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Óscar Barquero-Pérez1, Rebeca Goya-Esteban1, Antonio Caamaño1,
Carlos Martı́n-Caballero2 and José Luis Rojo-Álvarez1
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Abstract

Perinatal hypoxia is a severe condition that may harm
fetus organs permanently or even cause dead. When the
fetus brain is partially deprived from oxygen, the control
of the fetal heart rate (FHR) is affected. We hypothesize
that the complex physiological mechanisms of the FHR are
perturbed under perinatal hypoxia. To quantify the loss in
complexity we measured Sample Entropy (SampEn), Per-
mutation Entropy (PE), and Time Irreversibility (TI). FHR
traces were preprocessed to remove artifacts. A database
of 32 FHR recordings were acquired with cardiotochogra-
phy, 15 controls and 16 cases. Resampling methods were
used to establish the statistical differences. TI was sig-
nificantly different for healthy and hypoxia fetuses (-0.38
± 0.19 vs. -0.21±0.37, p-value=0.063). Entropy indices
were higher for healthy fetuses (SampEn:0.33±0.12 vs
0.28 ± 0.09, p-value=0.11; PE:0.72±0.04 vs 0.69±0.07,
p-value= 0.12). We also computed temporal and spectral
indices but none of them showed significant differences.
Complexity measures of the FHR were different for healthy
and hypoxia fetuses. These indices may help to early detect
hypoxia with less invasive methods.

1. Introduction

Perinatal hypoxia is a fetus and newborn disease due to
the lack of tissues oxygenation. Although it can occur in
earlier gestation phases, childbirth and immediate neonatal
hours are the fundamental risk periods.

Perinatal hypoxia severity spectrum conveys very mild
cases (only requiring neonatal resuscitation with environ-
mental oxygen), more serious cases needing intubation and
acidosis correction with bicarbonate (reanimation types V
and VI), and critical cases that can cause perinatal death
or serious sequels, such as brain or adrenal hemorrhage,
necrotizing enterocolitis, delayed neurological develop-
ment, mental handicap, seizures (West syndrome) or cere-
bral palsy [1]. Diagnosis is performed at the birth time by
evaluating the cardio-respiratory depression and the mus-
cle tone. The severity of the hypoxia is commonly quan-
tified using the Apgar Score [2], with a score lower than

7 at five minutes after delivery being considered as patho-
logical, which is usually confirmed with gas analysis of
the umbilical cord, low pH values evidence metabolic aci-
dosis. Typical values considered for diagnosis are pH ≤
7.05, wich are considered pathological in terms of risk of
perinatal hypoxia.

Continuous electronic fetal monitoring, also known as
Cardiotocography (CTG), was developed around 1960 [3]
and consists of the simultaneous evaluation of the fetal
heart rate (FHR) and the uterine activity. After CTG gen-
eralization, two relevant signs of suspicious fetal hypoxia
were recognized, namely, the late decelerations of the FHR
in relation to uterine contractions, and the FHR variability
decrease [4, 5]. Several nonlinear indices has been used
to estimate the loss of complexity in FHR under the as-
sumption that less complex signals indicate pathological
situations [6–8].

We aimed to assess the change in complexity, due to
hypoxia, of the physiological mechanisms that control the
FHR before childbirth. We assessed the FHR complex-
ity using three different nonlinear measures namely, time
irreversibility (TI), sample entropy (SampEn) and permu-
tation entropy (PE) in 32 fetal recordings, 15 controls and
16 cases.

The structure of the paper is as follows. Section 2 de-
scribes the nonlinear indices. The dataset and the statisti-
cal procedure are detailed in Sections 3 and 4 respectively.
Section 5 presents the results. Finally, the conclusions and
a brief discussion is presented in Section 6

2. Methods

In this section we present a brief description of the non-
linear indices used to assess FHR complexity.

