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Abstract 

Multi-electrode array systems are increasingly being 
used to study atrial electrical excitation in humans and 
are shedding new light on the mechanisms of atrial 
fibrillation (AF). However the mapping systems that are 
currently being used to characterize the rotors that are 
postulated to drive AF have not been systematically 
analyzed for accuracy. 

Computer simulations of chronic AF (cAF) were 
carried out using a realistic 3D model of the atria. 
Extracellular electrical potentials were calculated on 
intra-atrial electrode arrays placed at the driving rotor 
area. The array-to-endocardial wall distance (daew) was 
set at 0.2, 1, 2 and 5 mm and uniform interelectrode-
distances (die) were set at 1, 2 or 5 mm. The 
instantaneous location of the rotor meandering were 
analyzed on interpolated phase movies based on the 
Hilbert transform. 

At die of 1 mm and daew ≤2 mm, the rotor location on 
the array was not significantly different from that on the 
wall, although meandering on the array was greater than 
in the atrium. At die = 2 mm, increasing the daew 
decreased the detected meandering area, but remained 
higher than in the atrium. Finally, when the spatial 
resolution was 5 mm, in most cases the array recognized 
the presence of the rotor, but not its trajectory accurately. 

1. Introduction

Atrial fibrillation (AF) is the leading cardiac 
arrhythmia seen in clinical practice. About 2.3 million 
people in the USA and 4.5 million people in European 
Union have AF [1-2]. Still, the mechanisms maintaining 
AF are not well understood. Therefore, it is of great 
importance to develop new technologies aimed at better 
identifying and targeting AF sources and help physicians 
improve treatment procedures, and thereby achieve a 
better quality of life for patients. 

Multi-electrode array systems are increasingly being 
used to study atrial electrical excitation in humans, with 
the idea of obtaining spatio-temporal maps used as 
diagnostic tools to improve efficacy of ablation 
procedures [3-4]. However, the mapping systems that are 
currently being used to characterize the rotors that are 
postulated to be the organizing centers of reentry and 
drivers of AF have not been systematically analyzed for 
accuracy. 

Here we use computer simulations to quantify the 
effect of an intra-atrial multi-electrode grid configuration 
on the accuracy of detecting rotors and their meandering. 

2. Methods

2.1. Computer simulations 

A previously developed realistic 3D model of the 
human atria [5-6], including fiber orientation, anisotropy 
and electrophysiological heterogeneity, was used to carry 
out computer simulations of chronic AF (cAF). This 
model consists of the following anatomical structures: left 
atrium (LA), right atrium (RA), pectinate muscles (PM), 
crista terminalis (CT), left and right atrial appendages 
(LAA, RAA), left and right pulmonary veins (LPV, 
RPV), superior and inferior caval veins (SCV, ICV), 
coronary sinus (CS), Bachmann’s bundle (BB), fossa 
ovalis (FO), isthmus, tricuspid valve ring (TVR) and 
mitral valve ring (MVR). The geometric mesh comprises 
52,906 hexahedral elements and 100,554 nodes. 

A modified version of the Courtemanche et al model 
[7] was used to reproduce the cellular electrical activity 
under cAF conditions, based on experimental data of Van 
Wagoner [8] (see Table 1). 

Simulations were carried out generating cAF by two 
S1-S2 protocols. S1 simulated impulses of sinus origin 
consisting of a train of stimuli applied to the sinus node 
region at a basic cycle length of 500 ms for 2500 ms. In 
the first simulation (cAF1), S2 was a train of 5 ectopic 
stimuli applied at the superior RPV at a cycle length of 90 
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ms. In the second simulation (cAF2) S2 consisted of a 
continuous train of stimuli with a cycle length of 90 ms. 
Both protocols yielded stable rotors in the free wall of the 
LA. 
 
Table 1. Conductance (g) changes of currents for cAF 

Conductance cAF (Relative to [7])  
gK1 Increased by 100% 
gKur Decreased by 50% 
gto Decreased by 50% 

gCaL Decreased by 70% 
 

The electrical propagation of action potentials (AP) in 
the tissue was obtained by solving the mono-domain 
reaction-diffusion equation 
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with the finite elements method [9]. In Eq. (1), Sv is the 
surface-to-volume ratio, D the conductivity tensor, Vm the 
membrane potential, Cm the membrane capacitance, Iion 

the sum of all the ionic currents flowing through the 
membrane and Istim the stimulus current. 

Unipolar electrograms (EGM) were calculated, with a 
temporal resolution of 1 ms, by computing the 
extracellular potential in an approximate large volume 
conductor as: 
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where γ<1 is a scale factor (the total volume of the 
myocardium is greater than the intracellular volume of the 
fibers), σi and σe are the intracellular and extracellular 
conductivities, ’Vm is the gradient of the transmembrane 
potential (Vm), r’ is the distance from the origin to the 
source point (x’, y’, z’), r is the distance from the origin 
to the measuring point (x, y, z) and dv is the differential 
volume [10]. 
 
2.2. Multi-electrode arrays 

Virtual intra-atrial multi-electrode arrays, placed at the 
driving rotor area (see black square on the LA in Figure 
1), were constructed to simulate mapping those rotors 
using multiple extracellular electrical potential (2) 
recordings. The array-to-endocardial wall distance (daew) 
was set at 0.2, 1, 2 and 5 mm and the interelectrode-
distance (die) was set at 1, 2 or 5 mm (spatial resolution). 

