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Abstract 

Hypertrophic cardiomyopathy (HCM) is an inherited 
cardiac disease characterized by an unexplained 
thickening of the heart ventricles. It is the first cause of 
sudden cardiac death in young adults. No reliable 
biomarkers for risk assessment have been presented so 
far, but the electrocardiograms of HCM patients are often 
abnormal due to structural and electrical abnormalities. 
The goal of our study was to extract morphological QRS 
biomarkers in order to discriminate between HCM 
patients and control patients by analyzing fifty 12-lead 
Holter recordings (29 HCM – 21 control). Morphological 
features such as QRS width or slopes from the QRS 
complex directly and the coefficients of the first four 
Hermite transform basis were extracted. Classification 
was then performed using those features in an L1 
regularized logistic regression algorithm. Classification 
between control and HCM patients reached 95.7% of 
accuracy (sensitivity of 94.96% for HCM and specificity 
of 96.90%) using only two main features: the percentage 
of negative regions of the QRS complex with respect to 
the isoelectric level and the 3rd coefficient of its Hermite 
fitting showing interesting connections to cardiac 
electrophysiology. 

1. Introduction

Hypertrophic cardiomyopathy (HCM) is a genetic 
disease characterized by the thickening of the heart 
ventricles (usually the left one) and is one of the major 
causes of sudden cardiac death in young adults [1]. It 
affects 1 in 500 people in the UK but reliable biomarkers 
from the electrocardiographic signal to distinguish HCM 
patients from control ones are still to be studied and the 

current risk assessment factors have a low sensitivity for 
predicting complications such as heart failure or sudden 
cardiac death [2] [3].  HCM patients present 
abnormalities in the myocardial structure such as wall 
thickening or fibre disarray that may affect the 
conduction properties of the heart. These abnormalities in 
the electrical activation pattern are likely to be 
highlighted by abnormalities in the morphology of the 
QRS complex in the ECG. Besides QRS width, amplitude 
and slopes, we also computed features based on the 
Hermite transform. Indeed, Hermite functions have been 
widely used in the literature to characterize the QRS 
complex and denoise it [4] [5]. Therefore, the goal of our 
work is to analyse QRS biomarkers extracted from Holter 
recordings in order to perform classification and discover 
the features that have the most discriminative power 
between HCM patients and healthy volunteers. 

2. Methods

2.1. Database 

Fifty 12-lead Holter ECG recordings (29 HCM 
patients and 21 control patients) with a sampling 
frequency of 1 kHz were analysed in order to extract QRS 
morphology biomarkers. The ECG time series were 
delineated using the wavelet delineator [6] in order to 
extract QRS peaks and waveforms limits useful to the 
computation of the biomarkers. After this segmentation 
step, the signal was filtered in order to get rid of the 
baseline wandering and powerline inference. Beats with 
low signal-to-noise ratio were also removed. The 
remaining delineated beats were aligned with respect to 
the QRS complex by Woody’s method [7] in order to 
compute a representative mean QRS of length 130ms 
over 30-minute excerpts of each lead for each patient. 
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2.2. QRS biomarkers extraction 

In order to perform classification, several 
representative features were extracted from the signal to 
compose a feature vector.  

2.2.1. Morphological biomarkers 

As mentioned earlier, we hypothesize that structural 
changes in the heart of HCM patients induce 
abnormalities in the activation sequence and in turn, in 
the QRS morphology. In order to quantify these changes, 
several morphological biomarkers were computed 
directly from the ECG signal including: 

- the QRS amplitude: computed as the absolute 
value of the difference between the maximum and 
minimum points of the QRS for each lead. 

- the QRS width: computed as the time interval 
between the beginning and the end of the QRS. 

- the maximum ascending/descending or 
descending/ascending slopes of the QRS complex: 
computed as the maximum ascending and 
descending slopes, depending on the QRS 
morphology, for all patients in each lead. 

- the percentage of the positive and negative regions 
in the QRS: computed as the percentage of 
negative time samples with respect to the 
isoelectric level. 

2.2.2 Hermite transform 

In the previous section, we presented features 
computed directly from the signal. Then, we computed 
the Hermite transform of the ECG signal. It acts as a noise 
removal method that can strengthen the classification [5], 
and most importantly, it can compactly describe the 
morphology of the QRS thanks to its well QRS fitted 
basis representation. Indeed, it has been shown that only 
three Hermite functions enable to recover more than 98% 
of the QRS signal energy [4].  

Figure 1. First four Hermite functions (order 0,1,2,3). 

In this work, we have used four Hermite functions 
(figure 1) to reconstruct the QRS signal. Each QRS can 
then be approximated as a linear combination of the four 
basis functions. 
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where ݔොሺݐሻ is the reconstructed QRS signal, ܾ௡ሺݐሻ the 
Hermite function of order ݊, ݐ the time samples from 1 to 
ܶ = 130ms and ݓ௡ its coefficients in the linear 
combination.  

One hypothesis motivating the study of the Hermite 
transform of the signal is that it may capture the degree of 
abnormality of the QRS morphology. Indeed, we expect 
the Hermite fitting error (difference between the 
reconstructed signal and the original one) to be higher in 
HCM patients due to their more abnormal QRS 
morphology. Figure 2 presents an example of a 
reconstructed QRS complex in a control and an HCM 
patient. 

Figure 2. Original QRS complex (plain line) and 
reconstructed one by Hermite fitting (dash line) in (right) 
a control patient and (left) a HCM patient, both in lead 
V3. 

The features computed from the Hermite fitting were: 
- the coefficients of the first four Hermite basis 
- the fitting error between the reconstructed QRS 

and the original one in terms of the root mean 
square (RMS) error. 

