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Abstract 

Neurally mediated syncope (NMS) is a transient and 
self-limited loss of consciousness that affects all ages and 
is associated with high rates of falls and hospitalizations.  

In this study we propose a new algorithm for real-time 
prediction of NMS that integrates indexes of autonomic 
modulation among other parameters, which is based on 
the analysis of the electrocardiogram (ECG) and 
photoplethysmogram (PPG) alone. 

ECG and PPG signals were acquired from 43 patients 
with suspected NMS, during scheduled diagnostic head-
up tilt table (HUTT) tests. 

Heart rate variability (HRV) indexes were integrated 
in a NMS prediction algorithm comprising surrogates of 
chronotropic, inotropic, blood pressure and vascular tone 
changes. 

The proposed algorithm was validated using a three-
way data split approach. HRV indexes improved the 
algorithm performance in both the train/validation phase 
and the test phase, showing the importance of autonomic 
modulation indexes in real-time prediction of NMS.  

1. Introduction

Syncope is defined by a transient and self-limited loss 
of consciousness, which is characterized by a rapid onset, 
short duration and spontaneous complete recovery [1].  

Syncope is associated with high rate of falls and 
hospitalizations, accounting for 1-3% of all emergency 
department (ED) visits and 1-6% of all hospital 
admissions in general [2, 3]. It is responsible for lifestyle 
quality reduction and is often associated with the 
appearance of medical complications, especially in 
elderly were its incidence rises up to 30.6 incidents per 
1000 person-years [2]. With an annual cost of  $1.7-2.4 
billion, the costs of hospitalizations related to syncope are 
equivalent to conditions such as asthma, HIV and chronic 
obstructive pulmonary disease [4]. Therefore, the 

development of a warning system, capable of informing 
patients for the need of taking appropriate counter 
measures and avoid potential injuries is essential. 

Although there are many syndromes of reflex syncope, 
they all share the same mechanism, composed by a 
trigger (the afferent pathway) and a response (the efferent 
pathway. In these neurally mediated syncopes (NMS), the 
Bezold-Jarisch reflex is thought to have a primary role in the 
development of loss of consciousness. The overstimulation 
of the left ventricular wall leads to an over-response of 
the hypersensitive autonomic nervous system, which is 
responsible for inducing a vagal mediated suppression of 
sympathetic activity, in order to protect the myocardium. 
The result is bradycardia, vasodilation, and consequently 
hypotension and syncope. 

NMS prediction has been tackled over the last years 
from several perspectives, which differ in the objectives, 
methods and sensing modalities. The most common 
approach is the early prediction of the HUTT outcome 
based on an analysis of heart rate (HR) and blood 
pressure (BP) variability, using time, frequency domain 
techniques, or both. Contrarily, real time prediction 
approaches focus on assessment of the risk of an 
impending syncope episode. In this area, authors focused 
on the analysis of changes in HR and BP [5] and also 
pulse arrival time (PAT) as a surrogate for systolic BP 
changes [6]. However, to our knowledge, the integration 
of autonomic modulation indexes in a real time 
perspective still lacks proper analysis.  

In the present paper, we propose the integration and 
analysis of heart rate variability (HRV) indexes, extracted 
from time and frequency domain analysis, into a 
previously proposed algorithm [7], for real time 
prediction of NMS.  

2. Study design and experimental setup

Data from 55 patients with unexplained syncope was 
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collected during scheduled diagnostic HUTT. All the 
patients gave a written informed consent to participate in 
the study (NCT01262508). 

The HUTT protocol consisted of four phases. In the 1st 
phase (initial resting period) the patient lies for at least 15 
min in supine position. Next, in the 2nd phase (passive 
standing period), the patient stands for a period of 20 
minutes in a 70º position. If no syncope occurs during the 
previous phase, the patient remains in a passive standing 
position and it is administrated sublingually a min 400 µg 
of glycerol trinitrate (GTN). In the last phase (final 
recovery period), the patient is tilted back to the supine 
position for recovery. If the patient experienced syncope 
during any of the protocol phases, it was immediately 
returned to the supine position for recovery. A technician 
documented prodromal symptoms (e.g. dizziness, sweat, 
tremor) during the whole protocol. 

The HUTT outcome was classified as positive (po) or 
negative (ne) according to the European Society of 
Cardiology [2] guidelines. The occurrence of syncope or 
pre-syncope in the presence of cardioinhibitory, 
vasodepressor, or mixed responses, was considered a 
positive result. 

The data collected in this study was recorded using a 
Philips MP50 patient monitor extended with data logger 
functionality (ECG @500 Hz and PPG @126 Hz) and a 
“Taskforce Monitor” (continuous BP @50 Hz, two ECG 
leads @1000Hz, among other signals). The recorded data 
were synchronized using the RR interval time series 
extracted from the ECGs of both systems.   

