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Abstract

Spectral indices are widely used to assess Heart Rate

Variability (HRV) during exercise. HRV signal spectrum

comprises two main bands, High Frequency (HF) and Low

Frequency (LF), the first related to parasympathetic ac-

tivity and the second related to both parasympathetic and

sympathetic activity. HF and LF powers are mostly ob-

tained by Fast Fourier Transform (FFT) based algorithms,

however there is a major problem due to the non-stationary

and non-linear properties of the signal. Also, FFT based

algorithms usually provide single LF and HF indices for

temporal windows of several minutes. In the present study,

our aim was to achieve a deeper understanding on the

autonomic regulation mechanisms during intense exercise

and recovery. For this purpose, we obtained the instanta-

neous LF and HF indices using a modified version of the

Hilbert-Huang (HH) algorithm to track the HRV evolution

on eight male amateur triathletes in an All Out Exercise

Test (AOET). Both HH-based and FFT-based algorithms

revealed severely depressed LF and HF powers during ex-

ercise. However, using the FFT the LF/HF ratio was al-

ways lower than one during intense exercise, while the

mean of the instantaneous LF/HF ratio was lower than

one only in one case. The HH-based algorithm allowed a

deeper insight about the sympathetic and parasympathetic

balance during exercise.

1. Introduction

The cardiovascular system is mostly controlled by au-

tonomic regulation through the activity of sympathetic and

parasympathetic pathways of the Autonomic Nervous Sys-

tem (ANS). Analysis of Heart Rate Variability (HRV) al-

lows insight in this control mechanisms [1]. A wide num-

ber of HRV indices have been proposed in the literature,

among them spectral indices are widely used to assess

HRV during exercise. HRV signal spectrum comprises two

main spectral bands, High Frequency (HF), in 0.15 − 0.4

Hz, and Low Frequency (LF), in 0.04 − 0.15 Hz, the first

related to parasympathetic activity and the second related

to both parasympathetic and sympathetic activity [2]. Dur-

ing exercise it is generally assumed that Heart Rate (HR)

increases due to both a parasympathetic withdraw and an

augmented sympathetic activity. However, some authors

disagree with the former statement, and also, there is a

major problem when computing the LF and HF indices

due to the non-stationary, and non-linear properties of the

signals [1]. HF and LF powers are mostly obtained by

Fast Fourier Transform (FFT) based algorithms. How-

ever, for this approach, the data must be strictly periodic or

stationary, otherwise, spurious harmonic components can

be induced and the consequence is a misleading energy-

frequency distribution [3]. Further, FFT based algorithms

usually provide LF and HF indices for temporal windows

of several minutes, due to the requirements on spectral res-

olution. However, a single value of the indices will not be

able to capture changing dynamics on the system within

these windows. Time-frequency techniques constitute a

major improvement respect to the described limitations.

In this work, we used an adapted version of the Hilbert-

Huang (HH) algorithm to obtain the instantaneous LF and

HF indices. This allowed to track the LF and HF indices

before, during and after an All Out Exercise Test (AOET),

rather than obtaining a single index value for each stage.

The aim was to achieve a deeper understanding on the

autonomic regulation mechanisms during intense exercise

and recovery.

The structure of the paper is as follows. First, the dataset

and data preprocessing is presented. Next, the methods

and the data analysis are described, and the results are pre-

sented. Finally, conclusions are summarized.

2. Dataset

The dataset for this study consisted of HR recordings

from eight male amateur triathletes. Information on the

inclusion criteria and recording conditions can be found

in [4]. All recordings were obtained while subjects were
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sitting on a cycle ergometer. The protocol included 5 min-

utes of HR recording in resting conditions before exercis-

ing. Afterwards, subjects started an incremental exercise

test which comprised 4 consecutive phases of 4 minutes.

In the first three phases, subjects cycled at 50 rpm with 1,

2, and 3 Kp of load. The last part of the test was the so-

called ‘All Out’, in which subjects cycled as fast as they

could with 5 Kp of load during 4 minutes for achieving

maximal exercise capacity. HR was recorded in the ’All

Out’ step. The exercise test was followed by 5 minutes of

recovery (subjects remained seated on the cycle ergometer

without cycling) in which HR was also recorded.

RR intervals were collected using a Firstbeat Bodyguard

(Firstbeat Technologies OyTM , Finland) heart monitor,

with sampling frequency of 1000 Hz. The recordings were

preprocessed to exclude artifacts by eliminating RR inter-

vals lower than 200 ms and greater than 2000 ms, as well

as those which differed more than 20% from the previous

and the subsequent RR intervals [5]. Removed RR inter-

vals were replaced by conventional spline interpolation.

