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Abstract

At high altitude there is a reduced oxygen pressure in the
atmosphere which results in physiological changes. Heart
Rate Variability (HRV) is a technique to quantify the auto-
nomic nervous system (ANS) regulation of the heart rate,
allowing a noninvasive assessment of the ANS in extreme
environments. The aim of this work was to assess the
evolution of the HRV complexity during Kangchenjunga
(8.586 m) climbing. Five spanish climbers recorded their
RR-interval time series every day during the expedition.
We divided the data in different stages: Spain Baseline,
Kathmandu Baseline, Acclimation Trekking, Kathmandu
After Acclimation, Base Camp 1, Base Camp 2, Summit,
Base Camp 3, and Kathmandu after expedition. At the
submission time we had acces only to complete recordings
from one climber. We assessed the complexity of HRV us-
ing sample entropy (SampEn) and normalized compression
distance (NCD), which exploits linear and nonlinear rela-
tions in the data and allows the comparison of sequences
of different sizes. We estimated the dissimilarity of ev-
ery stage in the climb against the first stage. From the
beginning and during acclimation dissimilarity (NCD) in-
creased and then decreased once the climbers were accli-
mated. Dissimilarity jumped up in Base Camp stage and
then decreased from that point until the end of the expe-
dition. Both indices showed an initial change in the com-
plexity until the Summit and from the Summit both showed
a tendency to recover the complexity of the HRV. Results
showed that NCD is able to measure the changes in com-
plexity with a little more detail and smoother than SampEn.

1. Introduction

A characteristic of physiologic systems is their deep
complexity, arising from internal interactions and regu-
latory feedback loops which operate over a wide range
of temporal and spatial scales [1]. Heart Rate Variabil-
ity (HRV) is a marker of the Autonomic Nervous Sys-

tem (ANS) control on the heart, and it has been proposed
for risk stratification of lethal arrhythmias after acute my-
ocardial infarction, as well as for prognosis of sudden car-
diac death events [2–4]. A wide number of HRV indices
have been proposed in the literature, many studies suggest
that nonlinear methods are better suited to extract rele-
vant information from HRV signal in terms of complexity.
Nonlinear indices rely on the idea that fluctuations in the
RR intervals may reveal characteristics from complex dy-
namic systems, and, under this assumption, healthy states
will correspond to more complex patterns than pathologi-
cal states [3, 5, 6]. Furthermore, many experts claim that
no single index should be used to assess the complexity
of physiologic systems, instead of that, a set of metrics is
needed to measure different aspects of the complicated be-
havior of physiologic systems [1].

Acute hypoxia changes induce several autonomic adap-
tations, mainly in the respiratory and cardiovascular sys-
tems, sympathetic activation with heart rate and cardiac
output increase [7, 8]. Previous studies have evaluated
HRV in subjects exposed to acute hypobaric hypoxia in
real settings. They reported a reduced HRV as measured
by linear indices, consistent with an increased sympathetic
tone and a decreased parasympathetic tone [7, 9–11].

The aim of this work is to assess the evolution of the
HRV complexity during Kangchenjunga (8.586 m) climb-
ing. Five climbers recorded their RR-interval time series
every day during the expedition. We assessed the complex-
ity of HRV using sample entropy (SampEn) and normal-
ized compression distance (NCD). The first is a common
information measure to assess irregularity [6], the later is
a measure coming from Information Theory, which com-
pares two arbitrary sequences and outputs the dissimilarity
between them. NCD exploits linear and nonlinear rela-
tions in the data allowing the comparison of sequences of
different sizes. In order to assess the change in complexity,
we estimated the dissimilarity of every stage in the climb
against the first stage.

The structure of the paper is as follows. First, HRV non-
linear indices are presented. Next, the data is described in
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detail, and the results are presented. Finally, conclusions
are summarized.

2. Methods

2.1. Normalized Compression Distance

NCD measures the similarity relations between se-
quences [12], being an universal similarity metric approxi-
mating the incomputable notion of Kolmogorov complex-
ity [13]. The Kolmogorov complexity K(x) (or algorith-
mic entropy) of a sequence x can be intuitively understood
as the bitlength of the utmost compressed version of x.
Likewise, the Kolmogorov complexity K(x, y) of two se-
quences x and y is the length of the shortest program that
calculates both the sequences and a description of the dif-
ference between them. And the conditional Kolmogorov
complexity K(x|y) of x relative to y is the length of the
shortest program to calculate x if y is used as the input.

