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Abstract

Respiration is one of the main modulators causing heart
rate variability (HRV). However, when interpreting studies
of HRV, the effect of respiration is largely ignored. We,
therefore, previously proposed to take respiratory influ-
ences into account by separating the tachogram in a com-
ponent that is related to respiration and one that contains
all residual variations. In this study, we aim to investi-
gate the sensitivity of two of such separation methods, i.e.
one based on an ARMAX model and another one based
on orthogonal subspace projection (OSP), towards differ-
ent respiratory signal types, such as nasal airflow (the ref-
erence), thoracic and abdominal efforts, and three ECG-
derived respiratory (EDR) signals. The sensitivity of both
separation methods to the type of respiratory signal is eval-
uated by assessing the information transfer from the refer-
ence respiratory signal to the residual tachogram, where
the latter is obtained using each time a different type of
respiratory signal. The results show that OSP is the least
sensitive to the different types of respiratory signals. Even
when an EDR signal obtained using kernel principal com-
ponent analysis is used, OSP yields a correct separation in
13 out of 18 recordings, demonstrating that in many cases,
the separation of the tachogram can successfully be con-
ducted even if only the ECG is available.

1. Introduction

Our heart is beating at a rate such that it can properly
respond to the needs of our body. This creates continu-
ous variations over time in our heart rate, termed heart rate
variability (HRV). One of the main modulators of our heart
rate is linked to our breathing; this is called respiratory si-
nus arrhythmia (RSA) and represents the fluctuation of the
heart rate with respiration. These respiratory-related heart
rate variations have been associated with vagal activation.
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However, this has been highly debated as several publica-
tions reported that measures of RSA are dependent of tidal
volume and respiratory rate, independent of cardiac vagal
tone [1]. The lack of consensus on this interpretation, and
consequently on certain HRV features, motivated the use
of a different approach: the separation of the tachogram in
a part related to respiration and a part unrelated to respi-
ration, the so-called residual tachogram. Recent research
showed that inclusion of respiratory information using this
approach yields almost perfect classification in periods of
rest and stress when spectral HRV features from the resid-
ual tachogram are used [2]. This study showed that it is in-
teresting to investigate these residual heart rate variations
as they might be masked by the dominant influence of res-
piration onto the tachogram.

Two separation methods, one based on an ARMAX
model [3] and one based on orthogonal subspace projec-
tion (OSP) [4], have been used to conduct this separa-
tion of the tachogram. However, these methods require
the recording of a respiratory signal. It is well-known that
different modalities to record the breathing also yield res-
piratory signals with diverse morphologies. In this paper,
we aim to investigate how sensitive these separation meth-
ods are towards different types of respiratory signals, by
comparison of their performance when nasal airflow, and
thoracic and abdominal displacements are used. Addition-
ally, we aim to investigate whether the separate recording
of respiration is really necessary by evaluating the perfor-
mance when several ECG-derived respiratory (EDR) sig-
nals are used as surrogate respiration.

2. Methodology

2.1. Data acquisition and preprocessing

The first dataset used in this study originates from the
PhysioNet database [5] for the Computing in Cardiology
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Challenge 2000 for ECG-based apnea detection (Apnea-
ECQG). Eight records (age: 43.3 yr + 8.3) contain single-
lead ECG recordings and multiple respiratory recordings:
nasal airflow recorded with a thermistor (RSP, y), thoracic
(RSPr ) and abdominal effort (RSP4p5). All signals are
sampled at 100 Hz.

The second dataset is recorded in the University Hos-
pital Leuven (UZ Leuven, Belgium), and consists of
polysomnography data of 10 patients (age 48.8 yr =+
11.8) with habitual snoring, witnessed apneas and hy-
persomnolence. Different signals are extracted from this
dataset, namely, single-lead ECG (Lead II), respiratory
effort measured around the thorax (RSP7p) and the ab-
domen (RSP4p), and nasal airflow (RSP,.f) recorded
with an oronasal thermistor (Braebon, NY, USA). The
sampling frequency is 200 Hz.

From all 18 recordings, 5 minutes without apneic events
are selected. All ECGs are upsampled to 500 Hz using cu-
bic spline interpolation to obtain tachograms with an accu-
racy of 2 ms. The nasal airflow signals are always used as
the reference respiratory signal (RSP,..¢). All respiratory
signals, including the EDR signals as computed below, and
tachogram are resampled at 4 Hz, and high pass filtered at
0.05 Hz to remove baseline wander.

