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Abstract

While contactless vital sign monitoring technologies
provide the great opportunity of fast and simple measure-
ments, all these technologies have the unavoidable draw-
back that they suffer from strong motion artifacts. These
motion artifacts may severely disrupt the signal of inter-
est, which could lead to false peak detections and hence,
result in false conclusions or diagnoses. Extensive and ro-
bust signal processing is needed for a reliable detection of
these artifacts. In this work, a mathematical model of the
motion artifacts is derived based on capacitive ECG mea-
surements, as an example for contactless heart rate esti-
mation. Thus, for the first time, it is possible to generate
an arbitrary large database of heavily distorted capacitive
ECG signals to test and verify algorithms for the robust
detection of motion artifacts.

1. Introduction

In recent years contactless or unobtrusive vital sign
monitoring has gained more and more interest in research
as well as in industry, as it provides several promising op-
portunities such as e. g. a zero preparation time. The
applied physical sensor principles are, especially in case
of heart rate monitoring, manifold and range from cam-
era based systems over high frequency magnetic induction
systems to force sensors [1].

Howeyver, all these methods suffer from severe motion
artifacts which is a fundamental property of all contact-
less measurement technologies. Although methods exist,
which try to compensate these motion artifacts with addi-
tional sensors and special signal processing [2—4], this may
not always be possible, e. g. if the motion artifact is kind of
chaotic and not linearly related to the motion. Hence, sig-
nal processing is needed to detect the intervals which are
distorted by artifacts to exclude or to compensate them.
Since the fraction of the distorted intervals may be very
large, very robust artifact detection algorithms need to be
developed.

To provide an arbitrary large database of heavily dis-
torted signals for the development of these algorithms, a
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mathematical model is derived in this paper. Here, a capac-
itive ECG measurement is analyzed, but other own mea-
surements show, that the model can easily be adapted to
other sensor principles by slight adaption of its parameters.
To the authors best knowledge, this is the first publication
which analyzes and models the severe motion artifacts in
contactless heart rate measurements.

2. Measurement setup

As already mentioned, the analyzed measurement sys-
tem is a capacitive ECG system. Such a system is similar
to a standard conductive ECG with wet electrodes with the
sole and main difference, that the coupling between the
electrodes and the patient is capacitive and thus forms a
high-pass filter. Therefore, an active electrode with a high
impedance buffer is required in order to achieve a low cut-
off frequency lower than 1 Hz [5]. Since no conductive
connection is needed, measurements through clothes are
possible. It has been shown, that capacitive systems may
achieve similar or even better results than standard ECG
system [6]. However, due to the large resistances, they
are on the other hand very prone to generate electrostatic
charges which cause chaotic non predictable severe motion
artifacts [6,7].

In order to acquire data for modeling, a typical capac-
itive ECG system was installed in a mattress pad, which
was positioned on a bed. Ten of the authors laid on this
pad for around 10 min with the task to perform typical
movements as during sleep, e. g. small, strong, short and
up to one minute long movements. The height of the
subjects was (1.8 £ 0.1) m with a body mass index of
(24.2 + 4.0) kg/m?2. A MP70 Philips patient monitor was
used to deduce a reference ECG.

3. Modeling
The measurement signal is denoted as y(¢) and is com-
posed of the undistorted signal of interest x(t) with addi-

tive superimposed gaussian noise n(t) and artifacts o(t):

y(t) = (t) +n(t) + o(t). ey
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The signal of interest 2:(¢), may be any quasi-periodic sig-
nal with a time varying period 7'(¢)
2(t) ~ 2 (t+ T(D)). @)
In this specific case it is the QRS-complex or a QRS-
complex similar shape, which is not important at this point
for the analysis of the artifact but later on for the generation
of the synthetic artifact distorted signal.
To allow a deeper insight into the motion artifacts and

to provide a possibility to analyze and model the artifacts,
following steps were performed:

1. Peak detection in all signals and the reference with the
open source ECG peakdetector OSEA [8].

2. Calculation of the peak-to-peak heart rate from the ca-
pacitive ECG (HR) and the reference ECG (HR,et).

3. Extraction of all time intervals of y(¢), in which the ab-
solute difference | HR — HR,.¢| is greater than 5 BPM, with
the assumption that these intervals are distorted by arti-
facts.

These extracted artifacts can now be analyzed regarding
their amplitude distribution and their frequency spectrum,
which can then be used to generate artificial motion arti-
facts.

