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Abstract

The electrocardiogram (ECG) is often used to diag-
nose myocardial infarction, but sensitivity and specificity
are low. Here we present a computational framework for
solving the bidomain equations over an image-based hu-
man geometry and simulating the 12 lead ECG. First, we
demonstrate this approach by evaluating a population of
eight models with varying distributions of local action po-
tential duration, and report that only the model with apico-
basal and inter-ventricular heterogeneities produces con-
cordant T waves. Second, we simulate the effects of an
old anterior infarct, which causes a reduction in T wave
amplitude and width. Our methodology can contribute to
the understanding of ECG alterations under challenging
conditions for clinical diagnosis.

1. Introduction

The electrocardiogram (ECG) is frequently used as a
first-line tool to diagnose myocardial infarction (MI), but
the sensitivity of the ECG to acute MI is only around 55%
[1], and it provides limited information on the location,
extent, and stage of injury. Computational studies have re-
cently been able to simulate the activity of the heart up to
the body surface, solving the so-called forward problem of
electrophysiology [2]. Such studies are uniquely able to
test hypotheses by merit of their flexibility and the high
spatio-temporal resolution datasets they provide.

The aim of this study is to investigate the effect of
pathological conditions on the ECG by solving the for-
ward problem of electrocardiography, with consideration
given to inter-subject variability. In order to achieve this,
we develop an image-derived human heart-torso model, in-
cluding a detailed description of human ventricular elec-
trophysiology. The ECG morphology is the result of dis-
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persion of local activation and repolarisation times. These
quantities are difficult to measure, and highly variable
between individuals. Using this realistic model we ex-
plore the impact of the different electrophysiological het-
erogeneities reported experimentally in order to recreate
representative human ECGs under healthy conditions. We
then present simulation results of the effect of scar regions
on the ECG.

2. Methods

2.1. Electrical conduction model

We model the electrical activity in the heart with the
bidomain equations [3]. Physically the bidomain model
describes a region containing intracellular and extracellu-
lar electric fields. The equations are coupled to a model
of cardiac cellular activity at the nodes through the trans-
membrane voltage (the difference between the fields).

Outside of the heart the electrical potential is governed
by the Laplace equation. The torso potential is coupled to
the extracellular potential in the heart, and the bidomain-
torso system solved monolithically. We calculate the 12-
lead ECG by recording the extracellular potential at the
standard electrode positions.

2.2.  Anatomical model

We used a human heart mesh [4] truncated at the base
below the valves, resulting in a bi-ventricular geometry.
The mesh was generated with an edge length of 0.4 mm,
and contains 2.51 million nodes and 14.2 million tetrahe-
dral elements. Fibre structure was generated using a rule-
based method to replicate the findings of Streeter et al. [5].

Orthotropic intracellular conductivities were chosen
such that the conduction velocities (CVs) were close to
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Figure 1. A visualisation of the combined heart-torso
mesh. The coloured spheres indicate the location of the
“electrodes” using standard (European) colour-coding.

67, 30, and 17 cm/s in the fibre, sheet, and inter-sheet
directions respectively, as measured in pig ventricles [6]
(specifically 1.5, 0.45, and 0.225 mS/cm). Axisymmetric
extracellular conductivities were used based on measured
resistivity ratios [7], specifically 5.46 and 2.03 mS/cm in
the fibre and transverse directions respectively.

The biventricular mesh was embedded in a torso geome-
try generated from CT images of a 43 year old woman. The
DICOM images were segmented using the medical imag-
ing software Osirix into lung, bone, and the rest. These
surfaces were meshed using INRIA meshing Software
MMGS3D. The combined mesh (fig. 1) has a total of 3.25
million nodes and 19.4 million tetrahedra. We assigned
isotropic conductivities of 0.389 and 0.2 mS/cm to the lung
and bone elements respectively [8], and 2.16 mS/cm in the
rest (a human trunk measurement [9]).

2.3. Electrophysiological heterogeneities
Dispersion of action potential duration (APD) has been
reported in three orientations: transmural (across the ven-
tricle wall), apico-basal (apex to base), and interventricular
(between left and right ventricles) [10,11]. In the following
we describe how we constructed each of these gradients.
In all cases we used the 2006 human ventricular model
of ten Tusscher and Panfilov (TT06) [12], and adjusted
only the delayed rectifier potassium current (gg). A larger
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value of gk, leads to a shorter APD, and vice versa. As
a control we used a homogeneous (HOM) case with the
published endocardial model everywhere.

Transmural (TM): Endocardial APD is longer than epi-
cardial (by 62 ms [13]). We modelled this by making use
of the published TTO06 parameter sets. The outer 40% of
the heart wall was assigned the epicardial model, and the
inner 60% the M-cell model. We chose the M-cell model
over the endocardial one as the APD of the endo- and epi-
cardial models are similar (286 and 292 ms respectively),
but the APD of the M-cell model is longer (354 ms). This
choice was only made to better replicate the reported APD
dispersion in the human ventricular wall.

Apicobasal (AB): Apex-to-base dispersion of activation-
recovery interval (ARI, a surrogate for APD) has been
measured noninvasively in human as 42 ms [14] (mean of
7 subjects) with shorter ARI at the apex than the base. Ex-
periments with canine and human tissue samples suggest
the same [15]. We modelled this gradient by increasing
gks by 50% of normal at the apex.

