
Morphologic Features of the ECG for Detection of Stress-Induced Ischemia

Mariano Llamedo1,2,3, Juan Pablo Martínez1,3, Mariano Albertal4, Daniel Romero3,1, Esther Pueyo3,1,
Pablo Laguna1,3

1Aragon Inst of Eng Research, IIS Aragón, Univ of Zaragoza, Aragon, Spain
2Universidad Tecnológica Nacional, Buenos Aires, Argentina

3CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
4 Instituto Cardiovascular Buenos Aires, Argentina

Abstract

In this work we evaluated the improvement in the detec-
tion of stress induced ischemia achieved by ECG features
not commonly measured by cardiologists. We evaluated
927 patients recorded during treadmill exercise SPECT
following the Bruce protocol. The patients were labeled in
three groups by two experts according to their SPECT im-
ages as: no ischemia (Ischemic Miocardium (IM)< 5%),
mild ischemia (5% ≤IM< 10%) and moderate/severe is-
chemia (IM≥ 10%). The features studied were grouped
as pretest features, exercise features and those proposed
in this work. Among the features proposed, we included
the Q, R, and S wave amplitudes, the slopes around each
wave, and estimates of the P and T wave widths, as well
as the QRS complex width. We also studied other features
related to the ST segment. For the detection task, we used
logistic regression, while the performance was evaluated
using k-fold crossvalidation. Most discriminant features
were selected using a feature selection algorithm for two
thresholds of ischemia, ≥ 5% and ≥ 10%. Finally, two
models of features were evaluated and compared to those
reported by Sharir et al. obtaining improved performance
for IM ≥ 5% in Se 77%, Sp 88% and AUC 0.88; while for
IM ≥ 10%, Se 76%, Sp 90% and AUC 0.95.

1. Introduction

The analysis of the electrocardiogram (ECG) during ex-
ercise stress testing (EST) was first used by Feil and Siegel
in 1928 [1]. Nowadays this technique is widely used as
the first test for detecting coronary artery disease (CAD).
In this preliminary study we evaluated unconventional and
well established features measured on the ECG for detect-
ing stress-induced ischemia. Some of proposed features
have proven utility in the field of heartbeat classification
[2], while others, despite well documented [3], never were
studied in a large cohort of patients. In recent years fea-

tures measured in the QRS complex such as slopes or high
frequency components (HFQRS) were studied and com-
pared [4, 5]. The recent availability of ECG data recorded
in a large cohort of consecutive patients undergoing stress
test, as well as myocardial perfusion images (MPI) serv-
ing as gold standard, provide an adequate framework for
the development of improved ischemia detectors based on
ECG measurements [5, 6]. The aim of this study was to
compare the diagnostic performance and incremental value
in detecting exercise-induced ischemia, using several un-
conventional features extracted from the ECG and MPI as
a gold standard.

2. Material and methods

In this work we used the database “Exercise testing and
perfusion imaging” distributed by [6] and previously de-
scribed in detail [5]. The database includes 927 patients re-
ferred for exercise MPI single photon emission computed
tomography (SPECT). During the test, 12-lead ECG was
recorded until the recovery phase at a sampling rate of
1000 Hz, 0.15 µV of resolution and an analog bandwidth
from 0.05 to 125 Hz. Perfusion images were visually an-
alyzed by two experts and the amount of ischemic my-
ocardium (IM) was calculated as the summed difference
score between stress and rest scores. Finally patients were
labeled as: no ischemia or equivocal (IM< 5%), mild is-
chemia (5% ≤IM< 10%) and moderate/severe ischemia
(IM≥ 10%). From the 927 patients available, 18 were dis-
carded due to missing clinical or MPI data or bad quality
ECG recording. A summary of the clinical characteristics
is shown in Table 1 (a more complete description can be
found in [5]).

The first stage for ECG noise reduction was to low-pass
filter (FIR, fc = 35 Hz, 80 db stop) in order to suppress
power-line and high frequency noise. Next, QRS complex
detection was performed with a validated algorithm [7].
The fiducial points previously obtained are used to calcu-
late a signal-averaged heartbeat (SAHB) with all normal
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Table 1. Scheme of the division and clinical characteris-
tics.

