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Abstract

Both scar and left-to-right ventricular (LV/RV) differ-
ences in repolarization properties have been implicated as
risk factors for lethal arrhythmias. As a possible mecha-
nism for the initiation of re-entry, a recent study has indi-
cated that LV/RV heterogeneities in the adaptation of ac-
tion potential duration (APD) to changes in heart rate can
cause a transient increase in APD dispersion following
rate acceleration, promoting unidirectional block of con-
duction at the LV/RV junction. In the presence of an is-
chemic region and ectopic stimulation, a pathological dis-
persion in repolarization has been suggested to increase
the risk of electrical re-entry. However, the exact location
and timing of the ectopic activation play a crucial role in
initiation of re-entry, and certain combinations may lead
to re-entry even under normal LV/RV dispersion in repo-
larization. This suggests that the phenomenon needs to be
investigated in a probabilistic way. In this study we em-
ploy a computationally efficient, phenomenological model
to quantify the pro-arrhythmic effects associated with a
range of combinations of position and timing of an ectopic
activation. This allows us to probabilistically study how
increasing interventricular dispersion of repolarization in-
creases arrhythmic risk. Results indicate that a larger
LV/RV dispersion more than doubles the length of the time
window during which the ventricles are vulnerable to re-
entry, and leads to a four-fold increase in the probability
of re-entry within the vulnerable window.

1. Introduction

Ventricular heterogeneity in repolarization is one of the
most important contributors to the electrophysiological
substrate leading to the occurrence of lethal arrhythmias
such as ventricular fibrillation [1]. A number of studies
have demonstrated the complex spatio-temporal mecha-
nisms that modulate ventricular heterogeneity in repolar-
ization and pro-arrhythmic risk. Ventricular heterogeneity

in repolarization and arrhythmic risk are known to increase
with sudden changes in rate [2, 3], due to the highly rate-
dependent properties of the APD. The dynamics of APD
adaptation underlie the adaptation of the QT interval in the
electrocardiogram. Importantly, patients with protracted
QT interval rate adaptation appear to have an increased
arrhythmic risk [4], highlighting the importance of ven-
tricular rate adaptation dynamics in arrhythmogenesis. A
recent computational study based on in vivo human data
has suggested a mechanism of reentry initiation from in-
creased dispersion of APD adaptation in the presence of
ischemia [5].

The aim of this study is to investigate the pro-arrhythmic
effects of LV/RV differences in APD adaptation using
computer simulations. Specifically, we aim to provide a
quantitative characterization of the role of interventricular
dispersion of repolarization in arrhythmogenesis, within a
range of times and positions for the initiation of ectopic-
ity. In order to achieve this, we develop a fast phenomeno-
logical model, able to reproduce the essential mechanisms
involved in APD adaptation and the initiation of re-entry.
Using an image-derived human ventricular model, we then
compare two scenarios: one with normal difference in
LV/RV rate adaptation, and another with slow, patholog-
ical, LV rate adaptation, leading to a larger dispersion in
LV/RV repolarization.

2. Methods

2.1. Anatomical model

The anatomical model used for this study is a human
ventricular mesh derived from computed tomography data
[6], incorporating 55000 nodes. The model includes an
algorithmically defined fibre orientation derived from ex-
perimental data [7], generated using the Chaste simulation
package [8, 9]. As an aid for assigning specific properties
to the respective ventricles, each node of the model was
given a value between 0 and 1, with values close to zero
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signifying LV specific properties and values close to 1 sig-
nifying specific RV properties, based on their distance to
the LV and RV endocardium respectively. Additionally,
a non-conductive a spherical volume centered around the
septum was included in the model, roughly mimicking an
infarcted region resulting from LAD occlusion. Finally,
a volume close to the scar, near the base of the RV, was
assigned as the origin of ectopic beats, emulating the ec-
topic activity often observed in the peri-infarct zone. The
anatomical model is shown in Fig. 1, along with color cod-
ing for the LV and RV properties, and the non-conductive
and ectopic regions marked with the labels SCAR and
STIM, respectively.

Figure 1. Computational anatomical model. Blue and red
respectively signify LV and RV specific properties. The
region marked SCAR is non-conductive, whereas STIM
indicates the region of applied ectopic activity.

2.2. Conduction model

To describe the electrical conduction properties of the
model, we used the graph method developed in [10].
Briefly, the method relies on describing the cardiac tissue
as a connected graph, where every edge is associated with
a traveling cost. By finding the fastest path through the
graph between pairs of nodes, activation times can be ob-
tained with minimal computational cost. The costs ci,j as-
sociated with traveling along a graph edge connecting two
nodes i and j are calculated according to

ci,j =
√
v(ni, nj)TD

−1
i,j v(ni, nj)/F, (1)

where v(ni, nj) is the vector going from node i to node
j, F is a speed function, and Di,j is a tensor describing
the anisotropy resulting from the cell orientation between
nodes i and j. The conduction paths in the model were
computed using a modified version of Dijkstra’s algorithm
that will be described in Section 2.4.

2.3. Action potential model

The dynamics governing the adaptation of the action po-
tential duration, A, within the model are described using

the following recurrence relation for each node, following
the approach presented in [11]:

An+1 = [1− α e−Dn/τ2 ] G(Dn)+

[α− 1 +
An

G(Dn−1)
e−(An+Dn)/τ2)] G(Dn), (2)

G(Dn) = a1 − a2 e−Dn/τ1 . (3)

Here, n is an index counting the number of action potential
and D is the diastolic interval. The values for the param-
eters in Eqs. (2) and (3) were: a1,LV = 404, a2,LV =
197, τ1,LV = 77, τ2,LV = 76927, αLV = 1.05 and
a1,RV = 358, a2,RV = 121, τ1,RV = 97, τ2,RV = 49399
and αRV = 1.08 for LV and RV as indicated, and with
τ2,LV = 128720 for the slower adaptation. These values
were adapted to data presented in [5], using the Nelder-
Mead optimization scheme as implemented in MATLAB.
Figure 2 shows the dynamics of the APD dispersion re-
sulting from the normal (solid line) and slow LV adapta-
tion properties (dashed line), respectively, after a change
of pacing interval from 750 ms to 400 ms.

