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Abstract

Anatomical structure labeling in echocardiogram im-

ages will assist cardiac disease diagnosis by providing a

framework for doing geometrical statistics. General label-

ing algorithms often focus on stationary body structures

and do not perform well in echocardiography due to car-

diac motion, low signal to noise ratio, and structural de-

formation caused by diseases. In this paper, we propose a

new method for anatomical structure labeling in echocar-

diography that adopts the structure layout consistency, and

works on mid-level primitives (segments). Specifically, the

proposed method defines a constellation model, and based

on which, a model score function is designed to mea-

sure the consistency between a testing candidate configu-

ration and the constellation model. The parameters of the

score function are learned through a discriminative train-

ing framework. Given a test image and its corresponding

multi-level segmentation, we use an MCMC-based algo-

rithm to infer the configuration which best fits the constel-

lation model. We evaluate the proposed method on 50 im-

ages. The qualitative and quantitative results demonstrate

the effectiveness of the proposed method.

1. Introduction

Echocardiography is a popular screening tool for di-

agnosing cardiac diseases, including septal hypertrophy,

valvular insufficiency, aneurysms, etc. Echocardiogram

images can be collected from multiple viewpoints. In clin-

ical practice, a popular viewpoint used for diagnosis is

the apical four-chamber view, as shown in Fig. 1. The

Figure 1. Apical four-chamber echocardiogram images

from different subjects.

anatomical structures including heart muscle, chambers,

and valves can be clearly identified in the images. Auto-

matic labeling of these structures can help to do statistics

across a large number of medical images, which further

serves pathological analysis and disease diagnosis.

In medical image processing, there are many region la-

beling algorithms that have been developed. Generally,

these methods can be categorized into two groups [1]:

1) region-based methods; and 2) pixel classification meth-

ods. Among the region-based methods, the active shape

model [2] and the active appearance model [3] are two

popular methods. Both methods rely on a term that mea-

sures the consistency of the testing shape with the statisti-

cal object model. These methods usually work well when

the deformation across subjects is not dramatic. However,

this is not true in echocardiography due to cardiac motion

and underlying dramatic geometrical deformation caused

by cardiac diseases. In the pixel classification category,

atlas-based labeling methods are frequently used [4–6].

The atlas-based methods first perform pairwise image reg-

istrations between training and target samples, followed

by a label propagation from the training samples to the

target samples using label fusion, major voting, etc. The

atlas-based methods provide good results for many medi-

cal imaging modalities, including structural MRI and CT.

However, due to low contrast and low signal to noise ratio,

the registration is not able to provide contiguous labeling

on echocardiogram images. In addition, many previous

works focus on segmentation and boundary extraction on

a single cardiac structure [7–11], e.g. left ventricle and en-

docardium. When multiple similar structures are presented

in the image at the same time (left atrium and right atrium),

it is not clear if these methods are able to correctly capture

the different structures.

In this paper, we propose a new anatomical structure la-

beling method for echocardiogram images, as illustrated

in Fig. 2. The proposed method makes usage of the spa-

tial layout consistency between cardiac structures. Specif-

ically, by working on mid-level primitives (segments), the

proposed method first defines a constellation model (to

characterize the common spatial layout between struc-

tures) and a model score function which measures the

consistency between the constellation model and a given
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testing candidate configuration. Moreover, the parameters

of the score function are learned through a discriminative

training framework by minimizing the total classification

hinge loss. Given a testing image and its corresponding

multi-level segmentation, we use an Markov chain Monte

Carlo (MCMC)-based algorithm to infer the configuration

that best fits the constellation model. In summary, the pro-

posed method makes the following contributions: 1) it uti-

lizes segments rather than pixels as primitives to provide a

more compact region labeling results; and 2) the constel-

lation model enforces spatial layout for each anatomical

structure and further eliminates the labeling error.

Figure 2. The framework of the proposed method.

The remainder of this paper is organized as following.

Section 2 defines the constellation model and formulates

the problem. The parameter learning and inference are de-

scribed in Section 3. Experiment results are provided in

Section 4. Section 5 concludes the paper.

