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Abstract

Patient-specific modelling aims to produce computa-
tional models of human physiology tailored to a spe-
cific patient. In line with this, we construct multiple hu-
man atrial electrophysiological models mimicking the be-
haviour of single atrial myocytes extracted from a ho-
mogeneous patient group. We study cells with the ac-
tion potential duration being 2–3 times lower than in hu-
man atrial electrophysiological models. Assuming such
a difference can be rationalized by altering the values of
ionic conductances, we generated 15000 models by si-
multaneously varying conductance values of the most im-
portant currents affecting the action potential (AP). We
paced the models at different frequencies and conditions,
probing the importance of ion concentrations and stimu-
lus strength, and kept the models producing AP biomark-
ers consistent with experiments. We discovered that both
the ionic conductances and external factors play a critical
role in producing biomarker values consistent with exper-
iments. By mimicking experimental conditions, we gen-
erated 604 models fully covering the experimental range
of AP biomarkers. In conclusion, both the ionic conduc-
tances and external factors are vital in tailoring single-
cell electrophysiological models to a narrow patient group.
This has implications in understanding the propensity of
subgroups of the total population to disease conditions.

1. Introduction

Models of human atrial electrophysiology described in
the literature are constructed with experimental data ob-
tained from different cells studied with a variety of tech-
niques. They are also based on information averaged over
multiple cells, and produce a single action potential trace
designed to represent the ‘typical’ behaviour of atrial my-
ocytes. Therefore, these models are likely to produce re-
sults that are (a) not representative of any atrial myocyte in
particular, and therefore (b) unlikely to reflect properties

of cells extracted from different groups of patients.
Using experimental single-cell data, we aimed to con-

struct multiple models of human atrial electrophysiology
mimicking the behaviour seen in a narrow patient group.
For this purpose, we used the action potential (AP) data
measured in 18 atrial myocytes extracted from 8 elderly
male patients in sinus rhythm and undergoing coronary
artery bypass graft in Oxford, UK. This dataset is chal-
lenging to model because some of the AP biomarkers
recorded in experiments are 2–3 times smaller than in the
biophysically-detailed models of human atrial electrophys-
iology. Specifically, the experimental values of the action
potential duration at 90% repolarization (APD90) are in the
range 80 − 150 ms, compared to the typical model values
of 300 − 350 ms [1]. Furthermore, the resting membrane
potential measured in these cells spans 15 mV with a max-
imum of −70 mV, compared to a single value of −75 mV
produced by the models. This highlights the importance of
constructing multiple electrophysiological models in order
to capture a large range of values that a specific biomarker
can take. Therefore, we decided to construct a population
of models calibrated with experimental AP data [2].

2. Methods

2.1. Experimental biomarkers

The five biomarkers used in this study are resting mem-
brane potential (RMP), action potential amplitude (APA),
and action potential duration at 20%, 50%, and 90% repo-
larization (APD20, APD50, APD90). These were measured
for every cell at five stimulation frequencies: 0.25, 0.5, 1,
2, and 3Hz [3]. Table 1 shows minimum and maximum
values of the biomarkers at two selected frequencies.

2.2. Population of single-cell models

APs generated in the experiments displayed a triangular
morphology, reminiscent of that seen in the Maleckar et
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Table 1. Ranges of the AP biomarker values used in the
calibration process for two selected frequencies.

Biomarker 1Hz 3Hz
RMP (mV) [-85.2, -69.4] [-87.2, -68.1]
APA (mV) [94.6, 127.1] [97.9, 128.4]
APD20 (ms) [2.7, 11.5] [3.1, 11.6]
APD50 (ms) [9.4, 34.1] [10.0, 37.1]
APD90 (ms) [63.4, 142.8] [64.8, 131.6]

al. model of human atrial electrophysiology [4]. There-
fore, we based our population of single-cell models on
this framework. Since the ionic current conductances are
known to display significant intercellular variability, we
assumed that altering their values would be sufficient to
reproduce the AP characteristics observed in this patient
group. The 11 conductances altered in this study corre-
sponded to the membrane currents IKur, IKr, IKs, Ito,
IK1, ICa,L, INa, the currents regulating calcium influx
and efflux in the sarcoplasmic reticulum Jup and Jrel,
as well as membrane pumps and exchangers INaK and
INCX . All 11 conductances were varied simultaneously
within ±100% range from their baseline model values with
Latin Hypercube sampling, which generates parameter sets
over a large number of parameters efficiently and without
bias [2]. Overall, an initial population consisting of 15000
models was generated in this manner.