2.3. Machine learning algorithms 

Classification was performed using a supervised 
machine learning algorithm: logistic regression [8] [9]. It 
is a probabilistic model, maximizing the probability of 
one instance belonging to one class. In this work, in order 
to reduce the number of selected features with redundant 
information, L1 regularization was used. 

The feature selection process was then performed 
using the logistic regression L1 regularized algorithm 
(Lasso technique [10]). The logistic regression aims at 
maximizing the conditional log-likelihood of the data ࣦ: 
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where ݕ௡ is the output label for the point ࢞࢔, and the 
probability of ࢞࢔ to belong to class 1ܥ is ݌ሺ࢔࢞|1ܥሻ ൌ
 ௡ theݓ is the sigmoid function and ߪ ሻ where࢔௡࢞ݓሺߪ
weights of the linear model. 
When adding the regularization term, the regularized 
objective function to minimize becomes:  

ࣦሺ࢝ሻ ൌ෍log݌ሺݕ௡|࢞࢔ሻ
௡

൅ |௜ݓ|෍ߙ
௜

 

where ߙ is the penalty term controlling the trade-off 
between the classification performance and the size of the 
weights ݓ௜. With the L1 regularization term, the number 
of features is reduced creating sparse models, and in turn, 
it enables interpretability of the results and it reduces 
overfitting. Indeed, gradually decreasing the penalty term 
lets appear the most discriminative features of the model. 

In our experiments, the dataset was split into a training 
set (40 patients) for learning and a testing set (10 patients) 
for performance measurement. The algorithm was run 
100 times with randomly selected training and testing 
sets.  

3. Results and discussion

During the classification, standard biomarkers such as 
QRS width, QRS amplitude or QRS slopes were 
investigated but they did not add complementary 
information to the classification. This confirms previous 
observations on these biomarkers discriminative power 
([3] [2]). Table 1 presents the accuracy results obtained 
for different biomarkers combinations. 

Table 1. Accuracy results for different biomarkers using 
the eight leads. 

Biomarkers combination Accuracy 
Amplitude of QRS + QRS width + 
ascending and descending slope 
Error of the Hermite fitting + time location 
of the maximum error 
Four Hermite coefficients in each lead  
Percentage of negative regions in each lead 

74% 

80.08% 

81.25% 
91% 

In Table 2, we included the L1 regularization term for 
feature selection to obtain a ranking of the features 
according to their weight in the classification. Table 2 
shows the good discriminative power of the Hermite 
coefficients and the importance of the QRS negative 
regions in the classification. 

Table 2. Ranking of the first four best features. 

N. Feature 
Logistic 

Regression 
(cumulative 

accuracy 
%) 

1 
2 
3 
4 

% Negative regions in V3 
3rd Hermite coeff. in V3 
Negative regions in V5 
1st Hermite coeff. in V4 

83.51 
95.78 
94.05 
94.61 

We extracted the first two features: 
- the percentage of negative regions in the QRS in 

lead V3 
- the 3rd coefficient of the Hermite fitting in lead V3 

Using only these two biomarkers, the classification 
reached an accuracy of 95.7% with a sensitivity in 
predicting HCM of 94.96% and a specificity of 96.90%. 
Adding extra features did not add 
additional/complementary information to the classifier. 

Figure 3 shows the discriminative power in terms of 
the Student’s t-test p-values of six biomarkers (negative 
regions, 3rd and 1st Hermite coefficients, QRS width, QRS 
descending slope and RMS error of the fitting) in leads 
V2, V3, V4 and V5.  The QRS width, the descending 
slope and the RMS did not show any significant 
difference between HCM and control patients in any lead 
but V3. On the contrary, the 3rd and 1st Hermite 
coefficients and the negative regions of the QRS showed 
p-values<10-6 in most of the leads (especially V3 and 
V4), showing their good discriminative power to classify 
between HCM and control patients. 

These findings connect to cardiac electrophysiology in 
two ways. First, it is interesting to note that the larger 
percentage of negative regions in the QRS of HCM 
patients is really discriminant in all precordial leads. This 
is in agreement with the ventricular remodeling affecting 
the septum and the left ventricle in HCM patients [11]. 
Then, the role played by the coefficients of the Hermite 
functions highlights the importance of the QRS 
morphology in HCM abnormalities. Indeed, as shown in 
Fig.3, the 3rd Hermite coefficient in V3 has a higher 
absolute weight in HCM patients, while the 1st coefficient 
is more correlated to the control ones. The wavy and 
irregular shape of the 3rd coefficient (Fig. 1) is in 
agreement with the presence of notches and irregularities 
in the QRS of HCM patients, while the smoother shape of 
the 1st coefficient agrees with the controls. 

Some future work should consider a multi-class 
classification introducing for example ischemic, with 
abnormalities in the QRS complex or control athletes, 
with a thicker heart. More complex classification methods 
could also be investigated. 
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Figure 3. Boxplot of HCM and control patients of QRS width (ms), 3rd Hermite coefficient, negative regions (%), 1st 
Hermite coefficient, descending slope and RMS, all in leads V2, V3, V4, V5, along with the p-value. 

4. Conclusion

Holter recordings from 29 HCM patients and 21 
control ones were analyzed to quantify morphological 
features for HCM classification. Classification results 
focusing on the morphology of the QRS complex 
achieved 95.8% of accuracy and led to the extraction of 
two main features to distinguish between the two groups 
of patients: the percentage of negative regions of the QRS 
and the 3rd coefficient of the Hermite fitting, both in lead 
V3. These findings highlight the importance of the 
morphology of the QRS complex in understanding the 
HCM disease. 
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