At a die of 1 mm, the array included 22×22 electrodes, 
whereas at 2 and 5 mm, the array contained 11×11 and 
5×5 electrodes respectively, as shown in Figure 1. 

 

Figure 1. Top and middle, phase map on the LA and 
multi-electrode arrays (die: 1, 2 and 5 mm). The black 
square over the LA indicates the driving rotor area where 
arrays were placed. Bottom, phase maps obtained by 
placing the respective arrays at a distance of 0.2 mm from 
the endocardial surface (cAF1 simulation). 

 
An EGM was obtained for each electrode of the array. 

Then, EGMs were interpolated in order to have the same 
number of EGMs in all cases (linear interpolation), and 
phase maps based on the Hilbert transform were obtained 
[4, 11-13]. Finally, phase singularities (PS) were detected 
at sites exhibiting:  
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	ߠ is	 the	gradient	of	the	 instantaneous	phase	along	a	
closed	 path	 surrounding	 the	 possible	 pivoting	 point.	
Points	satisfying	Eq.	ሺ3ሻ	were	used	to	analyze	the rotor 
meandering area (A) [14-15].		

 
3. Results 

Increasing the distance between the array and the 
endocardium decreased the EGM amplitude (30-58% for 
daew=1 mm, 58-73% for daew=2 mm and 75-87% for 
daew=5 mm). 

Figure 2 shows the meandering area A calculated on 
the atria (AcAF1=0.3 cm2 and AcAF2=0.45 cm2) and on each 
multi-electrode array configuration as a function of the 
array-to-endocardial wall distance. Black dashed lines 
indicate 50 and 100% increase in the meandering area. 

At a spatial resolution of 1 mm and daew≤2 mm, the 
rotor location on the array was not significantly different 
from that in the endocardial surface itself, as shown in 
Table 2, although the meandering area on the array was 
larger than in the atrium (AcAF1≈0.4 and AcAF2≈0.5 cm2). 
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However, for daew>2 mm the meandering area was larger 
in cAF1 (0.92 cm2) and smaller in cAF2 (0.28 cm2). In 
the latter case, the smaller area was due to the lower 
number of PS detections (3727 vs 3801 in the atria). This 
means that from the 3801 ms analyzed, only in 3727 
instants a PS was detected. 

 
Figure 2. Meandering area (A) detected in the atria and 
the multi-electrode array for the cAF1 (top) and cAF2 
(bottom) simulations. nºPS is the total number of PS 
detections. 

 
At a spatial resolution of 2 mm, increasing the daew (≤2 

mm) decreased the detected meandering area at the array, 
but maintained it almost always equal or higher than in 
the atrium (AcAF1 was 0.56 for die=1 mm, 0.47 cm2 for 
die=2 mm and 0.40 cm2 for die=5 mm. AcAF2 was 0.54 cm2 

for die=1 mm, 0.45 cm2 for die=2 mm and 0.40 cm2 for 
die=5 mm). For daew>2mm, results are similar to those 
obtained for a spatial resolution of 1 mm. 

Finally, at a spatial resolution of 5 mm, in case of the 
cAF1 simulation, the meandering area differed 
significantly from that in the atria, as well as the number 
of PS detections, regardless of the array-to-endocardial 
wall distance. Otherwise, in case of cAF2, the 
meandering area and number of PS detections was 

significantly different for a daew of 0.2 and 5 mm, whereas 
they were similar for a daew of 1 and 2 mm. In fact, the 
array recognized the presence of the rotor as evidenced by 
a high number of PS detections (nºPS≥2707), but it was 
not able to detect its trajectory accurately (see Figure 2 
and Table 2). 

 
 
Table 2. Shape of the meandering area detected in the 
atria and at the arrays for both simulations. 

 
Atria (cAF1)

daew 

0.2mm 1mm 2mm 5mm 

die

1mm 

 

2mm 

 

5mm 

 

 
Atria (cAF2)

daew 

0.2mm 1mm 2mm 5mm 

die

1mm 

 

2mm 

 

5mm 

 
 

4. Discussion 

The results show that a stable rotor and its meandering 
trajectory can be detected accurately with a spatial 
resolution of ≤2 mm, as long as the array-to-endocardial 
wall distance is lower than 5 mm. For poorer spatial 
resolutions a stable rotor could be detected but its 
meandering trajectory would be untraceable. Our results 
agree with those of Rappel and Narayan [16], who 
maintain that a spatial resolution of up to 1 cm enables 
rotor localization. However, our data indicate that at such 
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a resolution the shape and size of the meandering area are 
unreliable. Nevertheless if a rotor is relatively stable and 
has a small meandering area (e.g., ~5-7 mm in diameter), 
better resolution might be of little clinical importance; 
i.e., as long as the center of rotation is detected the whole 
meandering area could be ablated since a single ablation 
lesion produces a crater of 5-7 mm in diameter [3]. 

It would be of interest to carry out further studies 
aimed at quantifying the required spatial resolution of the 
multi-electrode basket arrays to accurately track unstable 
rotors with large meandering areas. Such studies would 
provide rigorous evaluation of the clinical relevance, or 
lack thereof, when there is loss of information by using a 
spatial resolution of ≥5 mm, particularly when the 
ablation lesion fails to cover completely the rotor 
meandering region. 

 
5. Conclusion 

We conclude that the use of interpolated phase analysis 
of AF dynamics using multi-electrode arrays should 
consider that increasing the inter-electrode distance or the 
array-to-wall distance to ≤5 mm reduces precision in 
tracking a rotor trajectory, but does not preclude rotor 
identification. 
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