Interventricular (IV): APD is longer in the LV than the
RV [16]. ARI dispersion between the ventricles was 32
ms for one subject in [14] with longer ARI in the LV than
the RV. We modelled this by increasing gk in the RV and
decreasing it in the LV, both by 15% of normal.

For the combined systems, the above rules were simply
applied together. In total we evaluated all eight combina-
tions of heterogeneities (including HOM).

2.4. Scar generation

We assigned regions of scar by first manually approxi-
mating the ventricular volume in direct contact with the left
anterior descending (LAD) artery, since occlusion of this
artery is a frequent cause of infarction. Within this area,
a number of contact points were selected, corresponding
to the actual sites where the LAD branches penetrate the
ventricles. The number of contact points may be chosen
at random, allowing for various types of scars, ranging
from solid patches of non-conductive tissue to fractionated
structures containing channels of viable tissue. Next, each
contact point was associated with a radial basis function,
and tissue below a threshold in the basis support was la-
belled as infarct (3.4% of the total, fig. 2). Scar volume
may be increased or decreased by altering the threshold.

We included an infarct as an unexcitable region with re-
duced conductivity. Within the scar region, intracellular
conductivity was reduced to O and all ion activity removed,
and extracellular conductivity was decreased to one third
of the normal values, resulting in approximately a 50% re-
duction in CV, as reported in rabbit [17]. The area imme-
diately surrounding the scar (15.5% of all nodes) became a
“border zone” of slower-conducting but otherwise normal
tissue. Here both intracellular and extracellular conduc-



Figure 2. A visualisation of the infarct region simulated
in this work, shown in red. The region is mainly in the
anterior apical septum.

tivities were reduced by two thirds, again reducing CV by
about half.

2.5. Activation sequence

A beat was initiated with five simultaneous stimuli (four
in the left ventricle and one in the right ventricle) corre-
sponding to locations of earliest activation measured in an
isolated human heart [18]. Because of the uncertainties in
constructing an anatomically detailed activation network,
the general effect of the Purkinje system in coordinating
activation throughout the ventricles was included by in-
creasing the intracellular conductivity tensors of all ele-
ments on both endocardial surfaces. These conductivity
tensors were made isotropic with magnitude 16.75 mS/cm
yielding a conduction velocity close to the 2.2 m/s reported
for Purkinje fibres [19].

2.6. Computational techniques

All simulations were performed with Chaste [20] on the
Archer supercomputer (a Cray XC30 system composed of
3,008 compute nodes, each containing two 2.7 GHz 12-
core Intel E5-2697 v2 processors, and 64 GB of memory).
The bidomain PDEs were solved using the finite element
method and PETSc with a time step of 40 us. The TT06
ODEs were solved using CVODE with adaptive time step.
500 ms of simulation typically took about 2 hours on 20
nodes (480 threads of execution).

3. Results and Discussion

The eight systems described above resulted in a range
of morphologies in the ECG leads, shown for the V2 lead
(yellow sphere in fig. 1) for brevity in fig. 3. The left plot
shows the four systems that generated a normal, positive
T-wave in this particular lead; the right plot abnormal T
waves in this lead. The AB and IV modifications to gk had
no effect on the QRS complex, but the presence of differ-
ent cell models transmurally reduced its amplitude and in-
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Figure 3. Lead V2 for eight APD distributions. Four gen-
erated positive T waves (left), four generated biphasic or

“camel hump” T waves (right). The grid is the same as
standard ECG paper (200 ms/0.5 mV large squares).

creased its width slightly. With this activation protocol and
choice of electrodes, only the system with apico-basal and
interventricular heterogeneities generated T waves with no
abnormalities in any of the twelve leads.

This system (AB+IV) was further investigated in the
presence of scar injury. The V2 lead is newly shown in
fig. 4, with the normal result for comparison. The scar case
depicts a reduced QRS amplitude and narrower T wave
width.

The 12 lead ECG is a highly compressed representation
of activation and repolarisation in the heart. Consequently,
when attempting to find parametrisations that result in a
given ECG shape, there are many possibilities (figs. 3). Of
the eight systems tested only one (AB+IV) had qualita-
tively normal T waves in all leads.

The results for anterior infarction (fig. 4) are promis-
ing, displaying reduced QRS and T wave amplitudes and
widths, possibly due to the reduction in excitable tissue
volume. However the QRS normally widens in infarcted
hearts. This may be because such hearts are usually is-
chaemic, a pathology not yet included in the model. Fu-
ture research will improve the model of myocardial tis-
sue affected by coronary occlusion, and further develop the
methodology as a potential diagnostic tool.
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Figure 4. The V2 lead for the system with AB and IV
heterogeneities, with and without scar and border zone.

Future investigations will also concentrate on the im-
provement of several methodological challenges. First, our
activation sequence requires optimisation to better orient
the ECG axis. Second, the geometry is made up of two
parts from different acquisitions and volunteers, and manu-
ally aligned. Third, validation of simulation results is chal-
lenging due to the large inter-subject variability in human
ECG recordings.
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