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Abstract

During cardiopulmonary resuscitation, excessive ven-
tilation rates decrease cardiac output, thus reducing the
chance of survival. We have developed a simple method
to automatically detect ventilations based on the analysis
of the thoracic impedance signal recorded through defib-
rillation pads. We used 18 out-of hospital cardiac arrest
episodes that contained both ventilations provided during
chest compressions (CCs) and during pauses in CCs.
The detection algorithm first identified fluctuations on the
preprocessed impedance signal. Then, it characterized the
fluctuations by features for amplitude, duration and slope.
Finally, a decision system based on static and dynamic
thresholds was applied in order to determine whether each
fluctuation corresponded to a ventilation. Sensitivity (Se)
and positive predictive value (PPV) for the test set (2831
ventilations) were 97% and 94%, respectively. Before
intubation (343 ventilations), Se and PPV were 92% and
79%, and 97% and 97% after intubation. The performance
was very similar for intervals with and without CCs.
The proposed method could be implemented in automatic
external defibrillators for ventilation rate monitoring.

1. Intr oduction

Cardiac arrestis the sudden cessation of the heart’s
effective pumping function. Medical treatment of cardiac
arrest involves early cardiopulmonary resuscitation (CPR)
and early defibrillation. During CPR, ventilations and
chest compressions (CCs) provide oxygen to the lungs and
help oxygenated blood circulate to the vital organs. High-
quality CPR is an important factor for the successful resus-
citation of cardiac arrest patients. Resuscitation guidelines
recommend providing chest compressions and ventilations
with a 30:2 ratio before intubation and continuous CCs
with a ventilation rate of 8-10 per minute afterwards [1].

Unfortunately, hyperventilation is often reported for

both in-hospital and out-of-hospital cardiac arrests
(OHCAs) [2, 3]. In animal studies, these excessive
ventilation rates resulted in decreased coronary perfusion
pressures and poor outcomes [4].

Early defibrillation, i.e., the application of an electrical
shock to the heart, is another key intervention during
cardiac arrest. Automated external defibrillators (AEDs)
have reduced the time to such treatment for OHCAs. It has
been suggested that incorporating feedback systems into
these devices could help rescuers to improve CPR quality
[5]. Most AEDs acquire not only the ECG, but also the
thoracic impedance (TI) through defibrillation pads. This
signal fluctuates during ventilation because of lung volume
changes. The TI increases during inspiration (the air
inside the lungs is a poor conductor) and decreases during
expiration. Consequently, the analysis of the TI could be
useful for ventilation monitoring during CPR. However,
the amplitude and durations of the TI fluctuations vary
widely along the resuscitation episode and among different
patients [6]. Moreover, patient movement and CCs induce
artifacts in the TI, which makes the identification of the
fluctuations induced by ventilations difficult.

In this study, we present a simple adaptive method for
automatically detecting ventilations during CPR, based on
the analysis of the TI signal acquired by the defibrillator.
We evaluated the method with OHCA records.

2. Materials and methods

2.1. Database description and annotation

The datasetused in this study was a subset of a
large database of OHCA episodes recorded between 2002
and 2004 in three European cities during a prospective
study on CPR quality [5, 7]. The surface ECG and
several reference channels were recorded using modified
versions of Hearstart 4000 defibrillators (Philips Medical
Systems, Andover, MA, USA). The impedance was

ISSN 2325-8861 Computing in Cardiology 2013; 40:807-810.807



acquired through the defibrillation pads with a sampling
rate of 500 Hz and a resolution of 0.74 mΩ per least
significant bit. Using an external compression sensor, the
force and acceleration of the CCs were also recorded. For
this study we extracted the force and TI signals.

From the full database (361 episodes) we excluded
those that had been classified as not usable for ventilation
studies due to low quality of the impedance signal (100).
We visually reviewed the remaining 261 episodes to
select those which contained both intervals in which chest
compressions and ventilations were applied alternatively
(before intubation) and intervals in which they were
applied simultaneously. We found 36 episodes that met
this criterion and randomly selected half of them.

The mean duration of the selected episodes was45± 18
min, and they contained 6057 ventilations, 2235 of them
during CCs.

Five signal processing engineers independently anno-
tated the position of the ventilations in each episode using
a custom-developed graphical user interface. There was
consensus for 95% of the annotations. A majority criterion
was applied to the rest to obtain the annotations for
reference. Episodes were randomly split into a training
set to optimize the parameters of the ventilation detection
method and a test set to evaluate its performance.

2.2. Impedance-based ventilation detection

Ventilations and CCs produce identifiable variations in
the TI, slow and fast fluctuations, respectively. Fig. 1
shows a segment of a record that contains intervals with
and without CCs. During compressions, force was applied
in the chest of the patient (first panel), and fast fluctuations
were induced in the TI (second panel). In this case,
during the pauses in CCs (intervals in which the force
was zero), the patient was ventilated, and slow fluctuations
appeared in the TI. Each fluctuation is characterized by its
maximum and its two adjacent minima (circled in red in
the figure). The interval between the first minimum and
the maximum and between the maximum and the second
minimum represent the inspiration and the expiration time,
respectively.

The ventilation detection method we proposed prepro-
cessed the TI, identified fluctuations, characterized them
by features of amplitude, duration and slope and classified
them as ventilation or non-ventilation following a decision
system based on thresholds. The next subsections describe
each of these steps in depth.