Figure 1 shows the histogram of the amplitudes of the
extracted time intervals. Since the supply voltage is an up-
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Figure 1. Histogram of the extracted motion artifacts.

per limit of the maximum and minimum voltage, all volt-
ages above +9 V are cropped, which is clearly seen at both
ends of the histogram. Interestingly, the distribution of the
artifacts does not follow a normal distribution, but a so
called t-location-scale distribution. The probability den-
sity function p(o|p, v, o) of a t-location-scale distribution
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is described by

L)

v ()0
r<s>mo—< v ) ‘3)

and is a standard t-distribution with its parameter v for the
degrees of freedom and an additional location and scale
parameter p and 0. The gamma function is denoted with
I". The parameters in Figure 1 of the normal and the t-
location-scale distribution for an optimal fitting of the mea-
sured data, were calculated with MATLAB and its distribu-
tion fitting tool.

The t-distribution is used in robust statistical modeling,
as it better reflects the higher number of large elements due
to its higher tails compared to the normal distribution [9].
This is probably also the explanation why the motion arti-
facts of unobtrusive measurements follow a t-distribution,
as there are many small amplitudes but also a lot of arbi-
trary large amplitudes.

Another important property is the spectrum of the ar-
tifacts, which is shown in Figure 2. The slope of the
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Figure 2. Spectrum of the extracted motion artifacts.

spectrum follows an inverse linear frequency behaviour of
1/f%* in a logarithmic scale. The duration v of the ex-
tracted artifact intervals can be described by an exponential
distribution
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as it is clearly visible in Figure 3. Both the spectrum and
the distribution of the durations can be explained with a
consideration of energy. Strong and long lasting move-
ments require more energy than small and short ones, and
hence, these will probably less frequently occur.
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Figure 3. Distribution of the duration ~y of the extracted
artifact intervals.

4. Generation of an artificial artifact dis-

torted signal

After the analysis of the artifacts a synthetic signal shall
be generated. At first the quasi-periodic signal x(t) of
length [ is generated. Since the physiological heart rate
variability is an important property, a public script to gen-
erate an artificial ECG is taken [10]. However, instead of
using the complete script, only the time points of the peaks
are taken, at which then an own pattern is placed. This is
done for further analyses if, for example, an artificial dis-
torted optical pulse signal shall be generated. Here, a short
triangle pulse is used as a model for the QRS-complex.
Since the pulse shape does neither affect the r-peak detec-
tion of the ECG peak detector, nor the artifacts, it is an
acceptable simplification.
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Figure 4. Histogram of the artificially generated motion
artifacts.

The artificial artifacts o(t) are taken from a t-location-
scale distribution and low-pass filtered to achieve the right
frequency behavior. The parameters for the distribution
and the filter are optimized in order to fit the results from
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the analyses of the preceding section. The histogram of the
generated artificial artifacts is shown in Figure 4. Although
the parameters i, o and v of the artificial t-distribution are
slightly different, they almost perfectly match the distribu-
tion of the measured artifacts.

The spectrum of the artificial artifacts is given in Fig-
ure 5. It has the same qualitative behavior at low and high
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Figure 5. Spectrum of the artifical motion artifacts.

frequencies as the spectrum of the real artifacts. However,
it is slightly shifted upwards. This might be due to a non
perfect artifact extraction in the analysis of the real arti-
facts, which also include only slightly distorted time inter-
vals. Additionally, the extracted intervals may also con-
tain QRS complexes and other not modeled noise sources
which might influence the spectrum accordingly.

The final artificial distorted capacitive ECG signal is
generated by distributing the artificial artifact intervals ran-
domly along the artificial quasi-periodic signal x(¢). The
duration of the artificial artifact intervals is taken from an
exponential distribution with A = 2.8.

As a final example Figure 6 shows a small time inter-
val of a real measured capacitive ECG and Figure 7 shows
a small time interval of an artificially distorted quasi-
periodic signal. The distorted intervals are shaded grey
and they look pretty similar in the real data and the artifi-
cially generated signal. There are very large artifacts and
also small artifacts in both signals. It can be seen in the real
measured data, that other noise sources and variations such
as the T- and P-wave exist between the R-peaks. These are
not modeled here, as they do not influence the R-peak de-
tection.
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Figure 6. Example of a real measured capacitive ECG
signal with artifacts.
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Figure 7. Example of an artifical generated quasi-periodic
signal with artificial artifacts.

5. Conclusion

For the first time a mathematical model was derived to
model the severe motion artifacts in capacitive ECG mea-
surements. The amplitude distribution of the artifacts fol-
low a t-location-scale distribution with a spectrum which
follows an inverse linear frequency behavior of 1/f1-4. Al-
though the statistical parameters of the artificially gener-
ated artifacts do not perfectly match the statistics of the
measured data, the resulting artificial artifacts look equal
to the measured ones. However, it is not important to meet
the statistical parameters very exactly, as they may any-
way slightly change depending on the actual measurement
conditions. However, it will always be a t-location-scale
distribution with a spectrum which follows an inverse fre-
quency behavior.

The derived model can be used to generate an arbitrary
large database to develop robust artifact detection algo-
rithms. As the positions of the artifacts are known a priori,
a gold standard is available to evaluate the algorithms with
typical classification quality criteria.
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