Figure 2. LV/RV dispersion in APD, following an abrupt
change in pacing rate from 750 to 400 ms. Change in pac-
ing rate occurs at beat 100. Data is shown for normal (solid
line) and slow (dashed line) LV rate adaptation (LVRA).

2.4. Activation and repolarization times

Based on the graph based method described in Section
2.2 and the model of APD adaptation described in Section
2.3, we now describe how the activation and repolarization
at the tissue level are computed. The algorithm is similar to
the well known Dijkstra’s algorithm [12], but is modified
to take repolarization into account, allowing nodes to be
activated several times and thus allowing simulation of re-
entrant activation. This modification is roughly analogous
to that presented for the fast marching method in [13].
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Briefly, the algorithm works by using a priority queue
Q to keep track of the order in which to expand nodes n
to maintain a causal flow of information. In this context,
expanding a node means finding its neighbors ni, and cal-
culating their arrival time t(ni), using information propa-
gated from node n. The value of t(n) is used to determine
the position of a node n in Q. When a node is pulled from
the queue, its APD is calculated according to Eq. (2). For
a start node n0, a pseudo-code description of the algorithm
can be found in Algorithm 1.

Algorithm 1 Modified Dijkstra’s Algorithm
Q← Q ∪ n0
t(n0)← 0
while Q 6= ∅ do
n← argminn∈Qt(n)
Q← Q \ n
APD(n)← F (APD(n), DI1(n), DI0(n))
time← t(n)
for all ni ∈ NEIGHBORS(n) do
if t(ni) +APD(ni) < time+ COST (n, ni) then
t(ni)← t(n) + COST (n, ni)
Q← Q ∪ ni
end if
end for
end while

2.5. Initiation of re-entry

The model was periodically activated from the bottom
of both ventricles with a pacing interval of 750 ms until
the APD distribution remained unchanged, followed by a
change in pacing interval to 400 ms until the maximal dis-
persion in repolarization was reached after approximately
100 beats as shown in Fig. 2. Finally, reentry was initi-
ated using an ectopic stimulus at the basal side of the non-
conductive zone, inside the region marked STIM in Fig. 1.

Rather than keeping the timing and placement of the
ectopic stimulus fixed, a range of different combinations
within the STIM region were investigated. The times were
varied between 265 ms and 295 ms in 10 steps, and 843
different positions were investigated, resulting in a set of
8430 possible combinations. This was done for both the
normal and slow adaptation parameters as described in
Section 2.3, resulting in a total of 16860 simulated sce-
narios.

3. Results

Two sets of 8430 simulations were performed, corre-
sponding to the normal and slow LV APD adaptation, as
described in the previous section. An individual simula-
tion took of the order of 100 ms to compute, often leading

to CPU times faster than real time. For some combinations
of position and timing of the ectopic beat, unidirectional
block on the still-repolarizing LV side initiated a counter-
clockwise reentry around the central conduction block as
depicted in Fig. 3.

For each of the investigated timings of the ectopic stim-
ulus, the percentage of positions within the STIM region
of the ectopic stimulus that lead to re-entry was recorded.
These results are visualized in Fig. 4. As can be observed
from the figure, the larger dispersion of repolarization lead
to a marked increase in the probability of re-entry, as well
as an extension of the range of timings of the ectopic beat
which lead to re-entry. An ectopic beat at approximately
282 ms after last intrinsic activation appears to lead to the
highest incidence of re-entry. At this time, the increased
interventricular dispersion of repolarization lead to an ap-
proximately four-fold increase in the number of positions
for the ectopic beat that lead to re-entry.

Figure 4. Percentage of resulting sustained ventricular
re-entries depending on ectopic timing since last intrin-
sic activation, for multiple ectopic locations close to the
infarcted area. The upper curve corresponds to the slow
LV rate adaptation (LVRA) of APD, while the lower curve
corresponds to the normal LV APD adaptation.

4. Discussion

In this work, we have presented a method for simulat-
ing re-entry with minimal computational costs. The new
method has enabled us to investigate the effects of inter-
ventricular dispersion of repolarization on the risk initia-
tion of re-entry. In order to quantify the risk, a range of
possible locations and timings were investigated, compris-
ing a total of over 16000 simulated scenarios. This has
allowed the quantification of the arrhythmic risk within
the investigated range. Results show that the slow LV rate
adaptation more than doubles the length of the vulnerable
time window, and leads to a four-fold increase in the prob-
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Figure 3. Electrical reentry following ectopic stimulation at 275 ms after last intrinsic activation. Unidirectional conduction
block is caused by the slower APD rate adaptation of the LV, which is still repolarizing at the time of the ectopic stimulus.
The four panels show the pseudo-potential of the tissue at 240, 275, 330 and 400 ms, for the left, middle left, middle right
and right panels, respectively.

ability of re-entry within the window.
The employed graph based model provides a simplified

representation of the dynamical properties of cardiac tis-
sue. Although capturing essential characteristics of APD
restitution and adaptation, it does not currently take into
account effects from CV restitution and adaptation. The
incorporation of such effects forms an interesting topic for
future developments of the presented methods. Additional
planned improvements include a more detailed model of
the infarcted region, as well as investigation of a larger
range of tissue rate adaptation and restitution properties.
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