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Abstract 

Heart rate variability (HRV) analysis begins with the 
relatively non-invasive and easily obtained process of 
ECG recording, yet provides a wealth of information on 
cardiovascular health. Measures obtained from HRV use 
time-domain, frequency-domain and non-linear 
approaches. These measures can be used to detect 
disease, yet from the large number of possible measures, 
it is difficult to know which to select, in order to provide 
the best separation between disease and health. 

This work reports on a case study using a variety of 
measures to detect the early stages of Cardiac Autonomic 
Neuropathy (CAN), a disease that affects the correct 
operation of the heart and in turn leads to associated co-
morbidities. We examined time- and frequency-domain 
measures, and also non-linear measures. In all, 80 
variables were extracted from the RR interval time series. 
We applied machine learning methods to separate 
participants with early CAN from healthy aged-matched 
controls, while using a Genetic Algorithm to search for 
the subset of measures that provided the maximum 
separation between these two classes. Using this subset 
the best performance was an accuracy of 70% achieved 
on unseen data. 

1. Introduction

Cardiac Autonomic Neuropathy (CAN) is a disease 
that involves sympathetic and parasympathetic nerve 
damage leading to arrhythmias and heart attack. An open 
question is to what extent this condition is detectable by 
the measurement of Heart Rate Variability (HRV) in 
asymptomatic individuals or at the preclinical stage. 

Heart rate, and its inversely related property heart rate 
variability, represents a non-stationary non-linear system 
[1]. In previous work [2] we have shown that entropy 

measures based on HRV allow people with CAN to be 
distinguished from controls with good sensitivity and 
specificity. In this work we report on detection of CAN at 
an earlier stage, which can greatly assist in management 
of this disease. 

1.1. Heart Rate Variability (HRV) 

HRV is commonly used in assessing the functioning of 
cardiac autonomic regulation [3]. The autonomic nervous 
system (ANS) regulates heart rate (HR) through 
sympathetic and parasympathetic branches. Sympathetic 
activity increases HR and decreases HRV, whereas 
parasympathetic activity decreases HR and increases 
HRV [4]. The heart rate (HR) is expressed as the number 
of beats per minute.  

HRV provides information only on the changes in the 
interval length between heart beats (RR interval) using. 
using time and frequency based methods [5]. These 
methods have either focused on the magnitude of RR 
interval fluctuations around its mean, or on the magnitude 
of fluctuations in given frequency bands. However more 
recent analysis methods such as nonlinear methods have 
shown promise for identifying risk of future morbidity 
and mortality in diverse patient groups. For example, an 
estimate of HRV using the standard deviation of RR 
intervals found that this is higher in well-functioning 
hearts but can be decreased in coronary artery disease, 
congestive heart failure and diabetic neuropathy [6]. 
Although HRV is useful in disease detection, when only a 
simple derived measure is used, such as the standard 
deviation of the RR intervals (SDNN), it is no better than 
the average heart rate and in fact contains less 
information for risk prediction after acute myocardial 
infarction [7]. This indicates that more advanced 
measures of HRV should be explored for detection of 
.asymptomatic patients to reduce the incidence and 
prevalence of CAN [8]. Standard time and frequency-
domain methods as well as different non-linear methods 
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have been proposed [9]. 

1.2. Time-domain measures 

Time-domain measures include the SDNN, the number 
of pairs of successive intervals that differ by more than 
50ms divided by the total number of intervals (pNN50%), 
the Root Mean Square of Successive Differences 
(RMSSD), the triangular index (Triang), and the 
triangular interpolation of the interval histogram (TINN). 

The Poincaré plot is a visual representation of the time 
series and is constructed by plotting each consecutive RR 
interval as a point where y = RR(t) and x = RR(t-1). From 
this plot a fitted ellipse leads to estimating SD1 (short 
term variability) and SD2 (long term variability) [10]. An 
extension is the Recurrence Plot, which represents a 
sequence of length n as a point in n-dimensional space, 
then represents similar pairs as points on a two-
dimensional space. The Recurrence Rate (REC) is the 
density of these similar points, Determinism (DET) is the 
percentage of recurring points identified by diagonal 
lines, and Lmean is the mean length of diagonal lines 
exceeding a threshold. 

1.3. Frequency-domain measures 

Frequency-domain methods divide the spectral 
distribution into very low, low and high frequency 
regions. Low frequency power (LF) is believed to be 
indicative of both parasympathetic and sympathetic 
activity. High frequency (HF) is indicative of 
parasympathetic activity. Very Low Frequency (VLF) is a 
sensitive indicator of management of metabolic processes 
and reflects deficit energy states [11]. The ratio of low to 
high frequency components, which is indicative of 
sympathovagal balance, may also be calculated as well as 
the total power [12]. A component may also be divided 
by the total power, to express it in normalized units (n.u.). 