Furthermore, K(x, y) can be used as a distance as
K(x, y) = K(y, x) holds up to an additive constant term
(Eq. II.1, [12]), independent of x and y. The information
about x contained in y is I(y : x) = K(x)−K(y|x∗) (be-
ing x∗ the compressed version of x) and it is symmetric.

Assuming finite order stationary Markov sources x and
y, we define x1:n and y1:n as the temporally ordered
sequences of the random variables (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) emitted by x and y, respectively, at times
1, 2, . . . , n.

Consider the entropy rate Hµ(x) and the joint entropy
rate Hµ(x, y) as [14]:

Hµ(x) = lim
n→∞

1

n
H (x1, . . . , xn) (1)

Hµ(x, y) = lim
n→∞

1

n
H
(
(x1, y1), . . . , (xn, yn)

)
(2)

which calculate the average uncertainty about x and the
pair (x, y), respectively.

Then, let the conditional entropy rate Hµ(x|y) be

Hµ(x|y) = Hµ(x, y)−Hµ(y)

= lim
n→∞

1

n

(
H(x1:n, y1:n)−H(y1:n)

)
= lim

n→∞

1

n
H(x1:n|y1:n) (3)

which quantifies the average uncertainty about x while tak-
ing into account correlation between observations gener-
ated by x and given knowledge by observations generated
by y.

As we previously saw, up to an additive constant we may
approximate

E [K(x1:n)] ≈ H(x1:n) (4)

So, using Eqs. (1) and (2), we may further approximate

E [K(x1:n)] = nH(x1:n) (5)
E [K(x1:n, y1:n)] = nH(x1:n, y1:n) (6)

From the previous measures of entropy rate and Kol-
mogorov complexity, a normalized distance metric has
been proposed, the NID [12]:

NID(x, y) =
K(x, y)−min(K(x),K(y))

min(K(x),K(y))

=
max(Hµ(x|y), Hµ(y|x))
max(Hµ(x), Hµ(y))

(7)

NID has been used to measure dissimilarities between ele-
ments of the same family in various research fields, such as
genome sequences (to establish relations between phyla),
written language (to establish hierarchies of relations) and
music (to establish relations between songs and genres).

As Kolmogorov complexity is non computable we use
the Normalized Compression Distance (NCD) approxima-
tion for NID as follows: Given two signals si, sj, the
NCD(si, sj) is defined as

NCD(si, sj) =
C(si, sj)−min{C(si),C(sj)}

max{C(si),C(sj)}
(8)

where C(·) is the compression length in bits given by the
selected compressor C (C(si) and C(si, sj) are the num-
ber of bits needed to compress si and the concatenation of
si and sj, respectively). This normalized measure has a
simple interpretation, in the sense that the lower its value,
the more similar the signals. In other words, they share
more information and fewer bits are required to compress
both signals together. The normalization term in the de-
nominator of (8) enables the comparison among signals of
different sizes.

In this work, NCD was computed using RR-interval
time series and using bzip2 as compressor. All the com-
putations were performed under Python 3.

2.2. Sample Entropy

Entropy-based methods provide a quantification of the
irregularity of a temporal series. Among them, Sam-
pEn [15] holds some properties which are appropriate for
the study of physiological signals, namely it is robust to
noise and outliers, and accordingly, it has been widely ap-
plied for characterizing the HRV signal. The SampEn,
which is a modification of the Approximate Entropy [6],
is the negative natural logarithm of the conditional proba-
bility that two sequences which are similar for m points re-
main similar for m+1 points. Thus, a lower value of Sam-
pEn indicates more self-similarity in the time series [15].
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Figure 1. NCD and SampEn evolution during the expedition for one climber. Each point in the figure corresponds a single recording (RR-interval time
series), and each colored area corresponds to a single stage.

