
Heart Rate Turbulence Modeling using Boosted Regression Trees
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Abstract

Heart Rate Turbulence (HRT) is a relevant cardiac risk
stratification criterion. It is accepted the baroreflex hy-
pothesis as a source of the HRT. However, several stud-
ies showed different results about the relationship between
coupling interval (CI) and HRT turbulence slope (TS) pa-
rameter. Our aim was to propose a nonparametric model
based on Boosted Regression Trees (BRT) of TS as a func-
tion of CI, heart rate (quantified by sinus cardiac length
SCL in ms), Age and Sex. We used a set of 11 patients with
normal heart undergoing electrophysiological study (EPS)
and 61 holters from actue myocardial infarction (AMI) pa-
tients (Hospital Arrixaca de Murcia). The AMI set was
split into: AMI low-risk, and AMI high-risk according to
HRT. We propose to model TS using BRT, which is an en-
semble approach to build a regression model using several
trees. SCL was the explicative variable with the highest
importance both in EPS and AMI low-risk. TS correlated
nonlinearly with SCL, and negatively with CI both in EPS
and AMI low-risk. The model was completely different
for AMI-HR. R2 was higher for EPS (0.63) and AMI-LR
(0.38) than for AMI-HR (0.28). The model was in agree-
ment with the baroreflex hypothesis, and the role of age and
sex agrees with previous results for EPS and AMI-LR. CI
was the most important variable and positively correlated
with TS in AMI-HR.

1. Introduction

Heart Rate Turbulence (HRT) is the physiological re-
sponse to a spontaneous ventricular premature complex
(VPC). In normal subjects consists of an initial accelera-
tion and subsequent deceleration of the sinus heart rate. It
has been shown to be a strong risk stratification predictor
in patients with high-risk of cardiac disease [1, 2].

HRT is usually assessed by two parameters, Turbulence
Onset (TO) and Turbulence Slope (TS), computed on an
averaged VPC, even though there exist some other ap-
proaches to quantify HRT [3, 4]. TO assesses the amount
of sinus acceleration following a VPC, and it is defined
as the percentage difference between the heart rate imme-

diately following the VPC and the heart rate immediately
preceding the VPC. TS represents the rate of sinus decel-
eration that follows sinus acceleration, and it is defined as
the maximum positive regression slope assessed over any
5 consecutive sinus rhythm RR-intervals within the first 15
sinus rhythm RR-intervals after the VPC [2].

It has been documented in the literature the influence of
several physiological factors on the HRT [2]. The heart
rate affects the strength of the HRT response, in a way that
HRT is reduced at high heart rate. VPC prematurity also
influences the HRT response. So, in agreement with the
baroreflex source of HRT, the more premature the VPC,
the stronger the HRT response should be. Nevertheless,
the effects of VPC prematurity on HRT were analyzed in
different studies, but with contradictory results and even
contrary to the physiological hypothesis of the HRT [5–7].
Conflicting results between different studies about correla-
tions between HRT parameters and coupling interval (CI)
are usually explained by the effect of baseline HR. Since
HRT is blunted at high HR it is unlikely to be correlated
with CI [8–10]. It has been studied in the literature some
interaction effect between sex and hear rate on HRT [11].
Also, it has been documented a decrease in HRT with in-
creasing age in men [12].

In this work, we propose to use a nonparametric model
of the HRT using a boosted regression tree (BRT). The ex-
planatory variables of the model are the previous heart rate,
the CI , Age and Sex. The response variable, assessing
the HRT, is TS. The aim is to study dynamics of HRT
as explained by hear rate, CI , Age and Sex. Data from a
database of 11 patients with structurally normal heart un-
dergoing electrophysiological study (EPS) is gathered. In
those patients, VPC are delivered according to a protocol.
Also a database of patients with acute myocardial infarc-
tion (AMI) is used.

The structure of the paper is as follow. In Section 2,
BRT model is explained. In Section 3 datasets are detailed.
In Section 4 results are reported. Finally, in Section 5,
conclusions are presented.
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2. Boosted Tree Regression Model

We propose to model the HRT, as assessed by a parame-
ter T , as a function of the following explanatory variables:
Scl (sinus cardiac length, instead of heart rate), Ci (cou-
pling interval), A (age), and S (sex):

T = f(Scl, Ci, A, S) (1)

In this work, we propose to learn the function, f , from
the data using BRT as regression method. BRTs are based
on the idea of adaptively combining large numbers of rel-
atively simple tree models. The goal is to optimize pre-
dictive performance [13]. This method has been widely
used to generate predictive models in ecological and bi-
ological studies [14]. The BRT estimation, f̂(x), where,
x = [Scl, Ci, A, S]

T , is obtained sequentially as follows
1. Set f̂(x) = 0 and rn = Tn for all the n VPC
tachograms available, where rn are the residuals.
2. For b = 1, 2, . . . , B, repeat
(a) Fit a small tree, f̂ b to the training data {xn, rn},

where explicative variables are in vector xn and response
variable is rn.
(b) Update f̂ by adding a shrunken version of the new

small tree f̂ b:
f̂ ← f̂ + λf̂ b (2)

(c) Update the residuals, rn,

rn ← rn − λf̂ b (3)

3. Finally, output the BRT model:

f̂ =
B∑

b=1

λf̂ b (4)

The main idea is to learn slowly. A new small tree (with
few terminal nodes) is fit using the current residuals and
then added to f̂ , so that f̂ is slowly improved in areas
where it does not perform well [15].

