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Abstract

The thoracic impedance (TI) signal, which reflects fluc-
tuations due to CCs and ventilations, has been suggested
as a surrogate to compute CC–rate and ventilation–rate
during cardiopulmonary resuscitation. This study devel-
oped a method based on empirical mode decomposition
(EMD) to compute CC–rate and ventilation–rate using
exclusively the TI. Twenty out-of-hospital cardiac arrest
episodes containing the TI, compression depth (gold stan-
dard for CC–rate), and capnography (gold standard for
ventilation–rate) signals were used. The EMD decom-
posed the TI signal into intrinsic mode functions (IMFs).
IMFs were combined based on their median instantaneous
frequency to reconstruct separately the CC–signal and the
ventilation–signal. Independent CC and ventilation de-
tectors were used based on fixed thresholds for durations
and dynamic thresholds for the amplitudes of the fluctua-
tions. Sensitivity and positive predictive value (PPV) for
each detector were 99.35%/98.75% and 93.21%/82.40%.
CC–rate and ventilation–rate were computed based on in-
stants of CCs and ventilations respectively. When com-
paring detected rates with rates obtained from the gold
standards, the mean (SD) errors were 0.57 (0.55) min−1

and 1.10 (1.19) min−1 for CC–rate and ventilation–rate
respectively. We concluded that CC–rate and ventilation–
rate can be accurately estimated applying EMD to the TI.

1. Introduction

The 2010 resuscitation guidelines strongly recom-
mend providing high quality cardiopulmonary resuscita-
tion (CPR) which includes chest compressions (CCs) pro-
vided at a rate of at least 100 compressions per min (cpm)
and ventilations delivered one every 6–8 s, or at a rate of
about 8–10 breaths per minute [1].

It has been reported that the number of patients achiev-
ing return of spontaneous circulation decreases as CC–

rate decreases, and that too high compression rates may
reduce coronary blood flow [2, 3] and decrease the num-
ber of compressions with adequate depth [4, 5]. Excessive
ventilation, either by rate or tidal volume, is common dur-
ing resuscitation and it is associated with poorer outcomes
of cardiac arrest [6]. Consequently, review software tools
have been created to measure the quality of the performed
CPR and thus, help improve CPR metrics. These software
tools usually require the automated external defibrillators
(AEDs) to be equipped with additional hardware such as
accelerometers or force sensors, which are relatively ex-
pensive accessories for widespread use. Therefore, cur-
rent commercial AEDs only record the electrocardiogram
(ECG) and thoracic impedance (TI) signals through the de-
fibrillation pads. The TI signal is acquired by injecting a
sinusoidal current between pads and measuring the result-
ing voltage. The TI shows fluctuations due to CCs and ven-
tilations (see Fig. 1), and noise components. These fluc-
tuations can be identified and used to compute CC–rates
and ventilation–rates. The objective of the current study
is, therefore, to develop a method based on the empiri-
cal mode decomposition (EMD) of the TI signal to extract
both the CC–signal and ventilation–signal, and to compute
CC–rates and ventilation–rates in out-of-hospital cardiac
arrest (OHCA) episodes.

2. Materials

A convenience sample of 20 OHCA episodes with com-
plete CPR process files were extracted from a large car-
diac arrest registry maintained by Tualatin Valley Fire &
Rescue (Tigard, Oregon). The files were collected us-
ing the Philips HeartStart MRx monitor/defibrillator be-
tween 2006 and 2009. Each episode contained concur-
rent TI, compression depth (CD) and capnography sig-
nals. The TI signal (resolution 0.74 mΩ per least sig-
nificant bit with 0–80 Hz bandwidth and a sampling rate
of 200 Hz) recorded through defibrillation pads by apply-
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Figure 1. A 30 s segment extracted from an OHCA episode of the dataset analyzed in the study. From top to bottom,
the CD, capnography, TI, zc(n) and zv(n) signals can be observed. The TI shows rapid fluctuations correlating with
the CCs in the CD signal, and slow fluctuations due to ventilations correlating with the upstrokes of the capnography.
The black dotted lines represent instants of the compressions and ventilations in the gold standards (CD and capnography
respectively). Blue dots in zc(n) and zv(n) depict the instants of the detected instants of CCs and ventilations respectively,
while black triangles represent the instants of CCs in zc(n) and instants of ventilations in zv(n) extracted from the gold
standards.

ing a sinusoidal excitation current (32 kHz, 3 mA peak to
peak), the CD signal computed from the force and accel-
eration signals recorded through the CPR assist pad (sam-
pling rate 250 Hz), and the capnography signal acquired
using Microstream (sidestream acquisition with a sam-
pling rate of 40 Hz and a resolution of 0.004 mmHg per
bit). Fig. 1 shows an example of the signals of interest.
The mean (standard deviation, SD) duration of the episode
was 88.85 (46.59) s with a mean of 139 (75) compressions
and 11 (5) ventilations per episode. A total duration of
1777 s, including 2781 CCs and 221 ventilations, were an-
alyzed.

3. Methods

3.1. Empirical mode decomposition

The EMD was first proposed by Huang et al. [7] as a
signal decomposition algorithm based on a consecutive re-
moval of the elemental signals called intrinsic mode func-
tions (IMFs). Basically, an IMF represents the oscillation
mode embedded in the signal, and it meets two require-
ments: (1) the number of extrema and zero crossings must

be either equal or differ by one, and (2) the mean value of
the envelope defined by the local maxima and the envelope
defined by the local minima is zero. For any signal, x(t)
the IMFs are found by the sifting algorithm which consists
of an iterative procedure with the following steps:
1. Find all local maxima and minima.
2. All the local maxima are connected by a cubic spline as
the upper envelope, M(t), and the same procedure is fol-
lowed with the local minima to compute lower envelope,
m(t).
3. The mean of the envelopes is calculated as e(t) =
(M(t) −m(t))/2
4. e(t) is subtracted from the signal: x(t) = x(t) − e(t)
5. Return to step 1, or stop if x(t) remains nearly un-
changed, i.e. if the standard deviation between x(t) and
x(t) − e(t) is below 0.3 [7].
6. An IMF is obtained, ϕ(t), then remove it from the sig-
nal, x(t) = x(t) − ϕ(t), and return to 1 if x(t) has more
than one extremum (neither a constant nor a trend).
7. If x(t) does not have more than one extremum, then the
residue, r(t), is left.