Given N data points Bm
i (r) is defined as (N − m −

1)−1 times the number of template vectors xm(j) similar
to xm(i) (within r) where j = 1...N −m with j 6= i. Then
the average of Bm

i (r) for all i is calculated as

Bm(r) =
1

N −m

N−m∑
i=1

Bm
i (r) (9)

Similarly Ami (r) is defined as (N − m − 1)−1 times the
number of template vectors xm+1(j) similar to xm+1(i)
(within r) where j = 1...N −m with j 6= i. The average
of Ami (r) for all i is calculated as

Am(r) =
1

N −m

N−m∑
i=1

Ami (r) (10)

Finally, SampEn(m,r) and its statistic SampEn(m,r,N) are
defined as

SampEn(m, r) = lim
N→∞

{− ln [Am(r)/Bm(r)]} (11)

SampEn(m, r,N) = − ln [Am(r)/Bm(r)] (12)

In order to compute SampEn, the embedded dimension m,
i.e., the length of the vectors to be compared, and the noise
filter threshold r need to be specified. In this study the
values for these parameters are set to m = 2 and r = 0.2.
the standard deviation of the signal, since they are common
values used in the literature [6].

3. Dataset

In this work we gathered RR-interval time series from 5
spanish members on an expedition to climb the Kangchen-
junga, which is the third highest mountain in the world
(8.586 m) located in eastern Nepal. The climbing was
conducted between April and May 2014. The 5 climbers
recorded 30 min of RR-interval time series every day and,
whenever possible, at the same time of the day (usually be-
tween 12:00 and 14:00). The cardiac signals were recorded
using FirstBeat Bodyguard 2. The electrodes were at-
tached by a member of the expedition who is a doctor.

The data was divided in different stages:

1. Spain Baseline
2. Kathmandu Baseline
3. Acclimation Trekking
4. Kathmandu After Acclimation
5. Base Camp 1

6. Base Camp 2
7. Summit
8. Base Camp 3
9. Kathmandu After Expedition
10. Spain Baseline

Since some stages lasted more than one day, they con-
tained more than one recording.

Due to the extreme conditions some of the signals are
very noisy and we had to proceed a visual inspection to
remove unusable segments. At the time of the submission
of this work we had available recordings for every stage
only for one of the climbers. Therefore, our results are
preliminary.

4. Results

Figure 2.1 shows NCD and SampEn values for the
climber with all the recordings available. Each point in
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the figure corresponds a single recording, and each col-
ored area corresponds to a single stage. To compute NCD
the first stage (Spain Base) was used as reference, so that
any other NCD value was obtained by comparision with
this reference. Therefore, the NCD computed by self-
comparison should be small (zero ideally) and it was not
shown in the figure, for the sake of detail. In the first two
stages (Kathmandu Base and Acclimatization) the NCD
first increased and then decreased. From this point, the
NCD jumped up to the highest value in the second record-
ing in Base Camp 1, meaning that this point was the most
different comparing to the reference. Then, from this point
(Base Camp 2, Summit and Base Camp 3), the NCD re-
mained almost stable and higher than initial stages (Ac-
climatization and Kathmandu Base). Finally, NCD started
a descending trend from Base Camp 3, Acclimatization
and, again, Spain Base, meaning a recovery of the HRV.

SampEn series showed a more noisy behaviour. It is
possible to distinguish three different parts. First, from
Spain Base to Base Camp 1, SampEn showed values rang-
ing from 1 to 1.5. Then a second part, from Base Camp1
to the Summit, SampEn was low compared with the previ-
ous part, with values below 1 and around 0.5. Finally, after
the Summit, the SampEn recovered a little bit and showed
values around 1.

5. Conclusions

In this work we studied the complexity of HRV in
climbers during the expedition to the Kangchenjuna (8.586
m). We used two different indices to assess the complex-
ity, namely, SampEn that is a well known, and commonly
used in the literature, indices to assess irregularity in car-
diac signals. We also proposed to use NCD, a dissimilarity
measure from information theory, that tries to estimate the
Kolmogorov complexity.

At the time to summit this work we only had access to
the complete recordings from one of the 5 climbers, so our
findings are preliminary. Results showed that NCD is able
to measure the changes in complexity with a little more
detail and smoother than SampEn. Both indices showed
an initial change in the complexity until the Summit and
from the Summit both showed a tendency to recover the
complexity of the HRV.
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