BRT has three tuning parameters namely, the number of
trees B, the shrinkage parameter λ that controls the rate
at which BRT learns, and the number of splits (number
of terminal nodes) in each tree, which controls the com-
plexity of the boosted ensemble, it also controls the inter-
action order between explanatory variables in the model.
Note that this feature allows to explore the interaction be-
tween SCL and CI , which is argued as an explanation
to conflicting results when studying relationship between
HRT and CI [8–10]. Parameters were tuned using 10-fold
cross-validation, which is a usual procedure [15].

Unlike simple regression trees, BRT models can be
more difficult to interpret. However, they can provide
some summary statistics that allow a better understanding
of the final model and assess the feature importance. The

relative importance and the partial dependence plots, PDP,
are two such statistics. The relative importance measures
the contribution of each explanatory variable to the final
model, scaled such that the total sum reaches 100, with
higher numbers for more important variables [13,14]. PDP
are graphical tools to quantify the effect of one variable
on the response after accounting for the average effects of
the remaining variables in the model (Elith et al., 2008).
There exists one-way PDP accounting for the interaction
between the response variable (TS) and one explanatory
variable, and two-way PDP among two features [14].

3. Data sets

Eleven patients (50±15 years, 7 women) with struc-
turally normal hearts were included in the study, all of
them referred for EPS in the Hospital Universitario Virgen
de la Arrixaca (Murcia, Spain). The study was approved
by the local Ethics Committee and all participants granted
a signed informed consent. The EPS was performed dur-
ing sinus rhythm after ablation procedures, and sequences
of 10 single induced VPCs were delivered every 20 s from
the right ventricular apex.

The study was designed to investigate the influence of
HR on HRT, and the combined influence of HR and CI
on HRT, respectively. The HR was increased with isopro-
terenol, which activates beta-1 receptors in the heart induc-
ing positive chronotropic effects [16], whereas the CI was
controlled by modifying the VPC prematurity at the pacing
trains.

We used a data set with 61 post-myocardial infarction
patients (64±9 years, 18 women) who underwent emer-
gency coronary angiography, and, when appropriate, per-
cutaneous infarction revascularization. These data were
collected in a prospective study at University Hospital Vir-
gen de la Arrixaca [17] in order to evaluate the impact of
primary angioplasty on the indication for implantable de-
fibrillator in patients with AMI. 24-h ambulatory electro-
cardiographic monitoring was done in patients with stable
sinus rhythm between 2 and 6 weeks after the infarction,
and patients with at least 1 VPC during the monitoring pe-
riod were included in the study.

This dataset was split into two different subsets, namely,
the AMI low-risk subset, which comprised 17 patients
(63±12 years, 5 women) with TS ≥ 2.5 ms/RR-Interval
and TO ≤ 0, and the AMI high-risk subset, which com-
prised 6 patients (70±6 years, 1 woman) with TS < 2.5
ms/RR and TO > 0 %. These TS and TO cutoff values are
commonly used in most clinical studies, where TS > 2.5
ms/RR and TO < 0 % are considered as normal, and they
were proposed using data from different post-infarction
studies [2].
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Figure 1. Summary of results, PDP (one-way and two-way) and feature relative importance of modeling HRT using BRT
for EPS(a), AMI low-risk (b) and AMI high-risk (c).

4. Results

Figures 1(a), 1(b), and 1(c) show one-way, two-way
PDP and feature relative importance obtaining modeling
HRT using BRT for EPS, AMI low-risk and AMI high-risk
patients respectively.

The most important feature in EPS and AMI low-risk
groups was SCL, whereas in AMI high-risk gruop was
CI . It is clear the nonlinear positive relationship between
TS and SCL, especially in EPS and AMI low-risk. The
relationship between TS and CI is negative, as suggested
by the baroreflex hypothesis, both in EPS and AMI low-
risk. In contrast, in AMI high-riks, CI and TS had a pos-
itive relationship. Two-way PDP shows a similar HRT dy-
namics as a function of SCL and CI , both in EPS and
AMI low-risk, in contrast to the behaviour exhibited by
AMI high-risk group.

The coefficiente of determination, R2 was obtained to
evalute how well the model predicts. R2 was obtained us-
ing cross-validation 10-fold. R2 was higher for EPS (0.63)
and AMI low-risk (0.38) groups than for AMI high-risk
group (0.28).

5. Conclusions

In this work we propose to use BRT to model the rela-
tionship between HRT parameter TS and variables SCL,
CI , Age, and Sex. The model was fitted using data from
three differente groups, namely, a healthy group obtained
from EPS, a low-risk and a high-risk groups from AMI pa-
tients.
R2 resutls suggested that the explanatory variables used

are good predictors of the value ot TS in healthy condi-
tions (EPS group). R2 lower values in the high risk group
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may suggest a loss of heart rhythm control by the barore-
flex and autonomic nervous system.

This loss of control seems to be confirmed by the change
in the relationship between TS and the explanatory vari-
ables according to the one-way PDP, which are similar in
EPS and AMI low-risk, but different in AMI high-risk.

Further work should be directed to incorporate all the
available information about physiological variables when
assessing HRT on patients. Also, comparing HRT dynam-
ics, regarding the proposed explanatory variables, between
different patient groups may give some insight on cardio-
vascular risk stratification.
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[17] González-Carrillo J, Garcı́a-Alberola A, Saura D, Carrillo
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