Myocardial Ischemia
None Mild Severe All

# 843 32 34 909
IM (%) 0± 0.3 7± 1 17± 6 1± 4

Age 55± 10 61± 11 59± 11 55± 10

heartbeats in the previous 20 seconds, thus attenuating part
of the noise not synchronized with the heartbeats. This
SAHB is calculated at rest, at peak exercise (PE or max
HR) and after peak exercise (AP), i.e. when the HR is be-
low 128 bpm, to avoid T and P waves to overlap. All fea-
tures were calculated either in the SAHB, or in the wavelet
transform (WT) of the SAHB. The prototype wavelet used
is the as in [2].

The features used can be grouped in three categories:
1) pretest, or those calculated before the EST, 2) exercise,
or those typically measured in EST and 3) those proposed
in this work. These features are summarized in Table 2.
The features proposed in this study were calculated in two
modalities: 1) as a ratio, relative to the value of the feature
at rest, e.g. the value is 1 if no change, and 2) as two fea-
tures, one value at rest and other at either PE or AP, in case
the absolute value retains discriminant information. Also
the feature measurements along ECG leads are integrated
according to: 1) calculating features in the first two prin-
cipal components (PCA1 and 2) [8], and 2) calculating the
feature for each lead, and then mapping each feature value
to the [0, 1] domain with a logistic function 1

1+e−x . Then
values from the 12 leads are summed into the final feature
value in the [0, 12] domain. We referred to this strategy as
soft integration (SFT).

In [2] we used feature kQRS
Z as a robust surrogate of

QRS complex width. We extrapolated this concept to the
P wave, and ST-T complex by moving the analysis window
to QRSon − [200, 50] ms and QRSoff + [0, 350] ms po-
sitions respectively. The slopes of the QRS complex were
studied in [4], and performed better than HFQRS in de-
tecting acute myocardial ischemia during PTCA. As the
analog bandwidth of the recordings has a cut off in 125
Hz, HFQRS features calculated in [5] could not be studied
here. However, rWTx measures the higher frequency band
of QRS complex, given the bandpass nature of the WT. The
rest of the features enumerated in Table 2 are described in
[3], but are not conventionally used in EST.

The feature vector x is constructed with the values de-
scribed above, followed with a 1. Then x was used with a
logistic regression detector

p(x) =
1

1 + e−aTx
(1)

where the patient is classified as ischemic if p(x) > 0.5.

The process of training the detector consists in estimat-
ing the vector of regression coefficients a with an iterative
algorithm, while the evaluation in calculating p(x). The
implementation of the detector was performed using the
PRTools toolbox [9].

As one of the objectives of this work was to asses the
incremental value of the proposed features with respect
to the a priori information available, we performed a se-
quential floating feature selection (SFFS) in three steps [2],
one for each group of features in Table 2. Therefore we
first performed an SFFS for pretest group, obtain a pretest
model and use it as starting point to the following SFFS
of exercise features. The same procedure was repeated
for the last group of proposed features. This triple-SFFS
was repeated for both 5 and 10% IM thresholds, obtaining
one final feature model for each. The evaluation of each
model within the SFFS was performed following a k-fold
cross-validation with k = 10 folds. It is important that
each cross-validation step implies training in 9/10 of the
database patients, and testing in the remaining 1/10 of the
patients. The optimization parameter for the SFFS is the
area under (AUC) the receiver operating curve (ROC). The
two feature models obtained were finally evaluated in the
whole database, as performed in [5].

3. Results

The models obtained from the SFFS are presented in
Table 3. The group of proposed features selected for
IM ≥ 5% were: 1) features from Q and R waves am-
plitudes, 2) all slopes of the QRS complex, 3) features re-
lated to the QRS complex width measured at WT scales
3 and 4, 4) features related to the duration of ventricular
repolarization at WT scales 3 and 4, 5) the energy of the
QRS complex measured at WT scales 3 and 4 and 6) the
ST normalized by the R wave amplitude after PE. The fi-
nal evaluation resulted for the threshold of IM ≥ 5%, in a
sensitivity (Se) of 77%, specificity (Sp) of 88% and AUC
of 0.88, while for IM ≥ 10%, Se 76%, Sp 90% and AUC
0.95. These results are presented in Table 4 and compared
with the results obtained in [5]. Figure 1 shows the incre-
mental value of the proposed features as they are included
into the model.

