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Abstract

The fetal heart rate (fHR) is commonly used as an indi-
rect indicators of fetal condition. Noninvasive fHR mon-
itoring uses electrodes placed on the mother’s abdomen.
However it is challenging to detect fetal QRS (fQRS) com-
plexes from the signals measured in this way because of
different types of noise and overlapping frequencies be-
tween maternal and fetal ECG. In this paper, we introduce
an augmented multi-lead principal component regression
(PCR) approach for maternal ECG removal and multi-
channel correlation based fHR detector. Using this method
we participated to Computing in Cardiology, PhysioNet
Challenge - and final results were for event 4: 28.893 bpm2

and event 5: 4.844 ms. The proposed algorithm succeeded
to remove maternal ECG from the abdomen signals with
high accuracy.

1. Introduction

Fetal heart rate (fHR) is an indirect marker of fetal con-
dition, for example fHR decelerations are associated with
fetal distress. Noninvasive fHR monitoring uses electrodes
placed on the mother’s abdomen. However it is challeng-
ing to detect fetal QRS (fQRS) complexes from the signals
measured in this way. Challenges of this technique are
related to the low amplitude of the fQRS complexes, the
different types of noise and the overlapping frequencys be-
tween maternal ECG (mECG) and fetal ECG (fECG). Af-
ter the fHR monitors were introduced as clinical practice,
it was expected that this technology would reduce intra-
partum fetal deaths. However due the technical difficulties
fHR monitors were unreliable and rather than reducing fe-
tal deaths, monitoring only increased the unnecessary ce-
sarean deliveries.

Several techniques for mECG extraction from the ab-
dominal signals have been proposed. Probably the most
interesting ones are mECG template subtraction technique
[1–3] and independent component analysis (ICA) based

technique. Template subtraction technique is based on
mECG division on the separate complexes and mECG ex-
traction is made by subtracting linear combination of pre-
ceding mECG complexes from the current one. ICA esti-
mates independent source signals from the measured ab-
domen signals and from the ICA components, mECG or
fECG components can be separated for example using in-
formation of maternal heart rate (mHR) and physiological
model for fHR [4]. Similar performance between these
two techniques was observed in [3].

The main drawback of the template subtraction tech-
nique variation caused by respiration movements and in-
accuracies of maternal R-peak detection causes distortion
to templates and mECG is not fully removed, in addition
information of only one lead is used for the mECG remov-
ing. In ICA based approaches, fECG information leaks al-
ways to components which are containing mostly mECG,
this reduces fHR detection accuracy in low signal to noise
ratio (SNR) situations.

In this paper we introduce an augmented multi-lead
principal component regression (PCR) based approach for
maternal ECG removing. In the multi-lead PCR approach,
P- and T-waves, and QRS-complexes of all abdomen leads
are segmented based on maternal R-peaks and collected
into augmented observation matrices. Hence, the QRS-
complex matrix, for example, contains complexes from
all four leads. These matrices are then used to produce
PCR model for mECG waveforms and mECG is then re-
moved from all abdomen signals dynamically using pro-
duced model. Using augmented waveform matrices prior
information of the mECG waveform can be maximized
and morphological changes caused by respiration are cap-
tured to the model and all variation caused by mECG can
be removed.

In addition envelope based method for noise power
equalization of individual fECG leads is presented. Noise
power for each time-point of each signal is estimated us-
ing envelope method, these estimates are then used as a
weighting signals. By using envelope method leads con-
taining less noise in certain time point are weighted more
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during the fQRS detection. For fQRS detection multichan-
nel template matching technique was used.

2. Materials

Proposed methods were developed and validated using
PhysioNet challenge 2013 datasets [7]. Challenge dataset
consist of 175 recordings which include four leads of one-
minute long fetal ECG with 1000 Hz sampling frequency.
The data were recorded using a variety of instrumentation
with differing frequency response, resolution and lead con-
figuration [7]. Reference annotations for fQRS time points
were obtained from direct fECG signal, acquired from a
fetal scalp electrode [7].