1.4. Non-linear measures 

Non-linear measures include Detrended Fluctuation 
Analysis (DFA), which is an estimate of the fractal 
correlation of the RR interval series and provides an 
exponent expressing short-term correlations (alpha1) and 
another expressing long-term correlations (alpha2). The 
correlation dimension (D2) of fractal analysis was also 
used. The multi-scale Renyi entropy was introduced and 
applied to physiologic time series by [13]. Renyi entropy 
H is a generalization of the Shannon entropy: 
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where pi is the probability that X =x and α is the order 
of the entropy measure. This is the parameter that is 

varied to produce the multiscale entropy. In this work 
Renyi Entropy was calculated for using -5 < α < +5 by 
estimating probabilities of sequences of RR intervals with 
length π (1, 2, 4, 8, 16), with a similarity parameter σ set 
to (0.01, 0.02, 0.04, 0.08, 0.16). 

1.5. Moments 

Moments are measures of distribution, in this work 
the distribution of R-R intervals. The familiar arithmetic 
mean and variance can be informally viewed as moments 
of order 1 and 2 respectively, where order refers to the 
exponent used in calculating these values. Higher order 
moments can be defined as: 
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where E[x] is the expectation of X, and μ is the 

arithmetic mean of the variable X. 

1.6. Machine learning algorithms 

Machine learning can be used to determine whether 
measurements pertaining to a study participant indicate 
Early CAN or Control. A number of algorithms for 
distinguishing between such classes are available using 
the Weka toolbox [14]. 

The Naïve Bayes (NB) algorithm [15] assumes that 
measures are independent. One would be skeptical of this, 
but the algorithm performs surprisingly well. It estimates 
prior probabilities by calculating simple frequencies of 
the occurrence of each value of each measure, given the 
class, then returning a probability of each class, given an 
unclassified set of measures. 

Sequential Minimal Optimization (SMO) is a classifier 
based on the Support Vector Machine (SVM). The SVM 
builds a set of exemplars that define the boundaries of the 
different classes. SMO builds on this using polynomial 
kernels [16]. 

The Nearest Neighbor (NN) algorithm [17] simply 
stores samples. When an example is presented to the 
classifier, it looks for the nearest match from the 
examples in the training set, and labels the unknown 
example with the same class. 

The Decision Table (DT) algorithm divides the dataset 
into cells, where each cell contains identical records. A 
record with unknown class is assigned the majority, or 
most frequent, class represented in the cell. The goal of 
training is to find a minimum set of measures that are 
optimal in predicting the class [18]. 

An implementation of the classic C4.5 decision tree 
algorithm [19], known as J48, was used. Numeric 
attributes are split using a measure of information gain, 
and this forms two or more branches of the tree. 
Subsequent splits are used until all branches contain only 
members of the same class. Then a pruning phase is used 
to reduce the complexity of the tree. 
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2. Methods

The aim of these experiments is to determine whether 
it is possible to build a model that can predict early CAN 
using measures derived from HRV. We used HRV data 
from the Charles Sturt University Diabetes Complication 
Study [21], which consists of 138 adult people, 67 with 
known CAN and 71 aged-matched controls. Both groups 
have been assessed for CAN using the Ewing battery. All 
participants provided a 20-minute recording using lead II 
ECG, from which the RR intervals were extracted and the 
measures discussed earlier were derived. 

The number of possible interactions between the HRV 
measures makes it difficult to choose the correct subset 
by manual inspection alone. We therefore conducted a 
search both for the optimum classifier algorithm and for 
the optimum subset. We used an outside cross validation 
loop to eliminate bias. This was implemented as follows: 

1. Perform Wrapper subset evaluation, for each classifier
algorithm, using 90% of the dataset, selected at
random. The outcome of this step is a subset of
measures chosen by the Genetic Algorithm that
maximises the classification accuracy on the dataset.

2. Using the 10% of the data not used during the
Wrapper process, train and test each of five classifier
algorithms using 10-fold cross validation.

3. Repeat 30 times.

Included in the Weka toolbox is a Wrapper Subset
Evaluator. This searches through the 80 measures that are 
being evaluated, building a classifier on a different subset 
multiple times, and finding the set of measures that gives 
the best performance. The Genetic search method is based 
on a simple model of biological evolution [20]. 