3. Methods

The HH algorithm is a time-frequency technique con-

sisting of two parts. First, the Empirical Mode Decom-

position (EMD) procedure decomposes the signal into In-

trinsic Mode Functions (IMF), putting forward the scale

characteristics embedded in the signal. Second, the Hilbert

Transform (HT) is applied to the IMFs, yielding a time-

frequency representation, the Hilbert Spectrum [3, 6].

An IMF satisfies two conditions: (1) the number of ex-

trema and the number of zero crossings must be either

equal or differ at most by one; and (2) at any point, the

mean value of the envelope defined by the local maxima

and the envelope defined by the local minima is zero. In or-

der to obtain a meaningful instantaneous frequency, an ar-

bitrary signal must be reduced into IMF components. Con-

sequently, for real signals, we can have more than one in-

stantaneous frequency at a time. The EMD method reduces

the signal into the needed IMFs. Given a signal x(t), the

procedure starts identifying all the local maxima and min-

ima. All the local maxima are then connected by a cubic

spline curve as the upper envelope eu(t). Similarly, all the

local minima are connected by a spline curve as the lower

envelope el(t). The mean of the two envelopes is denoted

as m1(t) = (eu(t)+el(t))/2, and it is subtracted from x(t)

to obtain the first component h1(t) = x(t) − m1(t). The

above procedure is referred as the sifting process. Since

h1(t) still contains multiple extrema between zero cross-

ings, the sifting process is performed again on h1(t). This

process is applied repetitively to the component hk(t) until

the first IMF c1(t), which contains the shortest period com-

ponent of the signal, is obtained. We can separate c1(t)
from the data by r1(t) = x(t) − c1(t). Since the residue,

r1(t) still contains contains information of longer period

components, it is treated as new data and subjected to the

same sifting process. This procedure can be repeated on

all the subsequent residues, and the result is

r2(t) = r1(t)− c2(t), . . . , rL(t) = rL−1(t)− cL(t) (1)

The whole procedure ends when the residue rL(t) is either

constant, or a monotonic slope, or a function with only

one extremum. The EMD produces L IMFs and a residue

signal. In this work we used the EMD implementation de-

scribed in [7].

Having obtained the IMFs, we can apply the HT to each

IMF, and compute the instantaneous frequency. The HT of

a real signal x(t) is defined as

y(t) =
1

π
P

∫

∞

−∞

x(τ)

t− τ
dτ (2)

where P indicates the Cauchy principal value. With this

definition, x(t) and y(t) form the complex conjugate pair,

so we can have an analytic signal, z(t) = x(t) + iy(t) =
a(t)eiθt , in which

a(t) =
√

x2(t) + y2(t), θ(t) = arctan

(

y(t)

x(t)

)

(3)

The instantaneous frequency is defined using the instanta-

neous phase variation,

ω =
dθ(t)

dt
(4)

After performing the HT in each IMF component, we can

express the signal in the form

x(t) =
L
∑

j=1

aj(t) exp

(

i

∫

ωj(t)dt

)

(5)

which enables to represent the amplitude and the instanta-

neous frequency as functions of time. This time-frequency

distribution is designated as the Hilbert spectrum, H(ω, t),
which represents the cumulated amplitude over the entire

data span in a probabilistic sense. The squared values of

amplitude can be substituted to produce the Hilbert energy

spectrum as well. It In this work we obtained the Hilbert

spectrum with the implementation available in [8]. It is

possible to achieve a measure of the energy of the signal

with respect to time, computing the instantaneous energy

densitity level, IE, as

IE(t) =

∫

ω

H(ω, t)2dw (6)

In this work the last IMF was eliminated to detrend the

signal. Next, two band pass filters, with pass bands match-

ing the LF and HF bands (ωLF and ωHF ), were used to
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Figure 1. HRV synthetic signal (RR) and the corresponding IMFs obtained by EMD decomposition (left panel). HF band

(middle panel) and LF band (right panel) filtered IMFs.

Figure 2. Instantaneous frequency computed with the

original (dashed) and filtered (continuous) c1 and c2

(top). Instantaneous LF/HF ratio obtained with the orig-

inal (dashed) and filtered (continuous) IMFs (bottom).

filter the remaining IMFs. Both filters were 6th order infi-

nite impulse response of Butterworth type and zero phase

distortion. The instantaneous amplitudes and frequencies

were obtained from the Hilbert spectrum. Finally, the in-

stantaneous LF and HF powers were obtained by equa-

tion (6) selecting ω = ωLF and ω = ωHF , respectively.

