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Abstract

The thoracic impedance (TI) signal, available in current
automated external defibrillators, has been proposed as an
indicator of the compression depth (CD) in animal models
of cardiac arrest. This study analysed the linear relation-
ship between the maximum CD and the fluctuation caused
in the TI in 19 out-of-hospital cardiac arrest episodes. The
mean of the CD maxima,Dmax, and themean peak-to-
peak fluctuation,Zpp, werecomputed for every 5 s from the
CD and TI signals, respectively. Three analyses were per-
formed: distributions ofDmax andZpp in all episodes, lin-
ear relation betweenDmax andZpp (correlationcoefficient
for every episode,Re, and for the complete dataset,Rc)
and timeevolution of the correlation coefficient,Ri, for
threeconsecutive intervals along every episode. Median
(25th − 75th percentiles)for Zpp were1.12 (0.78 - 1.48),
1.35 (0.94 - 1.89) and 1.67 (1.09 - 2.33)Ω for Dmax <38,
38≤ Dmax ≤51 (optimalcompressions), andDmax >51
mm respectively. High overlap between the three distri-
butions was observed.Re varied between0.04-0.83 (me-
dian=0.34), andRc was 0.27. Time evolution ofRi did
not showany tendency.Ri varied between0.06-0.94 (me-
dian=0.52). Linearity betweenDmax andZpp showed high
variability between episodes in humans. The correlation
coefficient for the complete dataset was low.

1. Intr oduction

Quality of chest compressions (CC) during cardiopul-
monary resuscitation (CPR) is a major determinant of car-
diac arrest outcome. High quality CC are associated with
better outcomes in both animals and humans [1]. The qual-
ity of CC is evaluated using CPR quality parameters such
as compression rate, depth and full chest recoil [2].

Resuscitation guidelines recommend that CC should be
applied with an adequate depth [3]. Nevertheless, several
studies show that shallow CC are common during cardiac
arrest [4]. Consequently, mechanisms for real-time CPR

feedback have been incorporated into automated external
defibrillators (AEDs). Accelerometers and force sensors
have been used in order to measure CPR quality param-
eters such as rate and depth of the compressions. These
mechanisms require important hardware modification in
existing AEDs. By contrast, thoracic impedance (TI) sig-
nal is available in current commercial AEDs together with
ECG signal. The TI signal is acquired through standard de-
fibrillation pads by passing an alternating current between
electrodes and measuring the resulting voltage. As the TI
shows fluctuations due to CC, it has been used to compute
instants of compressions [5], instantaneous compression
rate [6] and interruptions in compressions [7]. However,
no relationship between the TI and the compression depth
(CD) has been established so far.

In a recent clinical study with animals in cardiac arrest,
Zhang et al. reported a strong correlation between CD and
the fluctuations caused by CC in the TI [8]. Therefore, the
aim of this study was to analyse to which extent linear re-
lationship between CD and TI fluctuations could be appli-
cable to a human model with out-of-hospital cardiac arrest
(OHCA) episodes. The study also pretended to analyse the
viability of identifying compressions with adequate depth
in an OHCA scenario using exclusively the TI signal.

2. Materials

A convenience sample of 19 OHCA with complete CPR
process files were extracted from a large cardiac arrest reg-
istry maintained by Tualatin Valley Fire & Rescue (Tigard,
Oregon). The files were collected using the Philips Heart-
Start MRx monitor/defibrillator between 2006 and 2009.
In every episode between two and six rescuers performed
the CPR. Each episode was extracted containing two sig-
nals: the TI signal (resolution 0.74mΩ per least signifi-
cant bit with 0-80Hz bandwidth) recorded through defib-
rillation pads by applying a sinusoidal excitation current
(32kHz, 3mA peak to peak), and the CD signal computed
from the force and acceleration signals recorded through
the CPR assist pad. Fig. 1 shows an example. Mean du-
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Figure 1. CD and TI signals for an interval of an episode of the dataset. The evolution of parametersDmax and Zpp are
traced on the plots. This example shows a good correlation between two parameters.

ration of the episodes was 2215±556 s, with 2162±831
compressions per episode with 42.77±1.36mm depth.
The complete dataset contained a total of 41078 compres-
sions.

3. Methods

3.1. Processing of CD and TI signals

A negative peak detector with a static threshold of
15mm was used to automatically detect the instant,ti,
of maximum depth in each compression. The compres-
sion interval signal,xi[n], corresponding to theith com-
pression was marked in the TI signal betweenti − D and
ti + D, whereD is half of the time-difference betweenith

and (i+1)th compressions. Everyti was matched with its
correspondingxi[n] in the TI signal. The matching process
was visually inspected and if needed, manually corrected
in order to avoid errors due to delays between the CD and
the TI signals.

The TI signal was preprocessed to obtainzp[n]. It was
downsampled to 100Hz and, band-pass filtered between
0.6-7Hz (order 6 Chebyshev filter with 0.1 dB of peak-to-
peak ripple in the passband) in order to remove the base-
line drift, the fluctuations caused by ventilations and high
frequency noise. To characterize the fluctuations caused
by CC, the peak-to-peak amplitude,Zpp, was computed
for everyzpi [n] which represents the correspondingxi[n]
in thezp[n] as shown in Fig. 2.Zppi corresponds to the
peak-to-peak amplitude of the fluctuation for theith com-
pression and was defined as follows:

Zppi = maxi − mini (1)

where maxi denotes the maximum positive peak and
mini the minimum negative peak after the maxi within
zpi [n] (see Fig. 2).

Taking into consideration the procedure followed by
Zhang et al. [8], every 5 s both the mean values of the CD
maxima,Dmax, and the mean values of the peak-to-peak
fluctuation,Zpp, were computed from the CD signal and
zp[n], respectively. Evolution ofDmax and Zpp values for
an interval of episode are traced in Fig. 1.
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Figure 2. CD andzp[n] signals for an interval of an
episode of the dataset.xi[n], zpi [n] and Zppi are depicted
in the plot.