3. Results

Each of the five classifier algorithms produced an 
optimum set of measures, and this subset was then used 
for each of the five classifiers to yield a success rate. This 
was repeated 30 times and the percentage correctly 
classified was expressed as an average over 30 
repetitions. Table 1 shows a list of the most frequently 
selected measures. There was great variation in the subset 
chosen for different datasets, and for different classifiers. 
This suggests that some measures have higher 
discriminatory power than others. The 2nd moment, or 
variance, was selected in 85% of the trials, suggesting its 
important role. However, it was never selected as the only 
measure to use, indicating that alone it is unable to detect 
early CAN, and needs to be used in conjunction with 
other measures. Notice that variants of Renyi entropy 
were selected many times, indicating the importance of 
this measure. 

Table 1. A list of attributes in descending frequency of 
use, including only the 15 attributes that were selected in 
more than 50% of trials. The numbers in brackets after 
Renyi indicate the values of parameters (π, α) where π is 
the sequence length and α is the exponent. 

Attribute Selected Attribute Selected 

Moment 2 85% Renyi (2, -5) 56% 

Renyi (16, -1) 81% pNN50 (%) 55% 

Renyi (1, 1) 74% Renyi (8, 4) 54% 

Renyi (8, -2) 67% LF power (n.u.) 53% 

Renyi (4, 5) 65% Moment 8 53% 

Renyi (1, 4) 61% Renyi (4, 3) 53% 

Renyi (4, -5) 60% Renyi (4, -2) 52% 

Alpha 2 59% 

The results of classification using these subsets are 
shown in Table 2. Each row shows results for measures 
chosen using the classifier named in the row headings 
next to “Wrapper”. Each column shows the mean 
accuracy for 30 trials made using the classifier named in 
the column headings. So for example, when the subset of 
measures was chosen using Naïve Bayes (NB) and then 
trialed using Sequential Minimal Optimization (SMO), 
the mean of 30 trials was 66.2% correct classification. 
The best mean result was 71.0% using SMO. This was 
unaffected by the Wrapper method used, except that 
Naïve Bayes seemed to consistently produce an inferior 
subset of measures. For most algorithms, the accuracy is 
encouraging, considering that a preclinical condition is 
being identified, and that a random choice would be 
expected to assign approximately half of all participants 
to the correct class. The single best result was 93% 
correct classification, and the corresponding feature set 
was (in no particular order): pNN50%, HFpower, 
HFpower(n.u.), SD1, Sample Entropy, Alpha1, DET%, 
Lmean, Moment2, Moment6, and Renyi entropy values 
H(1,1), H(1,2), H(1,3), H(2,-5), H(2,-4), H(2,-2), H(2,-1), 
H(2,1), H(2,5), H(4,-5), H(4,-2), H(4,-1), H(4,1), H(4,3), 
H(4,5), H(8,-4), H(8,-2), H(8,-1), H(8,1), H(8,3), H(8,4), 
H(16,-5), H(16,-2), H(16,-1), H(16,3). 

4. Conclusions

Based on these results, it appears that it is possible to 
identify early CAN from analysis of HRV alone. Patients 
with early CAN could be correctly distinguished from 
normal participants 71% of the time 

Diagnosis by this method is not 100% accurate, and 
depends upon careful selection both of the classifier 
algorithm used, and the subset of measures used. 
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Table 2. Performance of each classifier, expressed as the 
percentage correct predictions on unseen data records. 
Abbreviations are defined in section 1.5. 

Method used for testing 

  NB SMO NN DT J48 

W
ra

pp
er

 

NB 67.4% 66.2% 66.4% 60.2% 61.2% 

SMO 65.0% 71.0% 70.2% 59.0% 66.7% 

NN 65.0% 71.0% 70.2% 59.0% 66.7% 

DT 65.0% 71.0% 70.2% 59.0% 66.7% 

J48 65.0% 71.0% 70.2% 59.0% 66.7% 

The variation of success using different classifier 
algorithms when using a separate subset for each 
classifier supports the findings of Kohavi [18], by 
showing that the measures chosen should be regarded as 
part of the classifier algorithm. The best measure in the 
current experiments is the second moment, although this 
measure alone cannot provide any useful discrimination 
of diabetics from controls. Using a set of measures suited 
to the chosen classifier such as the Renyi entropy is very 
important in enabling this classification. 

The success in discriminating early CAN from normal 
controls in HRV data suggests a methodology that can 
provide a very simple and quick test and if implemented, 
would bring great benefits in terms of early diagnosis and 
consequently a reduction in hospitalization and length of 
stay. 
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