2.1. Permutation Entropy

PE estimates complexity as the entropy of permutations
pattern of the elements in a time series. It is a robust
method with respect to noise and is easy to compute [8,9].
Given a time series x[n] for n = 0 . . . N , it is embedded
into a D-dim spaceX = {x[n], x[n+1], . . . , x[n+D−1]}.
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Figure 1. FHR for (a) a hypoxic and (b) a control fe-
tus. Samples in the FHR are classified by the acquisition
machine as: reliable sample, marker “·”; medium reliable,
marker “x”; and unrealiable, marker “o”.

For a fixed embedding dimension, each vector has as-
sociated an ordinal pattern, defined as the permutation
πi = (r0r1 . . . rD−1) which fulfills [10]

x[n+ r0] ≤ x[n+ r1] ≤ . . . ≤ x[n+ rD−1]

Therefore, there are D! possible ordinal patterns in a D-
dimensional embedded space. If p(πi) is the relative fre-
quency of the ordinal pattern πi, then the PE is defined as
the Shannon entropy associated to the distribution of ordi-
nal patterns πi [9, 10]

PE = −
D!∑
i=1

p(πi) ln p(πi) (1)

2.2. Sample Entropy

Entropy-based methods provide a quantification of the
irregularity of a temporal series. Among them, Sam-
pEn [11] holds some properties which are appropriate for
the study of physiological signals, namely it is robust to
noise and outliers, and accordingly, it has been widely ap-
plied for characterizing the HRV signal. The SampEn,
which is a modification of the Approximate Entropy [12],
is the negative natural logarithm of the conditional proba-
bility that two sequences which are similar form points re-
main similar form+1 points. Thus, a lower value of Sam-
pEn indicates more self-similarity in the time series [11].
In order to compute SampEn, the embedded dimension m,
i.e., the length of the vectors to be compared, and the noise
filter threshold r need to be specified. In this study the val-
ues for these parameters are set to m = 2 and r = 0.2. the
standard deviation of the signal, since they are common
values used in the literature [12].

Sampen can be estimated as follows

SampEn(m, r,N) = − ln [Am(r)/Bm(r)] (2)

where Am(r) is the average number of similar (m+1)-dim
embedding vectors (within r), and Bm(r) is the average
number of similar m-dim embedding vectors (within r).

2.3. Time Irreversibility

Time irreversibility (TI) is related to the unidirectional-
ity of the energy flow across the boundaries of the system.
Living beings are systems operating far-from equilibrium,
they utilize energy to evolve to and maintain ordered struc-
tural configurations, through inherently time irreversible
processes. Death can be considered as a state of maxi-
mum equilibrium, therefore states approaching death are
expected to be more time reversible than those represent-
ing far-from-equilibrium healthy physiology [13].

In time series analysis, TI refers to the lack of invariance
of the statistical properties of a signal under the operation
of time reversal. A method to quantify the degree of TI was
presented in [13], it is based on the observation that for a
symmetric function the number of increments is equal to
the number of decrements. They use this fact for calcu-
lating the asymmetry of the original time series and for a
number of coarse-grained time series. Consider a time se-
ries X = {xi}, 1 ≤ i ≤ N . For scale 1, the time series
Y1 = {yi}, yi = xi+1 − xi, 1 ≤ i ≤ N − 1 is constructed.
Then, the difference A1 between the percentage of incre-
ments and decrements is computed according to

A1 =

∑
H[−yi]−

∑
H[yi]

N − 1
(3)

where H is the Heaviside function (H(a) = 0 if a < 0
and H(a) = 1 if a ≥ 0) and 1 ≤ i ≤ N − 1. Similarly
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PE SampEn TI STV Phf

Healthy 0.72± 0.04 0.33± 0.12 −0.38± 0.19∗ 3.23± 1.15 0.40± 0.18
Hypoxia 0.69± 0.07 0.28± 0.09 −0.21± 0.37 3.45± 1.35 0.43± 0.25

Table 1. Mean±standard deviation of the nonlinear and computed on healthy and hypoxia cases. Symbol ∗ means
statistically significant difference (p-value < 0.1) using a bootstrap hypothesis test.

for scale j, the time series Yj = {yi}, yi = xi+j − xi, 1 ≤
i ≤ N−j is constructed. Then, the differenceAj between
the percentage of increments and decrements is computed
according to

Aj =

∑
H[−yi]−

∑
H[yi]

N − j
, 1 ≤ i ≤ N − j (4)

The time asymmetry (irreversibility) index is defined as∑
Aj for a pre-defined range of scales. In this study we

used j = 8 due to the length of the recordings.