3.2. Analysis of distributions

Dmax and Zpp were individually tested using the one
sample Kolmogorov-Smirnov test to analyse if they come
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Figure 3. Distributions ofZpp for the three different
groups of CC: shallow (blue), optimal (red) and too deep
(green).

from a normal distribution.Dmax values and their corre-
spondingZpp values were split into three groups corre-
sponding to shallow (Dmax < 38mm), optimal (38 ≤
Dmax ≤ 51mm) and too deep (Dmax > 51mm) CC ac-
cording to 2005 resuscitation guidelines [3], which were in
effect when the dataset was collected. These groups were
tested using Barlett’s test to see if they came from normal
distributions with the same variance. Finally, the groups
were tested using Kruskal-Wallis test to see if there were
significant differences between medians.

3.3. Linear analysis

Linear analysis was carried out betweenDmax and Zpp.
The linearity was tested with Pearson correlation coeffi-
cients and univariate linear regression used to fit a model
to the data which tried to predictDmax usingZpp. Correla-
tion coefficients for every episode (Re) and for the whole
database (Rc) were calculated. For each episode the time
evolution of the correlation coefficient in three consecutive
intervals of equal duration,Ri, was computed along every
episode.

4. Results

Kolmogorov-Smirnov tests forDmax and Zpp were
rejected as they did not follow a normal distribution
(p<0.01). Barlett’s test showed that shallow, optimal and
too deep groups did not come from normal distributions
with the same variance (p<0.01). Kruskal-Wallis test con-
cluded that there were significant differences between me-
dians of each group (p<0.01). Thus, median (25th − 75th

percentiles) for shallow, optimal and too deep groups were
1.12 (0.78 - 1.48), 1.35 (0.94 - 1.89) and 1.67 (1.09 - 2.33)
Ω, respectively. Fig 3 shows the distribution for the shal-
low (blue), optimal (red) and too deep (green) compres-
sions. Although medians of the three groups are signif-
icantly different, the high overlap between them is high,
which makes the discrimination difficult.
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Figure 4. Model fitted using univariate linear regression
for the whole database.
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Figure 5. Models fitted using univariate linear regression
for each of the 19 episodes of the database.

Fig 4 shows the model fitted (black line) using univariate
linear regression for the whole database. Visual inspection
permits identifying an underfitting problem. Predictions
made using this model would incur large errors. Low cor-
relation was found betweenDmax and Zpp for the whole
database,Rc = 0.27.

Fig 5 represents the model fitted using univariate lin-
ear regression for each of the 19 episodes. There is a
large variability between models fitted for each episode,
Re ranging from 0.04 to 0.83. Median (25th − 75th per-
centiles) values forRe were 0.34 (0.20 - 0.61).

Fig 6 depicts the results obtained for each episode when
the time evolution of the correlation coefficient was anal-
ysed. Median (25th − 75th percentiles) duration of the in-
tervals was 589.73 (474.60 - 728.71) s. For each episode,
the blue circle, red diamond and black circle represent the
correlation coefficients,Ri, for the first, second and third
intervals, respectively.Ri varies from 0.06 to 0.94. Me-
dian (25th−75th percentiles) values forRi were 0.52 (0.32
- 0.70), 0.49 (0.32 - 0.79), 0.52 (0.26 - 0.64) and 0.52 (0.39
- 0.70) for all, first interval, second interval and third inter-
val values, respectively. The time evolution ofRi does not
show any clear tendency and median values ofRi for the
three intervals are very similar.
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Figure 6. Time evolution of the correlation coefficient
per episode. Blue circles, red diamonds and black circles
depict the correlation coefficients for first, second and third
intervals respectively in each episode.

5. Discussion and conclusions

In this study the linear relationship betweenDmax using
Zpp has been analysed in a OHCA scenario. Univariate
linear regression has been used to fit a model to the data
and to try to predictDmax usingZpp. Pearson correlation
coefficients have been calculated for the whole database
(Rc) and for every episode (Re). Furthermore, the time
evolution of the correlation coefficient,Ri, has been com-
puted along each episode dividing it into three consecutive
intervals with the same duration.

In a recent study by Zhang et al. [8], the relation-
ship between TI changes with the CD in a porcine model
of cardiac arrest was investigated. They used 2 min seg-
ments in which two emergency medical doctors provided
CCs with optimal (> 50mm) and suboptimal (< 35mm)
depth. The peak-through amplitude change of the TI dur-
ing each compression was averaged for every 5 s, obtain-
ing a feature similar to ourZpp. They found high corre-
lation given by a Pearson correlation coefficient equal to
0.89, between that feature and theDmax. They also found
a great difference in the TI amplitude between two groups
(1.45±0.37 vs 0.47±0.12, p<0.001) for optimal and sub-
optimal depths.

Unlike those promising results in animals, in our study
with humans using OHCA records, the Pearson correla-
tion coefficient was 0.27 for the whole dataset and a me-
dian (25th − 75th percentiles) values of 0.34 (0.20 - 0.61)
when the analysis was performed per episode. When the
time evolution of the correlation coefficient was analysed
along each episode, no clear tendency was found. Finally,
when we tried to distinguish three groups of CC (shallow,
optimal and too deep), although the medians were signifi-
cantly different, the high overlap between them makes the
discrimination very difficult. Nevertheless, further studies
are necessary in order to test if any non-linear relationship
could fit the data well enough to predictDmax using Zpp

when several rescuers and different patients are involved.
Other features of the TI waveform might be useful to dis-
criminate optimal from suboptimal CC.
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