Mean LF and HF instantaneous indices were also ob-

tained in each stage for comparison with those obtained

for the same recordings with the Firstbeat Health Software,

which uses an FFT-based algorithm .

4. Results

The method was first validated using a simulated HRV

signal composed by the sum of two sinusoidal functions,

with frequencies corresponding to simplified LF and HF

contributions, and an offset corresponding to the mean

value of the HRV signal, i.e.,

RR = A0 +ALF sin(ωLF t) +AHF sin(ωHF t) (7)

where A0 = 900, ωLF = 0.1 · 2π, ωHF = 0.25 · 2π,

ALF and AHF were 20 and 10 respectively for the first 3

minutes of the signal, and both 5 for the last 3 minutes.

Figure 1 (left panel) shows the synthetic HRV signal

(RR) and its EMD decomposition until c4. The amplitudes

of c1 and c2 are related to the amplitudes of the two sinu-

soidal components of RR oscillating at 0.25 and 0.1 Hz,

respectively. The rest IMFs, c3 − c4, show very low am-

plitudes. It also shows the HF band (middle panel) and LF

band (right panel) filtered IMFs. In the middle panel, c1
contains the information related to the HF sinusoidal com-

ponent while the rest IMFs have amplitudes close to zero.

In the right panel, c2 contains the information related to the

LF sinusoidal component while the rest IMFs have ampli-

tudes close to zero.

Figure 2 (top) shows the computed instantaneous fre-

quency of the original c1 (m ± std: 0.2513 ± 0.0224)

and c2 (0.0997±0.0062), and the instantaneous frequency

of the HF band (c1) (0.2501 ± 0.0038) and LF band (c2)

(0.1000±0.0045) filtered ones. With the nonfiltered IMFs

abrupt instantaneous frequency values were obtained for

the signal endings (mainly for c1). In real signals, dif-

ferent IMFs can contain frequencies in the LF and HF

bands, therefore, to obtain the LF and HF indices, all the

IMFs are taken into account. Figure 2 (bottom) shows

the instantaneous LF/HF ratio computed with the origi-

nal IMFs, (4.0359 ± 0.5676 for the three first minutes,

1.1091 ± 1.0302 for the three last minutes), and the in-

stantaneous LF/HF ratio computed with the filtered IMFs

(3.9758 ± 0.3914 for the three first minutes, 1.1271 ±

0.4295 for the three last minutes). Theoretical values are

4 and 1, for the first and the last part of the synthetic HRV

signal respectively. With the nonfiltered IMFs, we ob-

tained higher std values due to abrupt discontinuities at

signal endings. Moreover, smoother instantaneous values

were obtained through the whole signal with the filtered

IMFs.

LF, HF and LF/HF instantaneous indices were computed

for the triathletes in the different protocol stages, the 5

minutes in resting conditions, the All Out phase of the ex-

ercise test, and the five minutes of the recovery stage. Fig-

ure 3 depicts the time evolution of the population mean
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Figure 3. Instantaneous LF, HF and LF/HF indices, population mean and standard deviation (shaded bands): resting stage

(left), All Out phase (middle), and recovery stage (right).

and standard deviation (shaded bands). It shows a high

variability on the indices within each stage. In the resting

stage this variability is smoother in percentage units, while

the All out phase presents more abrupt variations. The be-

ginning of the recovery stage also presents abrupt varia-

tions, and then the system returns to smoother variations.

It can be seen that the indices were extremely depressed

during the All out phase compared to the resting stage and

that the ratio LF/HF was lower in this stage.

Considering the mean values of the instantaneous in-

dices for each stage and the indices values obtained by the

FFT-based algorithm, in the resting stage the LF index was

higher than the HF index (for 7 out of 8 athletes) with both

algorithms. During the All out phase the LF index was

lower than the HF index with both algorithms, however the

LF/HF ratio was always lower than one with FFT-based al-

gorithm, while the mean of the instantaneous LF/HF ratio

was always higher than one except for one case. In the first

part of the recovery stage, HF index was still higher than

the LF index, but then the relation was reversed, although

the indices values continued very depressed in this stage

compared to the resting values.

5. Conclusions

The modification on the HH algorithm introduced in this

work provided smoother variation of the instantaneous fre-

quency and spectral indices, and improved the estimation

of these signals endings. With this algorithm, we tracked

the spectral indices during an AOET, which allowed a

deeper insight on the autonomic regulation mechanisms

than usually used FFT-based algorithms, which may be in-

accurate and lost information due to temporal averaging.
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