2.3. Simulation protocol

Every model within the population was simulated in
conditions resembling experiments as closely as possible.
That is, the cytosolic and extracellular ionic concentrations
were adjusted to the values used in experiments. Each
model was stimulated for 100 beats at every frequency.
The impact of ionic concentrations on the AP biomarkers
produced by the models was assessed in a series of sim-
ulations, where (a) all ionic concentrations in the models
were allowed to vary, (b) cytosolic and effective extracel-
lular potassium concentrations were held constant, and (c)
cytosolic potassium and sodium, as well as effective extra-
cellular potassium, sodium and calcium were fixed. Like-
wise, the influence of the stimulus strength on the biomark-
ers was assessed by scaling its baseline model value by
factors ranging from 1.0 to 0.5 in 0.1 steps.

The simulations were performed using CHASTE, the
open source software framework designed for modelling
in computational biology [5]. Numerical integration was
performed with CVODE, an ordinary differential equation
solver with a varying time step, with absolute and rela-
tive error tolerances set to 10−9 and 10−10, respectively.
Biomarkers were calculated every 1 ms.

Figure 1. Selected biomarker plots illustrating the cover-
age of the biomarker space at 1Hz. Legend: orange crosses
– experimental datapoints; white dots – accepted models;
black dots – rejected models; white lines – limits of the ex-
perimentally allowed biomarker values. Accepted models
cover the experimentally available biomarker space well,
albeit the higher values of APD20 and APD50 are sampled
less densely than the rest of the space.

2.4. Calibration

Following the simulations, the initial population of mod-
els was calibrated against the experimental data. That is,
we checked whether the biomarker values generated by a
specific model at every stimulation frequency fell within
the ranges observed in experiments; the experimentally al-
lowed range was defined by the minimum and maximum
values of the specific biomarker at a particular frequency.
If all these criteria were met, the model was accepted for
further investigations.
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3. Results

3.1. Coverage of the biomarker space

The first series of simulations (with all ionic concen-
trations free to vary), resulted in 164 accepted models
with a good coverage of APD90 and APA biomarkers.
However, the models also displayed an increase in RMP
with pacing frequency not observed in experiments. This
was especially restrictive at the highest frequency of 3Hz,
where the accepted models displayed RMP ranging be-
tween −71 mV and −68 mV, which corresponded to
the uppermost end of the experimental range covering
−87 mV to −68 mV. Furthermore, the APD20 biomark-
ers produced by the accepted models were located in the
lower third of their experimental ranges. The initial poor
coverage of several AP biomarkers motivated further in-
vestigations to refine the populations of models.

RMP of excitable cells is predominantly determined by
the reversal potential of potassium ions, which is in turn
related to the ratio of the extracellular to cytosolic potas-
sium concentration. The model of Maleckar et al. con-
tains the cleft space surrounding the cytosol, acting as an
effective extracellular space. Crucially, local accumula-
tion or depletion of ions relative to the bulk is permitted
in the cleft space. At high pacing frequencies, potassium
ions accumulate in this space, thereby increasing the RMP.
We addressed this problem by clamping both the cytosolic
and the effective extracellular potassium concentrations to
a constant value matching the relevant experimental con-
centrations. While this partly alleviated the problem, the
RMP was still increasing at high pacing frequencies, albeit
more slowly. Following Cherry et al. [6], we decided to
additionally clamp the cytosolic and cleft concentrations
of sodium and the cleft concentration of calcium to their
experimental values. The resultant 282 accepted models
spanned the experimentally permitted range of RMP val-
ues at all frequencies.

APD20 is highly influenced by the stimulus strength ap-
plied to the models: a larger magnitude of the stimulus
will produce a larger APA and a smaller APD20. Since all
accepted models had short APD20 values, we decreased
the stimulus strength in increments of 10% starting from
the baseline model value. Reducing the stimulus strength
to 1/2 of its original value increased the number of ac-
cepted models to 604 and produced a good coverage of the
biomarker space for all biomarkers (Figure 1).