Due to BP regulation failures not caused by syncope, 
arrhythmias and poor data quality in BP and PPG signals, 
data recorded from 12 patients have been removed. The 
biometric characteristics of the study population (21 po / 
22 ne) are (mean ± std): 

 Age: 57  18 (po) and ��17 (ne) years 
 BMI: 27.1  4.6 (po) and 26  5 (ne) Kg/m2 
 GTN admin. (yes/no): 15/6 (po) and 15/7 (ne) 

3. Methods 

The main steps of the proposed algorithm are: 1) 
Detection of motion artifacts; 2) Parameter extraction and 
post-processing; 3) Feature evaluation and; 4) Syncope 
prediction. 

The PPG signal is prone to several sources of error, 
which can represent a serious obstacle to the reliable 
extraction of cardiovascular parameters. In the present 
algorithm motion artifacts were detected using the 
algorithm proposed in [8], which is based on the time and 
period domain analysis of the PPG signal.  

3.1. Parameter extraction 

The chronotropic and inotropic changes were assessed 

from the analysis of the HR and left ventricular ejection 
time (LVET). The HR was extracted from the analysis of 
the ECG signal and defined as the time span between 
consecutive R-peaks, while the LVET was extracted from 
the analysis of the PPG signal using the algorithm 
proposed in [9]. 

Vascular tone and BP changes were assessed by three 
highly pressure dependent parameters: the stiffness index 
(SI); the reflection index (RI) and the pulse arrival time 
(PAT). The SI was defined as time span between the 
forward (T1) and reflected waves (T2), while the RI was 
defined as the ratio between the amplitudes of both waves 
(P1 and P2). Finally, PAT80% was defined as the time 
span between the ECG R-peak and the moment in time 
corresponding to 80% of the PPG pulse amplitude after 
its onset. More details about the extraction of these 
parameters can be found in [9]. 

3.2. HRV analysis 

The sympathetic and parasympathetic activity was 
assessed using both time and frequency domain HRV 
analysis in a 180 sec sliding window, shifted by 5 sec 
increments. 

From the time domain analysis five parameters have 
been extracted: 1) SDNN - standard deviation of normal-
to-normal (NN) intervals; 2) SDSD - standard deviation 
of successive differences between adjacent NNs; 3) 
RMSSD – square root of the mean squared differences 
between adjacent NN intervals; 4) NN50 - number of 
interval differences of successive NN intervals greater 
than 50 ms and; 5) pNN50 – ratio between NN50 and the 
total number of NN intervals. 

Additionally, the autoregressive power spectral density 
estimate was evaluated using Burg's method and three 
frequency domain parameters were extracted: 1) aLF - 
normalized area of the spectra low frequency (LF) band 
(0.04-0.15 Hz); 2) aHF – normalized area of the spectra 
high frequency (HF) band (0.15-0.4 Hz) and; 3) aLH - 
ratio between aLF and aHF. While the HF component is 
commonly accepted as a marker of parasympathetic 
activity, the LF component is considered as a primary 
indicator of sympathetic modulation. However, the 
influence of the sympathetic and parasympathetic systems 
on the LF component is still controversial. The LF/HF 
ratio is commonly defined as a marker of sympatho-vagal 
balance [10].  

3.3. Feature evaluation 

The extracted parameters are comprised within 
different ranges, which change depending on the patients’ 
physiological characteristics and status. Therefore, to 
develop a robust algorithm it is essential to define a set of 
features independent from such factors. To that end, the 
extracted parameters were normalized according to (1) 
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leading to the definition of the first set of 13 features. 

݊ሾܴܲ௜ሺݐሻሿ ൌ
ܴܲ௜ሺݐሻ

݁ݎܴܲ ௜݂
, ݅ ൌ 1,… ,13 (1)

where ܨ ௜ܶ is the ith feature, ܴܲ௜ is the ith parameter (e.g. 
PR1 = HR, …, PR6 = SDNN, …, PR11 = aLF, etc.), ܴܲ݁ݎ ௜݂ 
is the average of each parameter during the second minute  
after the patient was tilted to the upright position 
(reference window corresponding to orthostatic 
stabilization) and t is the time instant. 

Furthermore, a set of five features was also defined as 
the normalized changes (of the first five parameters) over 
the previous 1.5 minutes (the minimum response time 
according to [6]) according to: 

݊∆ሾܴܲ௜ሺݐሻሿ ൌ
ܴܲ௜ሺݐሻ െ ܴܲ௜ሺݐ െ 1.5ሻ

݁ݎܴܲ ௜݂
, ݅ ൌ 1,… ,5 (2)

To select the best features for syncope prediction we 
used a score metric (ܵܵܨ) proposed in [11], which 
combines the feature relevance (the area under the curve - 
 and redundancy (spearman’s rank correlation (ܥܷܣ
coefficient - ܴܥܥ). In sum, ten features were selected 
corresponding to the highest features selection scores.  

3.4. Syncope prediction 

To evaluate the risk of an impending syncope event a 
threshold based approached was used, resorting on the 
evaluation of the changes relative to a stable orthostatic 
reference at the beginning of the standing period (FTref). 
To evaluate these changes several distance metrics were 
tested and the Minkowski distance metric (p=2-0.5) was 
selected. 