2.2.1. Preprocessing of the TI signal

First, the TI was filtered using a 3rd-order Chebyshev
low-pass filter with a cutoff frequency of0.6 Hz, in order
to minimize the effects of the CCs. Fig. 2 shows a segment

Figure 1. Fluctuations induced by CCs and ventilations in
the TI.

of a record in which ventilations and CCs were applied
simultaneously. In the original impedance (second panel),
the fluctuations induced by ventilations and by CCs were
overlapped. Preprocessing reduced the fluctuations caused
by the CCs (third panel).

2.2.2. Fluctuation identification

Each ventilation interval was detected identifying the
maximum and the two minima of each fluctuation as
shown in Fig. 1.

Figure 2. Effect of preprocessing in a segment where
ventilations and CCs are overlapped. Features for the
filtered TI and the slope signals are depicted.
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2.2.3. Feature extraction

In this stage, every fluctuation was characterized by
five features extracted from the TI and the slope signal,
computed as its first difference. The features are depicted
in Figure 2 and defined as follows:

• For the preprocessed TI signal:
– ΔZi: Amplitude variation during inspiration time.
– ΔZe: Amplitude variation during expiration time.
– Δtv: Ventilation duration, i.e., the addition of the

inspiration and the expiration time.
• For the slope signal:
– Δsi: Amplitude variation during inspiration, i.e., the

rising rate of the impedance.
– Δse: Amplitude variation during expiration, i.e., the

falling rate of the impedance.

2.2.4. Fluctuation classification

Finally, each fluctuation was classified as ventilation if
the computed parameters were above certain thresholds.
We applied a static threshold for the duration (Thdur =1s)
and two dynamic thresholds for the TI amplitude (Thamp),
and for the slope parameters (Thslp):

Thamp = min(
a

N

N∑

k=1

min(ΔZi,k, ΔZe,k), Thamp,max)

Thslp = min(
s

N

N∑

k=1

min(Δsi,k, Δse,k), Thslp,max)

The dynamic thresholds started with the initial values
Thamp0 and Thslp0. For each detected ventilation, the
thresholds were updated as a weighted average of the
parameters of theN last ventilations, beinga and s
the weighting coefficients for the amplitude and the
slope, respectively. Thamp,max and Thslp,max were the
upper boundaries for the thresholds. We optimized the
parameters with the training set to balance the percentage
of annotated ventilations that were detected (sensitivity,
Se) and the percentage of detected ventilations that were
correct (positive predictive value, PPV), while maintaining
a Se above 90%. The values we obtained were:Thamp0 =
0.1, Thslp0 = 0.25, N = 5, a = 0.3, s = 0.4, Thamp,max=
0.5, andThslp,max = 0.9.

2.3. Performance evaluation

We evaluated the performance of the method in terms
of Se and PPV. The maximum admissible tolerance for
the position of the ventilations was 150 ms. We provide
separate results for intervals before and after intubation,
and for intervals with and without CCs.

3. Results

For the training set, the Se and PPV were 96%
(95% confidence interval, CI, 95-97) and 96% (95-96),
respectively. Table 1 summarizes the results for the whole
test set and for intervals before and after intubation and
with and without CCs. Results per episode varied between
95-100% (Se) and 88-100% (PPV).

Table 1. Se and PPV for the test set.

Se (95% CI) PPV (95% CI)

Whole test set 97% (96-97) 94% (94-95)
Before intubation 92% (89-95) 79% (75-83)
After intubation 97% (96-98) 97% (96-98)
Intervals with CCs 97% (95-97) 95% (94-96)
Intervals without CCs 97% (95-97) 94% (93-95)

Figure 3 shows a segment in which four ventilations, the
first two provided during CCs, were correctly identified.
The reference annotations are depicted with solid red lines
in the first panel, and the detected ventilations with dotted
lines in the second panel.
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Figure 3. Four ventilations correctly identified.

In the segment shown in Fig. 4, one of the ventilations
was not identified. In the filtered TI, the onset of the
second CC interval masked the fluctuation induced by the
ventilation, so the parameterΔZe was too low to permit
detection.

Fig. 5 shows an interval with two false detections. The
onset and the offset of the CC interval altered the filtered
TI and ventilations were wrongly identified.

4. Discussion and conclusions

We developed a simple but effective impedance-based
automatic detection system that identified 97% of the
annotated ventilations with a PPV of 94%. Our focus
in this work was simplicity, so we preprocessed the

809



time (s)

Filtered TI (Ω)

TI (Ω)

0 5 10 15 20

80

81

82

80

81

82

Figure 4. Example of a missed ventilation.
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Figure 5. Example of false detections.

impedance with a single fixed-coefficients filter and
identified the ventilation instants. This information is
sufficient to calculate the number of ventilations delivered
per minute, which is the ventilation-related parameter
that Kramer-Johansen et al. recommend to report CPR
quality [8]. The method we propose could be implemented
in current AED for ventilation rate feedback without
requiring additional devices, although a good quality TI
signal is required.

Due to adaptive thresholding, our method performed
similarly for intervals with and without CCs. However,
we obtained worse scores before than after intubation.
The ventilation/CC alternation complicated the detection,
because the onset/offset of the CC intervals altered the
filtered TI signal, as shown in Fig. 4 and Fig. 5.

Other more complex methods have been proposed to
detect not only the instants of ventilations, but also the
onsets and offsets. Risdal et al. [6] proposed a pattern-
recognition based system with an adaptive filtering scheme
using several reference signals. They reported 90% Se and
96% PPV with a larger set of episodes extracted from the
same original database.

To validate the results of this work, the method
should be tested with more episodes, ideally containing
independent data for ventilation annotation such as
spirometry-capnography measurements.
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