3.2. Conductances in accepted models

The majority of the conductances underpinning the 604
accepted models are spread within ±35% of the median
(Figure 2), indicating that most of the unusual parameter
values were rejected in the calibration process. Medians of

Figure 2. Box plot of the ionic current conductances in the
accepted models. The majority of the conductance values
underpinning the 604 accepted models are spread within
±35% of the median, indicating that most of the unusual
parameter values were rejected in the calibration process.

8 out of 11 varied parameters differ by more than ±10%
relative to the baseline model values. This is to be ex-
pected in view of the significant differences between the
biomarkers produced by the baseline model and the cells
in experiments.

Investigations into the links between specific parameter
values and AP biomarkers revealed that the models pro-
ducing APD values at the higher end of the experimentally
allowed range display a significant reduction in the con-
ductance of the transient outward potassium current, Gto.
In these models, Gto ranges between −100% and −40%
of the baseline model value, corresponding to the bottom
whisker on the box plot in Figure 2. Therefore, in order to
further improve the biomarker space sampling in the region
of higher APD values, one could generate two populations
of models: one with Gto distributed within ±40% of the
median, and another one with the parameter scaled down
in the region of −100% to −40%.

3.3. APD rate adaptation

Figure 3 shows the mean APD20, APD50 and APD90

normalized to their appropriate values at 0.25 Hz. The
curves representing experimental and model data overlap,
indicating that the models reproduce APD rate dependence
properties seen in experiments. To compare the absolute
values of the APDs generated in experiments and through
simulations, we need to ensure an even sampling of the
biomarker space by the computational models. This can
be achieved with the generation of two separate popula-
tions of models, one with short-to-medium APD values,
and another one with high APDs, as briefly outlined in the
previous section.
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Figure 3. APD rate dependence plots. Mean values of
APD20, APD50 and APD90 are normalized to the values
at 0.25 Hz. Legend: black – model predictions; orange
– experimental data; error bars – standard deviation. The
models capture experimental APD rate dependence.

4. Discussion and Conclusions

In this study, we constructed a population of single-cell
models mimicking atrial myocytes extracted from a homo-
geneous patient group. Apart from the ionic conductances
underpinning the AP, external factors such as the ionic con-
centrations and stimulus strength were found to play a crit-
ical role in producing the AP biomarker values consistent
with experiments. For instance, APD90 and APA are sig-
nificantly influenced by ionic conductances, while RMP
and APD20 are critically dependent on ionic concentra-
tions and stimulus strength. When these were taken into
consideration, we were able to generate 604 models cover-
ing the experimentally allowed range of AP biomarker val-
ues. Furthermore, this final population of models captured
the APD rate dependence properties observed in experi-
mental data. Therefore, we demonstrated that both ionic
conductances and external factors are critical in tailoring
single-cell models of electrophysiology to a narrow patient
group. This has implications in understanding the propen-
sity of subgroups of the population to disease conditions.

We also explored the models of Courtemanche et al. [7]
and Grandi et al. [8] describing human atrial electrophys-
iology in an attempt to build additional populations of
models representative of the experimental data. How-
ever, none of these additional populations covered the
biomarker space as well as the final 604 models based on
the Maleckar et al. framework. There can be multiple rea-
sons for this. Firstly, the baseline Grandi et al. and Courte-
manche et al. models produce APs with a spike-and-dome
morphology that are distinct from the triangular APs seen
in experiments. This may reflect the large heterogeneity
in AP morphology observed in different regions of the hu-

man atria, whereas all our experimental recordings where
obtained in cells extracted form the right atrial appendage
of patients in sinus rhythm. Additionally, the representa-
tion of biophysical processes, and in particular intracellu-
lar calcium handling, differs between the three models.

There were fewer models within the final population
producing APD values at the higher end of experimen-
tal range due to downregulation in the transient outward
potassium current. Future work will entail construct-
ing two separate populations, one with short-to-medium
APDs, and the other with long APDs. Investigations into
the cause of different predictions between the three models
of human atrial electrophysiology are also of interest.
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