3. Methods

Abdominal fECG recordings contains noise from many
different sources: EMG, power line noise and movement
artifacts from respiration or other body movements can-
not be avoided. Before applying the PCR method baseline
drifts caused by chest movements were filtered from the
ECG using sixth order butterworth high pass filter with the
cutoff frequency 2Hz. Secondly power-line noise were re-
moved, eliminating 50Hz peak in a Fourier domain. After
these preprocessing steps, the maternal R-waves were de-
tected using an adaptive QRS detector similar as Pan and
Tompkins [8]. To obtain all possible information from the
measured ECG leads, six virtual leads were calculated by
subtracting measured leads from each others. All prepro-
cessing steps were performed also for those virtual leads,
however for the sake of simplicity, all equations and graphs
are presented only for the four original leads.

3.1. PCR model for maternal ECG

The maternal QRS-complex, P- and T-wave epochs
from fECG recordings were modeled using the PCR ap-
proach. The aim was to model maternal ECG waveforms
using PCR basis vector and then using this model remove
maternal ECG from the abdominal signals.

In the PCR method, maternal P- and T-waves, and QRS-
complexes are modeled separately for every heart beat
within the measurement. Here we first describe shortly
how a single wave epoch, i.e. P, T or QRS epoch (ref-
erenced as wave epoch) is modeled using the PCR. For a
more detailed presentation of the PCR modeling see [5,6].

First, the maternal P- and T-wave and QRS complex
epochs are extracted from the ECG according to the de-
tected R-wave peak. The j:th extracted wave epoch from
the k:th channel with N data points is denoted as

zkj =
[
zkj,1 . . . zkj,N

]T
. (1)

As an observation model, we use an additive noise model

zkj = skj + ekj (2)

where skj is the maternal wave epoch (P- or T-wave, or
QRS-complex) and ekj is measurement noise, note that
fECG is first treated as a component of noise. Each epoch
zkj can be approximated as a linear combination of basis
vectors ϕk

zkj = HSθkj + ekj (3)

whereHS = (ϕ1 . . . ϕK) isN×K matrix of basis vectors
and θj is a K × 1 column vector of weights related to j:th
epoch.

In the PCR the model basis vectors ϕk are selected to be
the eigenvectors of the data correlation matrix R. First ob-
servation matrix for wave epoch is created by collecting all
(number of M ) wave epochs from all leads (z1, z2, z3, z4)
to the single observation matrix:

Z =

 z11,1 z21,1 · · · z3M,1 z4M,1
...

...
. . .

...
...

z11,N z21,N · · · z3M,N z4M,N

 (4)

By collecting wave epochs from all leads into a measure-
ment matrix, epoch number can be maximised and stronger
prior information of the wave shape can be attained.

By using measurement matrix Z, correlation matrix for
waves can be estimated as

R =
1
M
ZZT (5)

and the eigenvectors (i.e. basis vectors ϕk) can be solved
from the eigendecomposition.

The eigenvectors of the correlation matrix are orthonor-
mal and therefore the least-squares solution for the param-
eters θ is

θ̂k
PC

j = HT zkj (6)

and the estimate for wave epoch can be computed as

ẑkj
PC = H ˆθkj

PC
. (7)

In other words, the P- or T-wave, or QRS complexes for
the M consecutive beats, from all leads are placed into the
columns of Z. The correlation matrix is then calculated
using equation (5) and the eigenvectors are solved using
eigendecomposition. The most significant eigenvectors are
fitted back to individual wave epochs using equations (6)
and (7). This procedure is done for every beat within the
measurement, individually for P and T-waves, and QRS-
complexes.

The most significant eigenvectors contain the informa-
tion of the maternal waveform and its normal variation,
secondly fECG and noise is distributed into less significant
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Figure 1. Prepresentative example of fQRS detection algorithm. In a subfigure A there is four leads of preproccessed
abdominal ECG signal in blue solid line and estimated mECG as a red line. Subfigure B presents fECG i.e. abdominal
ECG signal were estimated mECG has been substracted. Noise estimates (red line) of individual leads (blue line) are
shown in subfigure C and fECG leads after noise level is normalized is shown in subfigure D. Estimated fQRS templates
are shown on subfigure E and correlation products of fECG (subfigure D) and fQRS teplates (subfigure E) are shown on
subfigure F. Sum of lead correlations (blue line) and finally squared signals (red line) are presented in subfigure G.

eigenvectors. Thus maternal waveforms can be removed
without affecting fECG component by using the few most
significant eigenvectors in the wave model and extracting
model result from the abdomen signal. The appropriate
number of eigenvectors used in the approximation depends
on the level of variation in the mECG waveforms as a func-
tion of time. Here we used six eigenvectors for the QRS
complex and four eigenvectors for P and T-wave model-
ing. Result of mECG estimation can be seen in Figure 1
sub-figure A and fECG after mECG removing can be seen
in sub-figure B.