One of the limitations of distance metrics is that they 
don’t take into account the direction of the evolving 
trajectory. Therefore, it is necessary to suppress feature 
variations that are known a priori not being associated 
with the physiological mechanisms underlying NMS. To 
this matter, the n[SI] and n[PAT] and n[SDNN] values 
below unit, and n[RI] values above unit were set to one. 
Additionally, nΔ[HR] values above zero, and nΔ[LVET], 
nΔ[SI] and nΔ[PAT]  values below zero were set to zero. 

Impending NMS was detected when the Minkowski 
distance crosses a predefined optimal threshold.  

4. Results and discussion 

The selection of the best features, best distance metric 
and optimal threshold was performed on the 
train/validation subset (30 patients), while the test subset 
(13 patients) was independently used to validate the 
algorithm. The optimal threshold was defined as the 
average of the thresholds assessed at each fold/iterations 
during a 5-fold cross validation (5f-CV), repeated 20 
times. 

 

4.1. Feature selection 

The features prediction ability is presented in Table 1. 
One observes that all the selected features present an FSS 
above 60%, being the best associated with the changes of 
BP and vascular tone: n[PAT] and n[SI]. From the ten 
selected features, three features were selected from the 
HRV analysis: n[SDNN], n[aHF] and n[aLF]. The 
n[SDNN] presented the best score within the HRV 
features, while the n[aHF] and n[aLF] were the last 
selected features, presenting the lowest FSS within the 
selected feature set.  

In Figure 1 it is possible to observe an abrupt increase 
in the SDNN parameter and the trend of both aLF and 
aHF towards zero, preceding the onset of syncope. This 
trend mainly results from the increase of the very low 
frequency (VLF) oscillations, which have been recently 
associated with the increase of vagal activity, known as 
the last mechanism leading to syncope. This observation 
was found in 17 out of 21 patients with a positive test.    

4.2. Syncope prediction 

In Table 2 we compare the results achieved by the 
proposed algorithm with and without HRV indexes.  

In the validation phase, our algorithm achieved a high 

Table 1. Performance of the best 10 features 

Feature FSS(%) SE(%) SP(%) PPV(%)
n[PAT] 92,1 92,1 100 90 
n[SI] 89,1 89,8 80 96,7 

n[SDNN] 80,2 86,2 93,3 73,3 
nΔ[HR] 74,9 82,9 80 86,7 
nΔ[SI] 72,6 88,9 80 93,3 

nΔ[PAT] 72,3 90,3 80 93,3 
n[RI] 72,3 86,6 86,7 83,3 

nΔ[LVET] 68 80 80 73,3 
n[aHF] 67 75,4 66,7 86,7 
n[aLF] 60,7 73,9 66,7 86,7 

Figure 1. Representation of the RR, HRV selected 
parameters during a positive HUTT.  
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sensitivity (SE) of 93.3%, associated with high specificity 
(SP) and positive predictive value (PPV: 100%). During 
this phase no false alarms have been detected (FPRh:0 h-

1) and a good prediction time was achieved (56.1±36.8s). 
In the testing phase, there was an increase in the 

algorithm prediction capability, reflected by the high SE 
(100%). Although, the SP and PPV remained elevated in 
this phase (above 85%) we observed a decrease when 
compared to the train/validation phase. The achieved 
FPRh was low (0.15 h-1) and a good prediction time was 
achieved (prediction time (PreTime): 256.7±239,4). 

Visibly, the integration of HRV indexes increased the 
performance of the proposed algorithm in both 
train/validation and test phases. In the validation phase, 
the HRV indexes enabled the enhancement of both SP 
PPV and FPRh, followed by a minor decrease in the 
prediction time (ΔPreTime: -4.9s). In the test phase, the 
HRV indexes did not produce such enhancements, 
leading to similar results. An exception was observed in 
the prediction time, which increased by approximately 13 
sec.  

5. Conclusions 

In the current paper we investigated the possibility of 
integrating autonomic modulation indexes in an algorithm 
for syncope prediction. The prediction capability of 
several HRV time and frequency domain indexes was 
evaluated and compared with features associated 
chronotropic (HR), inotropic (LVET) and vascular tone 
(SI, RI and PAT) changes. From the eight HRV features 
investigated, three features (n[SDNN], n[aHF] and 
n[aLF]) presented a prediction capability above the 
established selection criterion and were integrated in a set 
of ten features, which were combined into a single 
distance measure and a threshold-based approach to 
detect impending NMS. Our results show that the 
integration of HRV features enhanced the performance of 
the proposed algorithm, highlighting the importance of 
autonomic modulation indexes in real-time prediction of 
NMS. 
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Table 2 – Results achieved by the proposed algorithm with and without HRV indexes 

Algorithm Phase SE (%) SP (%) PPV(%) FPRh (h-1) PreTime (s) 
With HRV 

indexes 
Train/Validation 93.3 100 100 0 56.1±36.8 

Test 100 92.3 85.7 0.15 256.7±239.4 
Without HRV 

indexes 
Train/Validation 93.3 96.7 94.8 0.15 61.0±38.6 
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