2.2. ECG-derived respiration

Apart from the separately recorded respiratory signals,
the performance of the separation methods will also be
evaluated when several ECG-derived respiratory signals
are used. The goal is to test whether the recording of only
ECG is sufficient to reliably separate the tachogram. We
will consider three EDR methods:

e EDRpr4: This EDR signal is determined by the ampli-
tude of the R peaks in the baseline-corrected ECG, where
the baseline wander is removed using 2 median filters of
200 ms and 600 ms.

e EDRpc 4: The EDR signal based on principal compo-
nent analysis (PCA) relies on the changing correlation be-
tween the QRS complexes over several heart beats, where
it is assumed that the largest variations between the QRS
complexes are caused by respiration [6].

e EDRypc4: This EDR signal is based on the approach
using PCA, but exploits non-linear interactions between
the ECG and respiration by the use of the nonlinear ker-
nel PCA (kPCA) instead of the linear PCA [7].

2.3.  Separation of the tachogram

Several methods have been proposed in the literature to
separate respiratory variations from the tachogram such
that we have two components: one that is strictly related
to respiration (RRrsp), and one that contains all heart
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rate variations that are unrelated to respiration, i.e. the so-
called residual tachogram (RR,.s). We will evaluate the
sensitivity to the type of respiratory signal of two methods
that proved to be successful in conducting this separation.
Both methods are based on the estimation of the respira-
tory component of the tachogram (RR g5 p) when the orig-
inal tachogram (RR,;4) and a recorded respiratory signal
(RSP) are given:
o ARMAX: This separation approach was proposed by
Choi et al. and estimates RRzsp as a linear combination
of past respiratory inputs [3]. Delays up to 3 s are taken
into account.
o OSP: In this approach, the tachogram is projected onto
a respiratory subspace to obtain RRrgsp. The respiratory
subspace is constructed from delayed detail signals from
the wavelet decomposition of the respiratory signal using
a Daubechies 4 wavelet, up to level 5. Also here, delays up
to 3 s are included [4].

After computation of the respiratory component of the
tachogram, the residual component RR,..s can simply be
found by RR,.c; = RR,,;g — RRRggp.

2.4. Sensitivity to the type of respiratory

signal

In the first stage, the similarity between all ‘indirect’ res-
piratory recordings, including the thoracic and abdominal
efforts as well as the three computed EDR signals, and
the nasal airflow RSP, is assessed via their coherence.
As similarity measure, the mean magnitude squared co-
herence between the respiratory signals in a range of the
full width at half maximum of the fundamental respiratory
frequency is computed [7].

Secondly, the sensitivities of ARMAX and OSP to the
type of respiratory signal are evaluated by testing whether
they succeed in separating the respiratory-related heart rate
variations from residual variations when respiratory sig-
nals other than RSP,..r are used to conduct the separation:
1. Computation of RR,..; using all six types of respiratory
signals and both separation methods, resulting in 12 resid-
ual tachograms RRZZ’; ‘osP JARMAX
2. Assessment of the cross entropy from the reference res-
piratory signal RSP,.. ¢ to all residual tachograms RR ..
For the computation of the cross entropy, consider the bi-
variate process {X,Y}, where X,, and Y, are the pro-
cesses sampled at the present time n. Then the cross
entropy, which is defined as the information transfer
that quantifies how much of the information carried by
Y, can be predicted by the past of X, can be com-
puted as CEx_,y = H(Y,) — H(Y,|X;), with X, =
[ Xno1 Xn—2 -] and H(.) the Shannon entropy.
The (conditional) entropies are then estimated via a model-
based approach, where the processes are represented by a
vector autoregressive model with order p, as optimized by
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Figure 1. Boxplots of the results; (a) cross entropy from RSP,..; to RR,,;4; (b) mean magnitude squared coherence

between RSP,..; and the other types of respiratory signals; and (c) cross entropy from RSP,

to RRI¥Pe

wype obtained using

ARMAX and OSP. The number below each boxplot indicates the number of significant cross entropies.

the Akaike information criterion, and delays up to 3 s [8].
Based on this parametric representation, the statistical sig-
nificance of the cross entropy from X to Y can be assessed
by an F-test checking whether the past of X explains a sig-
nificant portion of the variance of Y. For a correct separa-
tion of respiratory-related and residual variations, the cross
entropy from the reference respiratory signal X = RSP,..¢
to the residual tachograms Y = RR,.s should be quasi-
zero, or non-significant.

