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Abstract

In this study, a new method for the detection of T wave
alternans in multichannel ECG signals is introduced. The
use of tensors (multidimensional matrices) allows us to
combine the information present in all channels, making
detection more robust. To construct a 3D tensor from a 2D
ECG signal, the T wave is first roughly segmented. The
intervals are then placed after each other to obtain a 3D
structure with dimensions time, space and heartbeats. The
tensor is decomposed using Canonical Polyadic Decom-
position. The result is 1 rank-one tensor consisting of 3
loading vectors (which match the 3 dimensions of the orig-
inal tensor). The third loading vector corresponds to the
heartbeats dimension and gives information about the be-
havior of the T wave in different heartbeats. The Fourier
transform of this loading vector can then be used to ex-
amine the presence of TWA. The methods have been tested
on a subset of the T wave alternans database available on
Physionet. Results show a very clear distinction between
loading vectors of signals from both groups: the power of
the loading vector in the TWA group is on average 100
times larger than in the control group. This suggests that
tensors are an effective way of detecting TWA in multilead
signals.

1. Introduction

T wave alternans (TWA) is a periodic variation in the
amplitude of the T wave, typically in a ABAB-pattern. It
is a widely recognized indicator for sudden cardiac death
[1]. When the amplitude difference between two T waves
is large enough, TWA can be detected by visually inspect-
ing the electrocardiogram (ECG). In many cases however,
the amplitude difference is only a few microvolts which is
too small for visual detection to be reliable enough. This
is also referred to as microvolt T wave alternans [1].
Several TWA detection methods exist, the most common
ones are the spectral method [2] and the modified mov-
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ing average method [3]. Most of the existing methods are
developed to analyze single channel ECG signals. When
multiple channels are available there are two possibilities.
The channels can either be processed independently and
the results can be combined in a later stage, or the infor-
mation available in the channels can be combined and an-
alyzed as a whole. This can be done for example by con-
structing a combined lead from all channels or by using
Principal Component Analysis [4].

In this study, we use tensors to detect T wave alternans in
multichannel ECG signals. Tensors are multidimensional
arrays which allow to analyze information in multiple di-
mensions. In this case, it is possible to simultaneously pro-
cess all channels of the ECG signal while looking at dif-
ferent heartbeats. This way all the information present in
the signal is combined, which leads to robust results.
Tensorlab is used for the tensor computations and decom-
positions. It is a Matlab-based toolbox that contains many
different methods for tensor calculations and structured
data fusion [5].

2. Methods

2.1. Data

The data used in this study are taken from the T wave Al-
ternans Challenge Database that is available on Physionet
and that has been constructed for a previous CinC chal-
lenge [6] [7]. It contains 100 multichannel ECG records
of 2 minutes with varying amounts of TWA. The database
is composed of both records from other ECG databases
and artificial records with simulated TWA. A subset of 20
records is selected from this database by selecting the 10
records with the highest amount of TWA (as defined by the
ranking available on Physionet) and the 10 records with the
lowest amount of TWA, which do not contain TWA. All
signals have a sampling frequency of 500 Hz. The number
of channels varies between 3 and 12.
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Figure 1: Construction of the T wave tensor.

2.2.  Preprocessing

Since many ECG signals contain a significant amount
of baseline shift, the baseline has to be removed so it does
not alter the amplitude of the T wave. This is done with
the method described in [8]. First, the QRS complexes are
detected using a wavelet-based method [9]. Starting from
the QRS complexes, fiducial points are then located on a
flat piece of the ECG signal. By interpolating a quadratic
spline through the fiducial points, the baseline can be ap-
proximated. Subtracting this spline from the original sig-
nal removes the baseline drift without changing other sig-
nal characteristics.

2.3.  Tensor construction

A tensor is a higher-dimensional matrix, while an ECG
signal typically has only 2 dimensions: space x time. In
order to apply tensor methods on matrices, the signal first
has to be tensorized. Tensorization adds one or more extra
dimensions to the original signal. Here, a third dimension
is created by aligning all T waves. This means that for
this application instead of adding information to the ECG
signal to construct a tensor, the most important parts of
the signal are extracted and ordered in a tensor. To avoid
complete T wave detection (which is prone to errors and
sensitive to noise) only a rough T wave segmentation is
done. An interval of 250 ms is selected from 100 to 350
ms after each R peak. These intervals are then placed one
after the other in a 3D structure. The result is a tensor with
3 dimensions: space x time x heartbeats.

Figure 1 illustrates the complete tensor construction.