3. Data description

FHR records1 were acquired with a Philips cardiotoco-
graph for a total of 32 recordings, 15 controls and 16 cases
in the Hospital Universitario Fundación Alcorcón (Madrid,
Spain). A case was declared whether: 1) the PH of the um-
bilical artery was ≤ 7.05; or 2) the APGAR score was ≤
7 at 5 minutes after delivery and a reanimation type III or
greater was required. The institutional Medical Ethics Re-
view Board approved the use of this data. Figure 1 shows
examples for control and hypoxic fetus. For this study we
used the last hour of each record before childbirth.

4. Statistical analysis

To test whether exists statistically significant differences
on nonlinear indices between controls and cases we per-
formed a statistical hypothesis tests based on bootstrap re-
sampling. The null hypothesis (H0) represents no differ-
ence between controls and cases, against the alternative hy-
pothesis (H1) that there exists significant differences. For
each index we used the mean difference between controls
and cases as the statistic to summarize our data. Bootstrap
hypothesis test is based on the idea of building an empirical
distribution of the statistic, under H0, and then computing
the statistic onB different resamplings. Assuming thatH0

is true, bootstrap statistics are computed on resamplings
from a pooled population (control ∪ cases). We computed
each p-value as the fraction of the points on the distribution
(probability) that are more extreme than the actual statistic
value [14, 15].

1Data is available from the website:
http://sites.google.com/site/hufahypoxia.

5. Results

Table 1 shows the mean and standard deviation of the
indices computed on healthy and hypoxia cases. Besides
nonlinear indices, we also computed short time variabil-
ity (STV) and high frequency power (PHF) as linear in-
dices, since they are commonly used in the literature. None
of the linear indices showed statistical difference between
healthy and hypoxia groups.

Figure 2 shows the box plot for the three nonlinear in-
dices comparing healthy and hypoxic fetuses. SampEn
free parameters were set to m = 2 and r = 0.15 · std,
which are the usual values in the literature. PE free param-
eters, embedding dimension, was set to D = 7. Finally, TI
number of scales was set to j = 8.

Entropy indices showed higher complexity (higher val-
ues) in healthy fetuses, both SampEn and PE, but without
statistical significance. It should be noted that PE showed
a reduced standard deviation compared to SampEn and TI,
mainly in the healthy group. Healthy fetuses showed TI
values farthest from zero than hypoxic fetuses, indicating
higher complexity. Applying the bootstrap hypothesis test
we verified a statistical significant difference for TI (p-
value < 0.1).

6. Discussion and Conclusions

In this work we studied the FHR complexity change due
to perinatal hypoxia. The complexity of the FHR was as-
sessed by three different methods, namely: SampEn, PE
and TI. The two first estimate the irregularity of a time
series, whereas the latter estimates the asymmetry with re-
spect to time reversal. A group of 15 healthy fetuses was
compared with a group of 16 hypoxic fetuses. Due to the
small number of samples in each group we used a boot-
strap hypothesis test to compare both groups.

Healthy fetuses showed higher entropy indices and TI
values farthest from zero (p-value¡0.1) than the hypoxic
group. These results pointed to a loss of complexity in the
hypoxic group. It should be note that PE showed concen-
trated distributions in both groups.

Nonlinear indices computed on FHR seemed to pro-
vided a way to assess the loss of complexity due to peri-
natal hypoxia, and could be used to provide with a mecha-
nism to early detections of hypoxia.
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Figure 2. Boxplot for each of the nonlinear indices, (a) SampEn, (b) PE, (c) TI, comparing healthy and hypoxic groups.
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