heart failure (CHF) subjects.

The forty dimensional feature vectors comprising the forty

MSE values are projected down to two dimensions. A

linear classifier was then used in this space to discriminate

between the classes.

Linear Classifier Results

Labeled As

Recognized as: Young Elderly CHF

Young 24 1 0

Elderly 2 42 3

CHF 0 3 40

Table 1. The application of the linear classifier in

two dimensional space shows that young healthy subjects

are entirely separated from CHF patients. There were

three misclassifications between elderly and young and six

misclassifications between elderly and CHF patients.

reduces to: ��� ���4������ � : ���� ��B
� ��� �B

� � (4)

where �� � and ���� are the projected means of the two classes

and �B � and �B � are the projected scatter of the two classes.

This function is maximized when the distance between the

means of the classes is maximized in the projected space

and the scatter within each class is minimized. A full

derivation of the solution of this problem can be found in

the ref. [13].

In Figure 2 we present the results of the MSE method

for the training set. For this analysis we generated MSE

curves for two different values of the SampEn parameter

r (r=0.10, r=0.15) [5] such that each dataset generated

forty features (corresponding to time scales 1-20). These

features were projected down to a two dimensional space

as shown in Figure 2. From this figure it can be seen

that the data separate into well-defined clusters. Using a
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linear classifier in the two dimensional space we are able

to correctly classify 106 out of 115 subjects, as illustrated

in Table 1, giving approximately 92% separability in the

training set.

To simulate how the classifier would respond to data

outside the training set, we used the “leave one out and

test” method where a classifier is trained on all except

one subject, then the remaining “test” subject is classified.

Using this method, we were able to discriminate data from

the heart failure subjects from the older healthy subjects

with a positive predictivity of 76% and a specificity of

83% using only the MSE features. Larger databases will

be needed to confirm if automatic classification results can

provide comparable results.

6. Discussion and conclusions

Previous findings using MSE show that complexity

degrades with disease and aging [9]. However, using

traditional single scale entropy-based measures, time series

derived from healthy subjects and subjects with CHF may

not be distinguishable. Furthermore, the poorest separation

between young and elderly healthy subjects occurs for scale

one. In contrast, the MSE method reveals that for larger

time scales the highest entropy values are assigned to young

healthy subjects. Therefore, MSE results are compatible

with the concept that young healthy systems are the most

complex and adaptive ones.

We have also shown that the characteristic MSE profile

curves can be used in an automatic classification algorithm

to separate young healthy, elderly healthy and CHF

subjects. The accuracy of the results declined when the

leave one out and test method was applied, suggesting that

the classifier is overtrained to the test data. Nevertheless,

high accuracies were still achieved in the two class case,

supporting testing on expanded data sets to further assess

clinical applicability.

The MSE method seems to have the capacity to

distinguish between time series generated by different

mechanisms. Furthermore, it may be applied to a wide

variety of other physiologic and physical time series.
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