2.4. Tensor decomposition

The tensor is decomposed with Canonical Polyadic De-
composition (CPD) [10]. CPD will decompose a tensor X
in a sum of R rank 1-tensors:
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Figure 2: Canonical Polyadic Decomposition

The process is illustrated in Figure 2. In this case, R, the
rank of the decomposition, is chosen as 1.

The result is 1 rank-one tensor consisting of 3 loading
vectors (which match the 3 dimensions of the original ten-
sor). The first loading vector, corresponding to the time
dimension, shows the average T wave over all heartbeats.
The second loading vector (space) is associated with the
change in the shape and amplitude of the T wave over the
different channels. The third loading vector corresponds
to the heartbeats dimension. It gives information about
the behaviour of the T wave in different heartbeats. This
loading vector will change when there is TWA present and
can thus be used for TWA detection.

2.5. TWA detection

To effectively detect T wave alternans, the third loading
vector C is used as is explained in paragraph 2.4. When
TWA is present, the typical ABAB-pattern that exists in
the amplitude of the T wave will also be visible there. It
is quantified by calculating the K-score, the Fourier trans-
form of the vector and calculating the power at 0.5 cycles
per beat (CPB), which is also used in the widely used spec-
tral method [2]. To correct for the presence of noise, this
value is divided by the mean power in the noise band (0.44-
0.48 CPB):

0.5CPB
mean(0.44CPB — 0.48CPB)

K-score =

2

The value of the K-score will increase when TWA is
present.

3. Results

An example of the different loading vectors resulting
from CPD is shown in Figure 3. Figure 3a and 3b show
respectively the time and channels vector. The first vec-
tor represents the average T wave shape in the complete
signal and clearly resembles a T wave. The second vector
shows the distribution of the T wave over different chan-
nels. From this vector certain T wave characteristics can
be derived. An example is the T wave polarity in a partic-
ular channel, which will be negative when the value of the
loading vector is smaller than zero and positive when it is
larger than zero.
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Figure 3: Resulting loading vectors after CPD

Figure 3c and 3d show the third loading vector for two sig-
nals: one "healthy’ signal without TWA (3c) and one signal
where there is TWA present (3d). The difference between
both vectors is remarkable. Both vectors show variations
in T wave amplitude, but the typical ABAB-pattern that
characterizes TWA is only visible in the vector with TWA.
The variations that are present in the first vector show the
natural differences in T wave amplitudes and are of no fur-
ther importance.

Max K-score
0.6691
464.8841

Min K-score
0.0042
18.6734

No TWA
High TWA

Table 1: K-scores for all signals

Table 1 summarizes the K-scores for all the signals used
in this study. The difference between both groups (signals
with and without TWA) is very large: the K-score of the
signals which contain T wave alternans is at least 30 times
higher than the K-score of the signals without T wave al-
ternans.

4. Discussion

TWA detection is known to be a difficult task. The re-
sults from the previous section show that the method pre-
sented in this paper succeeds very well in detecting T wave
alternans. Both by inspecting the results of Figure 3c and
3d and Table 1 the difference between signals with and
without TWA is clear. The K-scores of both groups show
differences of an order of magnitude. However, the current
results are only preliminary. The signals used in this study
either contain no TWA or a very large amount of TWA. For
further proof of the accuracy of the detection, the subset
should be expanded with signals that for example contain
smaller amounts of TWA.
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Tensors, although very popular in chemometrics and
psychometrics, have rarely been used for the processing
of ECG signals. A first step when using tensor methods
is the construction of the multidimensional tensor from the
2-dimensional ECG signal. Here, this is done in a very ba-
sic way by taking a fixed interval after the detected QRS
complex. While it works well for this set of signals, this
will however not be sufficient to work in all cases. When
the heart rate for example increases or decreases signifi-
cantly, the fixed interval will not necessarily contain the T
wave which is essential to obtain correct results. A solu-
tion could be to dynamically adapt the interval length to
changes in the heart rate or to detect the begin and end of
the T wave and take an interval around it.

At the moment, only TWA detection has been done. The
next step would be to use the presented method to quantify
the amount of T wave alternans present in the signal. This
way a distinction can be made between signals with a high
and a low amount of TWA. In this context it would also be
interesting to investigate the effect of the presence of noise
on the obtained results.

5. Conclusion

The method presented in this paper uses tensors to de-
tect T wave alternans in multichannel ECG signals. The
obtained results show a very clear distinction between sig-
nals with and without TWA. Although further work is nec-
essary to generalize the findings, it has been demonstrated
that tensors can be used successfully to analyze multichan-
nel ECG signals.
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