4. Discussion and conclusions

In this work we presented a model of features for is-
chemia detection in EST, based on three groups: pretest,
exercise and a set of proposed measurements calculated in
ECG recordings of conventional analog bandwidth. The
proposed group of features is the main methodological
contribution with respect to [5]. These features were cal-
culated in most of the cardiac cycle in order to measure
the effect of stress-induced ischemia. Some of the fea-
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Table 2. Features used in this work.
Group Feature Description

Pretest

Pretest score – Age – Gender – Infarction
– Smoking – Lipids – Diabetes – STT

changes – Max age-pred HR – Systolic BP
– Diastolic BP

Clinical features included with the database. Description
available in [6]. BP at rest

Exercise

EST stage – Max HR – Rest HR – EST
duration – HR recovery – HR change –

Duke T. score – Chest Pain – Systolic BP
PE – Diastolic BP PE

EST duration in seconds. Chest pain: typical - atypical -
none. Exercise features included with the database.
Description available in [6].

Proposed

QRS width – STPE – STAP – (ST/R)PE –
(ST/R)AP – STPE/RRPE – x(kQ) – x(kR) –
x(kS) – s−Q – sQ

R – sR
S – sS

−– kP
Z – kQRS

Z –
kST−T

Z – rWTx – tr50

RT: rest. PE: peak exercise. AP: After PE. ST/R ST
normalized with respect R wave [3]. x(kX) ECG value at X
wave. sX

Y slope between X and Y waves. kX
Z zero-cross

position of the WT autocorrelation signal in P, QRS and
ST-T [2]. rWTx RMS calculated in the WT of the QRS
complex at scale x. tr50 is the time to decrease 50% of the
HR change from PE.

Table 3. Features obtained from the SFFS.
IM Features

≥ 5%

x(kQ)SFT – x(kQ)PE
PCA2 – x(kR)RT

SFT –
x(kS)PCA2 – (s−Q)PCA2 – (s−Q)SFT –

(s−Q)PE
PCA1 – (s−Q)PE

PCA2 – (sQ
R)RT

SFT – (sR
S )RT

PCA1

– (sS
−)PCA2 – (sS

−)PE
PCA2 – (sS

−)RT
SFT –

(kQRS
Z )WT3

PCA2 – (kQRS
Z )WT3−PE

PCA2 –
(kQRS

Z )WT4−PE
PCA2 – (kQRS

Z )WT3
SFT –

(kSTT
Z )WT3−PE

PCA1 – (kSTT
Z )WT3−RT

PCA1 –
(kSTT

Z )WT3−PE
PCA2 – (kSTT

Z )WT3−PE
SFT –

(kSTT
Z )WT4

SFT – rWT4
PCA1 – rWT3−RT

SFT – rWT4−PE
PCA1

– rWT4−RT
PCA1 – (ST/R)AP – EST stage – Max

HR – Rest HR – Duke T. score – Atypical
EST induced CP – Age – Gender – Infarction

– Max age-pred HR – Systolic BP RT

≥ 10%

x(kQ)RT
PCA1 – x(kR)RT

SFT – x(kR)PE
SFT –

x(kS)RT
SFT – x(kS)PCA2 – (s−Q)RT

PCA1 –
(s−Q)PE

SFT – (sQ
R)PE

SFT – (sQ
R)RT

SFT – (sR
S )PE

PCA1 –
(sS
−)PE

PCA1 – (sS
−)PE

PCA2 – (sS
−)PCA2 –

(sS
−)SFT – (kP

Z)WT3−RT
SFT – (kQRS

Z )WT4−RT
PCA2 –

(kSTT
Z )WT3

PCA2 – (kSTT
Z )WT3−PE

PCA2 –
(kSTT

Z )WT3−RT
PCA2 – (kSTT

Z )WT3−PE
SFT

–(kSTT
Z )WT4−RT

PCA2 – rWT3
PCA1 – tr50 – ST PE –

(ST/RR)PE
SFT – EST stage – Max HR – Non CP

induced EST – Typical CP induced EST –
Systolic BP PE – Diastolic BP PE – Pretest
Score – Max age-pred HR – Systolic BP RT
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Figure 1. ROC curves for the models shown in Table 3.

593



Table 4. Final results for the models presented in Table 3.
IM Description Se Sp AUC Comment

≥ 5% this work 77 84 0.88 crossval.
86 84 0.92 biased

Sharir et al. [5] – – – biased

≥ 10% this work 76 90 0.95 crossval.
100 91 0.99 biased

Sharir et al. [5] 88 78 0.89 biased

tures were studied in previous works in the context of is-
chemia detection [3, 4], while others as kX

Z were success-
fully used for heartbeat classification [2]. The performance
improvement of each feature was analyzed with an SFFS
algorithm, obtaining two models, one for IM≥ 5% and
the other for IM≥ 10%, which maximized the AUC calcu-
lated in a crossvalidated fashion. We chose these evalua-
tion approach to avoid obtaining a model too overfitted to
the data, as could happen in [5]. Of the features included
in the models, measurements around the Q wave seem to
be discriminant (x(kQ), s−Q and sQ