2. Constellation Model and Problem For-

mulation

For apical four-chamber view echocardiogram images,

chamber structures, i.e. “Left Ventricle” (LV), “Left

Atrium” (LA), “Right Atrium” (RA), and “Right Ventri-

cle” (RV), provide important information for diagnosis of

many cardiac diseases. The typical shape and spatial lay-

outs of these four structures are illustrated in Fig. 3(a). A

constellation model [12] can be constructed by organiz-

ing these structures as shown in Fig. 3(b). The segments,

also called “parts”, in the constellation model have corre-

sponding anatomical labels. The edges in the graph im-

pose the relative positions and pairwise displacement con-

straints for the parts. For the constellation model, we can

use area, average intensity, intensity variation, location of

each part, and pairwise displacement as features. Specif-

ically, when given annotated training images, we can ex-

tract the mean statistics of the above features across all the

training samples and save them as the template T , which

has the following form

T =(aT1 , . . . , a
T
P ,m

T
1 , . . . ,m

T
P , v

T
1 , . . . , v

T
P ,

xT
1 , . . . , x

T
P , y

T
1 , . . . , y

T
P ,

△xT
1 , . . . ,△xT

E ,△yT1 , . . . ,△yTE),

(1)

where P is the number of structures, and E is the num-

ber of pairwise edges. aTp , mT
p , vTp , xT

p and yTp (p =
1, · · · , P ), are mean statistics of area, average intensity,

intensity variation, structure locations, respectively, across

the training samples. △xT
e and △yTe (e = 1, · · · , E), are

mean statistics of pairwise displacement along the constel-

lation model edges.

(a) (b)

right vectricle

left vectricle

right atrium left atrium

Figure 3. (a) A typical shape and spatial layout of cham-

bers in a four-chamber view. (b) A constellation model

consists of 4 chambers.

Given an image I and its multi-level segmentation S =
{sn}

N
n=1, we can define a configuration Z = {zp}

P
p=1

(P < N ) as an ordered subset of S, where segment zp
is associated with anatomical label p. Then We can mea-

sure how well a configuration Z fits the template T , using

the following score function:

f(I, S, Z, T ) =

−

P
∑

p=1

(dp ∗ |a
Z
p − aTp |+ d′p ∗ (m

Z
p −mT

p )
2

+ d′′p ∗ |v
Z
p − vTp |)

−
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(fp ∗ (x
Z
p − xT

p )
2 + f ′

p ∗ (y
Z
p − yTp )

2)

−

E
∑

e=1

(ge ∗ (△xZ
e −△xT

e )
2 + g′e ∗ (△yZe −△yTe )

2),

(2)

where dp, d
′
p, d

′′
p, fp, f

′
p, ge and g′e are linear combina-

tion coefficients.

By combining the multiplication coefficients and differ-

ence information into two vectors ~β and Φ(I, S, Z, T ), re-

spectively, we can rewrite the Eq.(2) as

f(I, S, Z, T ) = −~β · Φ(I, S, Z, T ). (3)

Then the echocardiogram region labeling problem can

be formulated as the following optimization problem

Z∗ = argmax
Z

− ~β · Φ(I, S, Z, T ), (4)
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subject to ~β ≥ 0.

3. Learning and Inference

3.1. Learning Parameters

Inspired by the Deformable Part Model (DPM) [13]

framework, we learn the score function parameters ~β us-

ing a discriminative training framework. Let D = {<
Ij , Sj, Zj , Yj >}Jj=1 be J labeled configurations with la-

bels Yj ∈ {−1,+1}, and T is the consequent template.

Then following the maximum-margin/minimum-loss prin-

ciple, we can formulate the parameter training problem as

~β∗(D) =argmin
~β

λ||~β||2+

J
∑

j=1

max(0, 1− Yjf(Ij , Sj , Zj, T )).

(5)

In Eq. 5, the second term max(0, 1 − Yjf(Ij , Sj , Zj , T ))
is the standard hinge loss, which is convex but non-

differentiable. However, it has a subgradient with respect

to ~β, in form of

∇f~β(Ij , Sj, Zj , T ) =
{

−Φ(Ij , Sj , Zj , T ) · Yj if f(Ij , Sj , Zj, T ) · Yj < 1

0 otherwise.

(6)

Therefore, to minimize the total loss, we use a gradient

descent search algorithm to find the optimal parameter ~β
using

~βt+1 = ~βt − ηt∇f~β(Ij , Sj , Zj, T ), (7)

where ηt is the learning ratio.

3.2. Inference

We define a binary matrix M of size N × (P + 1) to

represent the selection of segments from S. Each row of

M corresponds to a segment in S, and column 1 to column

P of M correspond to P anatomical structures (defined in

Fig. 3). The last column is called dummy column. Consid-

ering M(n,p), n = 1, . . . , N, p = 1, . . . , P , if M(n,p) = 1,

then the segment sn is selected to be anatomical structure p
in the configuration. For the segments that are not selected

in the configuration, we set the dummy column of the cor-

responding row to be “1”, namely if M(n,{1,...,P}) = 0,

then we would have M(n,P+1) = 1. Consequently, the

posterior of a configuration can be defined as

π(M | I, S, T ) ∝ sigmoid(−~β · Φ(I, S, Z(M), T )/σ),
(8)

where sigmoid(x) = 1
1+e−x , and σ is a normalizing pa-

rameter. Inferring the best configuration can be formulated

as

M∗ = argmax
M

π(M | I, S, T ). (9)

We solve the inference problem Eq.(9) using the MCMC

method. Specifically, we adopt the Metropolis-Hastings

sampling [14], which is summarized in Algorithm-1.