3. Results and discussion

Figure 1 shows the results of the above described anal-
yses. In Figure 1(a) the cross entropy from the reference
respiratory signal to the original tachogram is given. We
can observe that 15 out of 18 recordings have a significant
information transfer.

Next, a comparison between the different types of res-
piratory signals is conducted via the mean magnitude
squared coherence with the reference nasal airflow. These
results are displayed in Figure 1(b), where we can see
that, as one could expect, both recorded respiratory efforts
RSP7f and RSP 4 5 yield high coherences. From the three
EDR signals, the algorithm based on the R peak amplitude
performs the worst. As described in [7], EDRpc 4 yields
better EDR signals, but the best resemblance to the nasal
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airflow is for EDRgpc 4 with coherences around 90%,
which are similar as the recorded RSP 4.

In Figure 1(c), the cross entropies from RSP,.; to
residual tachograms obtained with the other types of
respiratory signals are displayed. = When looking at

CERSP,,efaRRff;P” ; obtained both using ARMAX and

OSP, we can observe that the cross entropies are very
small and none of them even exhibit a significant infor-
mation transfer. This indicates that both separation meth-
ods successfully separate the respiratory influences from
the tachogram. Also, the cross entropies from RSP,
to the residual tachograms obtained using RSPry and
RSP,4p are quasi-zero. However, both signals yield re-
spectively 3 and 2 significant cross entropies when AR-
MAX and OSP are used, indicating that in some cases,
the separation methods do not fully succeed to separate
respiratory-related heart rate variations and residual vari-
ations when ‘indirect’ recordings of respiration are used.
When EDR R 4 is used to compute the residual tachogram,
either using ARMAX or OSP, there are still many signif-
icant cross entropies, showing that the R peak amplitude
method can not be used as surrogate respiratory signal to
conduct the separation. The results improve, but are still
not perfect, when PCA and kPCA are used to compute
the EDR signals. Note here that the mechanical interac-



tion between respiration and ECG is used to compose the
three EDR signals, causing that the information contained
in these signals might be different than in the recorded
respiratory signals. The best results with surrogate respi-
ratory signals are obtained when EDRypc 4 is combined
with OSP. Although there are still 5 out of 18 signifi-
cant cross entropies, the cross entropies are significantly
reduced when we compare this with CEgsp,.;~RR,.,-
These results suggest that OSP is a solid technique, that
might also be useful in several home monitoring applica-
tions, such as sleep apnea detection or epilepsy monitor-
ing, where it is desired to use only few sensors. We have
shown here that in most cases, enough respiratory-related
information can be extracted from the ECG to reliably con-
duct the separation, and that it might not be needed to sep-
arately record the respiration. However, it should be inves-
tigated whether e.g. the results for stress classification can
be reproduced when EDRy pc 4 is used [2].

From all these results, we can observe that OSP has al-
ways fewer significant cross entropies than ARMAX, indi-
cating that OSP is less sensitive to the type of respiratory
signal. We hypothesize that this is due to the inclusion of
the wavelet transform in OSP that reduces the impact of
artifacts and different signal morphologies.

4. Conclusion

The two methods that we evaluated to separate res-
piratory influences from the tachogram perform well as
demonstrated by the lack of information transfer from the
reference respiratory signal to the residual tachogram ob-
tained using that reference signal. When other recorded
respiratory signals are used, such as abdominal or tho-
racic displacements, the separation is also good. The ECG-
derived respiratory signals on the other hand, do not man-
age to completely separate the respiratory influences from
the tachogram. However, the separation method based on
OSP successfully separates 13 out of 18 recordings when
the EDR method based on kPCA is used. We can conclude
that OSP is less sensitive than ARMAX to the different
morphologies of several respiratory signal types. Addi-
tionally, the reported preliminary results suggest that the
separation of the tachogram could be feasible even if only
the ECG signal is available.
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