R), this could be related
with the fact that the first region affected by ischemia is
subendocardial [3]. The terminal slope of the QRS com-
plex ( sS

− ) measured in PCA2 or integrated with the SFT
strategy were also included. These features together with
those related to the duration of the ventricular repolariza-
tion should be further studied to understand its relation
with stress-induced ischemia. The duration of the QRS
complex (kQRS

Z ) is well known to be affected by ischemia,
as well as the level of the ST segment [3]. With respect to
the high frequency components of the WT QRS complex
measured with rWTX, only scales 3 and 4 were included,
despite other scales of higher frequency were available for
the feature selection. An aspect to be further studied is the
importance that each feature has within the model. Respect
to the calculation of the features as a ratio respect rest or
two separate features, both strategies were selected. As a
consequence, further experimentation is required to know
which features benefit from each strategy. Finally, it would
be interesting to study if features similar to HFQRS, with
good performance reported in [5], could contribute to the
obtained models. For this purpose we would need ECG
recordings with an analog bandwidth up to 250 Hz.

As can be seen in Table 4, the crossvalidated perfor-
mance is more conservative, but probably more represen-
tative of the actual performance of a classifier. According
to the ROC curve shown in figure 1, the most challeng-
ing detection problem is for IM ≥ 5%, for the case of
IM ≥ 10% the final model performs extremely well, a
symptom that the model could be too overfitted, probably
because of the scarcity of severe ischemia patients in the
cohort analyzed. However, it is necessary to study how

these models performance (and the reported in [5]) gen-
eralize to other databases in order to validate the perfor-
mance improvement presented in this work.

As a result of the methodology presented, the results ob-
tained in Table 4 represent an improvement with respect to
those reported in [5].

Acknowledgments

This work was supported by projects TEC2010-
21703-C03-02, TEC2010-19410 from MINECO (Spain)
and GTC T-30 from DGA and European Social Fund
(EU). The CIBER of Bioengineering, Biomaterials and
Nanomedicine is an initiative of ISCIII. Esther Pueyo ac-
knowledges the financial support of Ramón y Cajal pro-
gram from MINECO, Spain.

References

[1] Feil H, Siegel M. Electrocardiographic changes during at-
tacks of angina pectoris. The American Journal of the Med-
ical Sciences 1928;175(2):255–260.

[2] Llamedo M, Martínez JP. Heartbeat classification using
feature selection driven by database generalization criteria.
IEEE Transactions on Biomedical Engineering march 2011;
58(3):616–625. ISSN 0018-9294.

[3] Ellestad M. Stress Testing: Principles and Practice.
Oxford University Press, Incorporated, 2003. ISBN
9780195159288.

[4] Pueyo E, Sörnmo L, Laguna P. QRS slopes for detection and
characterization of myocardial ischemia. IEEE transactions
on bio medical engineering February 2008;55(2 Pt 1):468–
77. ISSN 1558-2531.

[5] Sharir T, Merzon K, Kruchin I, Bojko A, Toledo E, Asman
A, Chouraqui P. Use of electrocardiographic depolarization
abnormalities for detection of stress-induced ischemia as de-
fined by myocardial perfusion imaging. The American jour-
nal of cardiology March 2012;109(5):642–50. ISSN 1879-
1913.

[6] Couderc JP. The telemetric and holter ECG warehouse ini-
tiative (thew). URL thew-project.org.

[7] Martínez JP, Almeida R, Olmos S, Rocha A, Laguna P.
A wavelet-based ECG delineator: Evaluation on standard
databases. IEEE Transactions on Biomedical Engineering
2004;51:570–581.

[8] Llamedo M, Khawaja A, Martínez JP. Cross-database evalu-
ation of a multilead heartbeat classifier. Information Tech-
nology in Biomedicine IEEE Transactions on july 2012;
16(4):658 –664. ISSN 1089-7771.

[9] Duin R, Juszczak P, Paclik P, Pekalska E, deRidder D, Tax
D, Verzakov S. PR-tools, a matlab toolbox for pattern recog-
nition, 2008. URL http://www.prtools.org.

Address for correspondence:

Mariano Llamedo Soria, llamedom@unizar.es
I3A - I+D Building, C/ Mariano Esquillor S/N
Despacho 4.0.05 – CP: 50018, Zaragoza, España.

594