Algorithm 1 Metropolis-Hastings Sampling

1: At each iteration t:

2: Sample M ′ ∼ q(M ′|M (t)).
3: Accept it with probability

α(M (t),M ′) = min{1, π(M ′|I,S,T )q(M(t)|M ′)
π(M(t)|I,S,T )q(M ′|M(t))

}

4: if accepted then

5: M (t+1) = M ′

6: else

7: M (t+1) = M (t)

8: end if

In the algorithm, M (t) is the solution matrix at iteration

t. π(M ′|I, S, T ) is the posterior density for M ′ given I ,

S and T . q(M (t)|M ′) is the proposal density for moving

from M ′ to M (t). Similarly, q(M ′|M (t)) is the proposal

density from moving M (t) to M ′. When proposing M ′

from M (t), we choose an anatomical structure with proba-

bility of 1/P . Then we change the segment associated with

this anatomical structure from the original one to a new one

with probability 1/(1+ distnew), where the distnew mea-

sures the Euclidean distance between the new proposed

segment and the corresponding location in the template.

Similarly, the probability to move back is 1/(1 + distold).
This gives the transition ratio

q(M (t)|M ′)

q(M ′|M (t))
=

1
P
· 1
1+distold

1
P
· 1
1+distnew

=
1 + distnew
1 + distold

. (10)

4. Experiments

The test dataset consists of 50 images. These images

are collected from 50 subjects, one image per subject, with

14 having normal cardiac anatomy and 36 being abnor-

mal. The images present structures from minor to severely

deformed due to cardiac diseases, including amyloidosis,

ventricular/atrial hypertrophy, and rheumatic heart disease.

For the quantitative evaluation, we construct the ground-

truth by having an expert label anatomical structures from

each of the images using the LabelMe [15] annotation

tool. The proposed method works on mid-level primi-

tives (segments) for both parameter learning and inference.

To get these mid-level primitives, we use multi-level seg-

mentation [16] to provide candidate anatomical segments

from coarse to fine levels, as shown in Fig. 4. We mea-
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Figure 4. An illustration for multi-level segmentation

from coarse to fine.

sure the overlap with the ground-truth annotation using

the Dice coefficient. Since the proposed method is based

on a discriminative training framework, we randomly split

the whole dataset, using 30 (60%) images as training and

20 (40%) as testing. Then we run 5 times cross validation

and report the averaged performance. Some qualitative re-

sults are shown in Fig. 5. From the figure, we can observe

that the proposed method can provide compact labeling re-

sults. Quantitative results for labeling accuracy are shown

Figure 5. Qualitative results: Left Ventricle (Red), Left

Atrium (Green), Right Atrium (Blue) and Right Ventricle

(Yellow). In each subfigure, from left to right: result, orig-

inal image and ground-truth.

in Table 1.

Left Ventricle Left Atrium Right Atrium Right Ventricle

Run #1 0.762 ± 0.102 0.677 ± 0.257 0.736 ± 0.268 0.638 ± 0.231

Run #2 0.639 ± 0.257 0.66 ± 0.246 0.613 ± 0.357 0.568 ± 0.287

Run #3 0.706 ± 0.228 0.687 ± 0.255 0.656 ± 0.294 0.528 ± 0.349

Run #4 0.736 ± 0.184 0.677 ± 0.288 0.691 ± 0.248 0.47 ± 0.286

Run #5 0.668 ± 0.238 0.662 ± 0.281 0.694 ± 0.287 0.506 ± 0.327

Overall 0.702 0.673 0.678 0.542

Table 1. Dice coefficient ± standard deviation for each

chamber structure for five runs.

5. Conclusion

We have investigated the problem of labeling cham-

ber structures in apical four-chamber view echocardiogram

images. The proposed method adopts the spatial layout

consistency between structures. By working on mid-level

primitives (segments), the method defines a constellation

model and then learns the model parameters through a dis-

criminative training framework. The labeling inference is

done using an MCMC-based algorithm. The qualitative

and quantitative results demonstrate the effectiveness of

the proposed method.
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