3.2. Envelope method for noise power esti-
mation

In a multi-signal analysis there is often problematic to
detect which signals contain useful information and which
ones contains only noise. In this paper special signal en-
velope were used to normalize noise power between mea-

sured channels and between different time-points in each
channel. Signal envelope as a noise level estimate were
based an assumption that fetal QRS-complexes has only
two peaks, because envelope value was attained as the third
largest peak from the closest peaks at the time. Noise level
estimate was then attained by smoothing envelope estimate
using 100ms moving average filter. All signals were di-
vided by their noise estimates and then noise levels were
assumed equal between all signal leads and between all
time-points in a lead. Noise level estimates are shown on
Figure 1 sub-figure C and normalized signals in sub-figure
D.

3.3. Fetal QRS detection

After the maternal ECG was removed from abdomen
signals and envelope method were used to normalize sig-
nal noise levels, fetal QRS detection procedure were ap-
plied. For fQRS detection multichannel template matching
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technique was used. In first phase of this method 20 cer-
tain positions of fQRS complexes were located by squaring
and summing fECG leads together and locating maximum
peak values. By using these peak positions templates for
fQRS complex were constructed individually for all leads,
templates are shown on Figure 1 sub-figure E. Correlation
of templates and fECG signals were then estimated (see
sub-figure F) and the sum of these correlation estimates
were then used for fQRS detection.

4. Results

Figure 1 shows representative example of fQRS detec-
tion algorithm steps. First mECG was estimated using
PCR estimation method, presented in section 3.1. mECG
removing is presented on sub-figures A and B, it is ob-
served that model basis vectors can model maternal ECG
waves with high accuracy, whereas fQRS complexes ap-
pearing asynchronously with maternal heart beats cannot
be modeled and thus after mECG subtraction fQRS com-
plexes are most visible peaks in fECG. Noise level is es-
timated and equalized as explained in section 3.2, result
of this procedure is presented in sub-figures C and D. Pur-
pose of the noise equalization is best visible in fECG lead
2 which seems to contain only strong noise component, af-
ter the procedure noise power of all leads are equal and
strongest peaks can be used for fQRS template estimation.
fQRS templates are shown on sub-figure E. Correlations
of templates and fECG leads are presented in sub-figures
F and G. In a lead 2 were no fQRS complex is shown,
correlation product is near zero and in other three leads
fQRS complex amplitude is even increased as compared
to noise amplitude between the peaks. Finally individual
correlations are summed, squared and filtered with 30ms
long moving average filter to obtain easily detectable fQRS
peak locations (see sub-figure G, red line). After that fQRS
locations are detected with adaptive fQRS detector similar
as Pan and Tompkins [8].

5. Discussion

PCR based maternal ECG removing algorithm has been
introduced. As seen in Results section mECG extraction
succeeds without decrease of fQRS amplitude, when num-
ber of model basis vectors is appropriate fQRS amplitude
is preserved even when fQRS appears at the same time as
mQRS complex. In a presented version of algorithm all
maternal P- and T-waves, and QRS complexes are used
for construction of corresponding PCR model, however in
longer measurement PCR model can be created using ini-
tialization period and model basis vectors can be then up-
dated dynamically during the measurement.

Biggest effort in this study has been used for mECG re-
moving algorithm and for final fQRS detection well known

template matching technique was used. Template match-
ing technique works quite well on such short measure-
ments (1 minute) as used in this study, however in longer
measurements and especially during labor fetal move-
ments cause significant changes to fQRS morphology and
templates can be very hard to update to correspond current
situation.

All in all presented algorithm works well on measure-
ments used on Computing in Cardiology, PhysioNet chal-
lenge 2013 and the final scores achieved were for event 4:
28.893 bpm2 and event 5: 4.844 ms.
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