For each episode, the median instantaneous frequency
of each IMF was calculated as the median value of in-
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Figure 2. A 15 s segment extracted from an OHCA episode of the dataset analyzed in the study. From top to bottom,
the TI, zc(n) and zv(n) signals can be observed. The four features extracted for each local maxima detected in zc(n) and
zv(n) are depicted.

verse of the time interval between fluctuations. Those
IMFs with a median instantaneous frequency below 0.6 Hz
were combined and added to r(t) in order to compose the
ventilation–signal, zv(n). Those IMFs with a median fre-
quency between 0.6–15 Hz were combined to obtain the
compression–signal, zc(n). IMFs with a median instanta-
neous frequency above 15 Hz were not considered as they
had little information to provide, mostly, related to high
frequency noise.

3.2. Feature extraction

The zc(n) and zv(n) signals were independently ana-
lyzed to identify the instants of the local maxima which
might be potential CCs or ventilations respectively. For
each local maximum, the next features were extracted:
• A1: The trough-to-peak amplitude of the fluctuation.
• A2: The peak-to-trough amplitude of the fluctuation.
• d1: Duration of the trough-to-peak rise.
• d2: Duration of the peak-to-trough fall.

Fig. 2 shows an example of the features extracted from
both zc(n) and zv(n).

3.3. Compression detector

The CC–detector identified local maxima in zc(n) cor-
responding to chest compressions. The detector assessed
the duration of the fluctuation (d1 + d2) against a static
threshold and the mean amplitude, mean value of A1 and
A2, against a dynamic threshold. The weighted average of
the mean amplitude of the last detected CCs (a maximum
of 6) was used as the dynamic threshold. If the duration
and amplitude of the fluctuation were above the static and
dynamic thresholds respectively, the fluctuation was con-
sidered as CC. A refractory time was established to avoid

false positive detections due to second and third harmon-
ics of the fluctuations. More details of the CC–detector are
given in [8].

3.4. Ventilation detector

The ventilation detector identified the local maxima in
zv(n) corresponding to ventilations. The detector evalu-
ated the inflation time (d1) against a static threshold and
the inflation amplitude, A1, against a dynamic threshold.
The weighted average of the minimum amplitude of the
last detected ventilations (a maximum of 5) was used as
the dynamic threshold. If the inflation time and amplitude
were above the static and dynamic thresholds respectively,
the fluctuation was considered as ventilation. A refrac-
tory time was established to avoid false positive detections.
More details of the ventilation detector are given in [8].

3.5. Evaluation

The accuracy of the methods to detect CCs and venti-
lations were evaluated in terms of sensitivity and positive
predictive value (PPV). Sensitivity was defined as the per-
centage of CCs/ventilations correctly detected, and PPV as
the percentage of detected CCs/ventilations corresponding
to real CCs/ventilations. The instants of CCs and ventila-
tions were used to compute the mean CC–rate and mean
ventilation–rate for each episode as the inverse of the me-
dian interval between instants of CCs and ventilations re-
spectively. The mean rates were compared with those com-
puted from the gold standards in order to compute the er-
rors. The CD and capnography signals were accepted as
gold standards for CCs and ventilations respectively. The
instants of CCs/ventilations were manually annotated in
the gold standards.
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4. Results

Fig. 1 illustrates a 30 s segment of an episode of the
database. The original TI signal, and the reconstructed
compression–signal, zc(n), and ventilation–signal, zv(n),
can be observed. The performance of the ventilation and
compression detector is also shown. Blue dots depict the
instants of compressions/ventilations detected by the com-
pression/ventilation detector in zc(n)/zc(n). Whereas the
black triangles represent the gold standard for compres-
sions/ventilations in zc(n)/zc(n). In this case, all ventila-
tions and compressions are correctly detected.

Compression and ventilation detectors showed a sen-
sitivity/PPV of 99.35%/98.75% and 93.21%/82.40%, re-
spectively. Mean (SD) errors of 0.57 (0.55) min−1

and 1.10 (1.19) min−1 were reported for CC–rate and
ventilation–rate respectively when they were compared
with those computed from the gold standard.

5. Discussion and conclusions

In this study we proposed a new methodology based on
EMD to separate the compression–signal and ventilation–
signal extracted from the TI signal. A chest compression
detector and a ventilation detector were independently ap-
plied to the compression signal, zc(n), and the ventilation
signal, zv(n), to later compute CC and ventilation rates
based on the instants of the detected compressions and
ventilations. The compression detector showed a great per-
formance, while the sensitivity/PPV and mean error val-
ues obtained for the ventilation detector were quite good
and similar to those reported by other authors [8, 9]. The
capnography used as gold standard for ventilation detec-
tion sometimes presents artifacts due to chest compres-
sions and other factors that make the identification of ven-
tilations difficult. Other gold standards, as the volume
or flow signals obtained through mainstream capnography,
would permit a more rigorous evaluation of the ventilation
detector.

We conclude that the EMD can be used to accurately
decompose the TI signal into compression and ventilation
signals that permit to compute CPR metrics in debriefing
of cardiac arrest episodes.
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